Mechanics (ME10001)
 Suggested Reading Materials

List of abbreviations

BJ - Beer, Johnston, Mazurek, Cornwell and Sanghi, Vector Mechanics for Engineers, $10^{\text {th }}$ Edition in SI Units, McGraw Hill Education (India) Pvt. Ltd.

MC - Meriam and Kraige, Engineering Mechanics - Statics, $6^{\text {th }}$ Edition, Wiley India.
BJS - Beer, Johnston and DeWolf, Mechanics of Materials, $3^{\text {rd }}$ Edition (in SI units), Tata McGraw-Hill Publishing Company Ltd.

P - Popov, Engineering Mechanics of Solids, $2{ }^{\text {nd }}$ Edition, PHI Learning Pvt. Ltd.

Pre-Mid Semester Examination: Engineering Mechanics

Force systems:

- Representation of force as vector - $\mathrm{BJ}(2.2,2.7,2.12,2.13)$ or $\mathrm{MC}(2 / 2,2 / 3,2 / 7)$
- Moment of a force about a point and about an axis - $\operatorname{BJ}(3.6,3.7,3.8,3.11)$ or $\mathrm{MC}(2 / 4$, 2/8)
- Couple and its moment $-\mathrm{BJ}(3.12$ to 3.16$)$ or $\mathrm{MC}(2 / 4,2 / 8)$
- Reduction of a force system to a force and a couple - BJ(3.17 to 3.20) or $\mathrm{MC}(2.6,2.9)$

Equilibrium:

- Free body diagram - BJ(4.2, 4.3, 4.9) or MC(3/2, 3/4)
- Equations of equilibrium - $\operatorname{BJ}(4.4,4.8)$ or $\mathrm{MC}(3 / 3,3 / 4)$
- Problems in two and three dimensions - $\mathrm{BJ}(4.6,4.7)$ or $\mathrm{MC}(3 / 3,3 / 4)$
- Plane frames - BJ $(6.9,6.10)$ or $\mathrm{MC}(4 / 6)$
- Plane truss - BJ (6.2, 6.3, 6.4, 6.7) or $\operatorname{MC}(4 / 2,4 / 3,4 / 4)$

Friction:

- Laws of Coulomb friction - $\operatorname{BJ}(8.2,8.3)$ or $\mathrm{MC}(6 / 3)$
- Friction problems with large and small contact surface $-\operatorname{BJ}(8.4,8.5)$ or $\operatorname{MC}(6 / 3)$
- Application: belt friction - $\mathrm{BJ}(8.10)$ or $\mathrm{MC}(6 / 8)$

Properties of areas:

- First moment of area - BJ (5.3, 5.45 .5$)$ or $\mathrm{MC}(5 / 3,5 / 4)$
- Second moment of area and polar moment of area - BJ(9.2 to 9.7) or MC(Appendix $\mathrm{A} / 2$, A/3)
- Pappus-Guldinus theorem $-\mathrm{BJ}(5.7)$ or $\mathrm{MC}(5 / 5)$

Post Mid-Semester Examination: Strength of Materials

Concept of stress and strain:

- Normal stress - BJS(1.3 to 1.5) or $\mathrm{P}(1.6)$
- Shear stress - BJS(1.6) or P(1.8)
- State of stress at a point - BJS $(1.11,1.12)$ or $\mathrm{P}(1.3,1.4)$
- Ultimate strength, allowable stress and factor of safety - $\operatorname{BJ}(1.13)$ or $\mathrm{P}(1.10,1.11)$
- Normal strain - BJS(2.2) or P(2.2)
- Shear strain - BJS(2.14) or P(5.2)
- Hooke's law - BJS $(2.3,2.6)$ or $\mathrm{P}(2.3$ to 2.5$)$
- Poisson's ratio - BJS(2.11) or P(2.6)
- Generalized Hooke's law - BJS $(2.12,2.15)$ or $\mathrm{P}(5.6,5.7)$
- Analysis of axially loaded members - BJS(2.8) or P(3.2)
- Simple applications in design - BJS(16 to 1.8) or $\mathrm{P}(1.6,1.7)$

Application:

- Thin pressure vessels - BJS(7.9) or $\mathrm{P}(5.9)$

Transformation of stress:

- Transformation of stress - BJS(7.2) or P(11.2, 11.3)
- Principal stress and maximum shear stress - BJS(7.3) or $\mathrm{P}(11.4,11.5)$
- Mohr's circle for plane stress - BJS (7.4) or P(11.6)

Torsion

- Torsional stress in cylindrical bars and deformation - BJS(3.1 to 3.5) or $\mathrm{P}(6.3$ to 6.6$)$

Flexural loading:

- Shear force and bending moment in beam - BJS(5.3, 5.3) or $\mathrm{P}(7.8$ to 7.11$)$
- Flexure formula - BJS(4.2 to 4.4) or P(8.3, 8.5)
- Differential equation of elastic curve and beam deflection - BJS(9.1 to 9.4$)$ or $\mathrm{P}(14.2$ to 14.7)

