MECHANICS (ME10001)

Tutorial 1: Force System

1. A force F is applied to the surface of a sphere as shown. The angles θ and ϕ locate point P, and point M is the midpoint of $O N$. Express F in vector form using the $x-y-z$ coordinates.

$$
F\left[\frac{(2 \sin \phi-1)(\mathbf{i} \cos \theta+\mathbf{j} \sin \theta)+\mathbf{k}(2 \cos \phi)}{\sqrt{5-4 \sin \phi}}\right]
$$

2. A 600 N force applied to the bracket at A is to be replaced by two forces, F_{a} in the $a-a$ direction and F_{b} in the $b-b$ direction. Which together produce the same effect on the bracket as that of the 600 N force. Determine F_{a} and F_{b}.

Ans: $F_{a}=692.82 \mathrm{~N}, F_{b}=346.42 \mathrm{~N}$
3. A 300 N force is applied at A as shown. Determine
(a) the moment of the 300 N force about D ,
(b) the smallest force applied at B which creates the same moment about D.

Ans: (a) $/ 41.7 / \mathrm{Nm}$ (b) $147.4 \mathrm{~N}, 45^{\circ}$

4. In picking up a load from position B, a cable tension T of magnitude 24 kN is developed. Calculate the moment which T produces about the base O of the construction crane.

> Ans: (-301.94 i+139.35 j-83.61 k) kN m

5. The structure shown is constructed of circular rod which has a mass of 7 kg per meter of length. Determine the moment Mo about O caused by the weight of the structure. Find the magnitude of Mo.

$$
\begin{array}{r}
\text { Ans. } \mathbf{M}_{O}=-192.6 \mathbf{i}-27.5 \mathbf{j ~ N} \cdot \cdot \mathrm{~m} \\
M_{O}=194.6 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

6. Calculate the moment about the z - axis of the 2 kN tension in the cable AB.

Ans: 0.92 kNm

7. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E . Knowing that the tension in the cable is 1349N, determine the moment about each of the coordinate axes of the force exerted by the cable at C .

Ans: $-1598 i+959 j \mathrm{Nm}$

8. A single force P acts at C in a direction perpendicular to the handle $B C$ of the crank shown. Knowing that $\mathrm{Mx}=+20 \mathrm{Nm}$, $\mathrm{My}=-8.75 \mathrm{Nm}$, and $\mathrm{Mz}=-30 \mathrm{Nm}$, determine the magnitude of P and the values of phi and θ.

$$
\text { Ans: } P=125 \mathrm{~N}, \phi=74^{\circ} \text { and } \theta=53^{\circ}
$$

9. The guy cables $A B$ and $A C$ are attached to the top of the transmission tower. The tension in cable AC is 8 kN . Determine the required tension T in cable $A B$ such that the net effect of the two cable tensions is a downward force at point A. Determine the magnitude R of this downward force.

$$
\text { Ans. } T=5.68 \mathrm{kN}, R=10.21 \mathrm{kN}
$$

10. If the resultant of the two forces and couple moment M passes through point O, determine M .

Ans. $M=148.0 \mathrm{~N} \cdot \mathrm{~m}$ CCW
11. For the thrust configuration for an aircraft shown, determine the equivalent force-couple system at point O. Then replace this force-couple system by a single force and specify the point on the x-axis through which the force passes.

$$
\begin{aligned}
\text { Ans: } F_{O} & =T(1.9659 i+0.2588 j) \\
M o & =-2.6904 T k, \quad x=-10.3957 i
\end{aligned}
$$

12. If engine 3 of the aircraft shown suddenly fails, determine the resultant of the three remaining engine thrust vectors, each of which has a magnitude of 90 kN . Also specify the $\mathrm{y}-\mathrm{z}$ coordinates of the point through which the resultant passes.

$$
\text { Ans: } F=270 i k N, y=-4 m, z=2.33 \mathrm{~m}
$$

