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1 Motivation to incorporate viscous effects

In the previous chapter (before Mid-Sem) we had seen that mathematicians had tried (way, way back) to
model dynamic fluid flow behaviour by incorporating the static fluid flow relation σ = −pI into the equation
of motion obtained from the conservation of linear momentum. While this inviscid theory has its uses, but it
was found out by mathematicians themselves that some of the phenomena observed in practice by engineers
simply could not be predicted by the equations. One of the most famous examples of this discrepancy was
the d’Alembert’s paradox: a solid sphere or circular cylinder immersed in a flowing fluid experiences drag;
this drag just could not be predicted by the mathematics. Another example is that the lift force observed in
lubricated systems (originating from lubricating fluid pressure) cannot be predicted by the theory. Another
simple example from common experience is that it is not possible to clean the dusty surface of a car just by
driving fast. Inviscid theory however predicts that it is possible!

It was found that these discrepancies between theory and practice can be corrected by including viscous
effects in the model for flowing fluid.

2 Dynamic fluid behaviour involving viscosity

2.1 What we have till now, and what we need

We have one equation (the continuity equation or the mass conservation equation) involving the density, ρ
(which in the general case need not be a known constant), and the three components of the velocity:

∂ρ

∂t
+∇ · (ρv) = 0. (1)

We also have three equations from momentum conservation:

ρ
Dv

Dt
= ρb +∇ · σ, (2)

which involve the 9 unknown components of σ besides ρ and v again. Thus we have (1 + 3) = 4 equations
involving (1 + 3 + 9) = 13 unknowns. We can fix this discrepancy (but not completely) by invoking the
principle of conservation of angular momentum. Without going into the details we will state that using this
principle we obtain that the stress is symmetric as long as there are no body couples acting. Thus

σ = σT, (3)

which means that instead of 9 unknown components we now have 6 unknown components of the stress.
Thus, taking stock again we have: 1 + 3 = 4 equations and (1 + 3 + 6) = 10 unknowns. Therefore we need
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6 more equations to fix the discrepancy. These equations are provided by constitutive behaviour (or, how
the material behaves). Note that all the equations that we have written till now are applicable equally to
all materials (as long as we are treating them in the continuum sense). It is at the point where we invoke
the material behaviour that equations become different for different materials.

Here, we will present a discussion of the equation describing the simplest possible material behaviour of a
flowing fluid.

2.2 Flowing fluid with viscous effects

We now want to obtain an equation that will depict the simplest possible material behaviour of a flowing
fluid with viscous effects incorporated. The first thing we want to ensure is that in the special case where
the velocity is zero, the static fluid behaviour should be recoverable from this flowing fluid behaviour. That
can be done by writing for the stress

σ = −pI + f(v), (4)

where f(v) = 0 when v = 0.

It is important to note that transmission of the information about momentum takes place not due to the
velocity per se; rather it takes place due to the gradients in velocity. Since the stresses are intrinsically
connected to this transmission of momentum information, therefore, a more appropriate version of the above
relation is

σ = −pI + f(∇v). (5)

We have already seen in earlier lectures that the gradient in velocity may be decomposed into the symmetric
and the antisymmetric parts as:

∇v =
1

2

{
∇v + (∇v)

T
}

︸ ︷︷ ︸
Symmetric

+
1

2

{
∇v − (∇v)

T
}
.︸ ︷︷ ︸

Antisymmetric

(6)

Remember that the symmetric part represents the rate of deformation tensor (or, the rate of strain tensor or,
the strain-rate tensor), henceforth denoted by E while the antisymmetric part denotes the average rotation
rate.

A very subtle point: The material behaviour cannot involve any sort of dependence on the rotation because
material behaviour should come into play only when there is some deformation – change in the internal
structure – of the material. If the material behaviour were to depend on rotation then we would be able to
“see” different material behaviour of a bucket full of water simply by hopping around it in different ways!

Therefore, the description of the material behaviour must not include a dependence on the rotation rate part
of the velocity gradient. And so an even more appropriate version of Eq. (5) is

σ = −pI + f(E). (7)

The simplest possible form is for a linear, instantaneous, isotropic fluid for which the above relation becomes
(see the Appendix for a more extensive discussion)

σ = −pI + λtr(E)I + 2µE, (8)

where λ and µ are two material-specific parameters. This material behaviour is said to be that of a Newtonian
fluid. Water is a typical example of Newtonian fluid.
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Here, tr(E) is referred to as the trace of E, and it denotes the sum of the diagonal elements in the matrix
representation of the tensor E. Thus

tr(E) = tr

[
1

2

{
∇v + (∇v)

T
}]

=
1

2

[
tr (∇v) + tr

{
(∇v)

T
}]

=
1

2
× 2tr (∇v)

=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= ∇ · v

Therefore, from (8), we have

σ = −pI + λ∇ · vI + 2µE. (9)

Note that p is the thermodynamic pressure. Now, define “mechanical pressure” as p̄ := − 1
3 tr (σ) so that

p̄ = −1

3
tr [−pI + λtr(E)I + 2µE]

= −1

3
[−3p+ 3λ∇ · v + 2µ∇ · v]

= p− λ∇ · v − 2

3
µ∇ · v

= p−
(
λ+

2

3
µ

)
∇ · v.

There are two ways in which the thermodynamic pressure may be equal to the mechanical pressure:

1. When the bulk viscosity µv := λ + 2
3µ = 0 (referred to as the Stokes’ hypothesis). This holds in two

situations:

(a) Characteristic time scales are large compared to the molecular relaxation time scales

(b) When the fluid under consideration is a monoatomic gas

2. When the fluid is incompressible implying ∇ · v = 0

Now, we would like to use the material behaviour equation (9) in the general equation for the conservation
of linear momentum (2) (where we also use the symmetry of the stress condition (3) obtained from the
conservation of angular momentum). For this substitution, we need to evaluate ∇ · σ. Thus

∇ · σ = ∇ · [−pI + λ∇ · vI + 2µE]

= −∇p+∇ (λ∇ · v) + 2∇ ·
[
µ

1

2

{
∇v + (∇v)

T
}]

Take λ and µ as constants. Then

∇ · σ = −∇p+ λ∇ (∇ · v) + µ∇ ·
{
∇v + (∇v)

T
}

(10)
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We can rewrite the term involving µ by noting the following{
∇v + (∇v)

T
}
≡ ∂

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
=
∂2vi
∂x2j

+
∂2vj
∂xj∂xi

=
∂2vi
∂x2j

+
∂

∂xi

(
∂vj
∂xj

)
≡ ∇2v +∇ (∇ · v)

Then from (10), we have

∇ · σ = −∇p+ λ∇ (∇ · v) + µ∇2v + µ∇ (∇ · v)

= −∇p+

(
λ+

2

3
µ

)
∇ (∇ · v) + µ∇2v +

1

3
∇ (∇ · v) . (11)

Using (11) in (2) (where we additionally use (3)), we obtain

ρ
Dv

Dt
= ρb−∇p+

(
λ+

2

3
µ

)
∇ (∇ · v) + µ∇2v +

1

3
∇ (∇ · v) , (12)

which is the celebrated Navier-Stokes equation. Note that in class, we had obtained the Navier-Stokes
equation in the following form:

ρ
Dv

Dt
= ρb−∇p+ (λ+ µ)∇ (∇ · v) + µ∇2v, (13)

where the only difference with (12) is that the combination of terms λ+ 2
3µ representing the bulk viscosity

has not been separated out.

Note the following:

1. Using just the Stokes’ hypothesis
(
λ+ 2

3µ = 0
)
, we have

∇ · σ = −∇p+ µ∇2v +
1

3
µ∇ (∇ · v)

2. For incompressible fluid, ∇ · v = 0, we have

∇ · σ = −∇p+ µ∇2v

3. In terms of the mechanical pressure, we have

∇ · σ = −∇p̄+ µ∇2v +
1

3
µ∇ (∇ · v)

Appendix

Consider Eq. (7) where both σ and pI are symmetric. Therefore, f(E) must also be symmetric. Denote it
by τ which can be any general function of E. Now we invoke certain simplifying assumptions:

• Linearity: We assume for simplicity that the functional dependence on E is linear. So τ will depend
only on E and not on E2 or E3 and so on.
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• No history effects: We assume that the response of the material is instantaneous – the way that E
had evolved does not influence the current behaviour, i.e. there are no history effects. Had there been
history effects, the functional dependence would involved some sort of time integral.

• Isotropy: We assume that the material behaviour is same in all directions. Note that this assumption
is completely separate from the condition of uniformity.

From the first two of the simplifying assumptions (linearity and no history effects), we can conclude that τ
will be “proportional” to E. Since we want to relate a second-order tensor to another second-order tensor,
the connection will be through a fourth-order tensor; thus

τij = CijklEkl, (14)

where Cijkl is the fourth-order tensor. Now, we can just interchange the indices i and j to obtain

τji = CjiklEkl. (15)

But τ is symmetric, i.e. τij = τji. Thus, subtracting (15) from (14) we obtain

0 = (Cijkl − Cjikl)Ekl,

or, Cijkl = Cjikl. (16)

Similarly, interchanging k and l in (14) and using Ekl = Elk (since E is symmetric too), we can obtain

Cijkl = Cijlk. (17)

Now we would like to incorporate the assumption of isotropy to obtain a particular form for Cijkl. For this,
we invoke a result (without going into the proof) from tensor analysis that a fourth-order isotropic tensor
can be represented in terms of Kronecker deltas:

Cijkl = αδijδkl + βδikδjl + γδilδjk, (18)

where α, β, and γ are arbitrary scalars. We interchange the indices i and j to obtain

Cjikl = αδjiδkl + βδjkδil + γδjlδik. (19)

However, we have already established that Cijkl = Cjikl. Therefore, subtracting (19) from (18) we obtain

0 = (β − γ) δikδjl + (γ − β) δilδjk. (20)

This equation must be identically true for any combination of i, j, k, and l. For instance, if we set i 6= j 6=
k 6= l, then we end up with 0 = 0 which even though true does not yield anything useful. Let’s set i = k and
j = l with i 6= j. Then, from (20) we have

β = γ. (21)

Similarly, if we interchange the indices k and l in (18) and proceed to use the condition that Cijkl = Cijlk, we
will again end up with the condition that β = γ. So, the condition of isotropy together with the symmetry
conditions give us

Cijkl = αδijδkl + β (δikδjl + δilδjk) . (22)

Then we have from (14)

τij = {αδijδkl + β (δikδjl + δilδjk)}Ekl

= αδijEkk + β (δikEkj + δilEjl)

= αδijEkk + β (Eij + Eji)

= αδijEkk + 2βEij . (23)
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It is conventional to use the two scalars λ and µ instead of α and β to represent the above relation; thus

τij = λEkkδij + 2µEij , (24)

or, in compact tensor notation

τ = λtr(E)I + 2µE, (25)

so that from (7), we obtain

σ = −pI + λtr(E)I + 2µE, (26)

which is exactly what is mentioned in (8).
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