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1 Motivation for tensors

In fluid mechanics (also in solid mechanics, and continuum mechanics, in general) we often refer to something
called tensors. You may have already come across a statement like “stress is a tensor”. In what follows, we
try to develop some idea about tensors. In later chapters, we will show its connection with stress in fluid
mechanics.

Consider functions . . .

For a given scalar quantity, s, let us define a function as f(s) = s2 (might as well be s3 or
√

2s4 or sin(s)
and so on). The important thing to note here is that the input to the function f is a scalar and its output
is also a scalar. We say that the function f maps a scalar to a scalar.

For a given vector, ~r, let us define a function f(~r) = |~r| =
√
r21 + r22 + r23, where r1, r2, and r3 are the

components of ~r referred to some chosen coordinate axes. Here, even though the input to f is a vector, the
output is a scalar. So, we say that the function f maps a vector to a scalar.

Again, for a given vector, ~r, let us define a function f(~r) = ~a · ~r where ~a is some vector intrinsic to the
definition of f . Again, the function f maps a vector to a scalar.

Now, consider the definition f(~r) = α~r, where α is some scalar intrinsic to the definition of f . This time,
the input to f is a vector and the output is also a vector. So, f maps a vector to a vector. The mapping is
through the scalar α.

Similarly, consider the function definition

f(~r) =

α1r1
α2r2
α3r3

 ,
which is a vector with the three components α1r1, α2r2, and α3r3. The only difference from the previous
definition is that while there was the same scalar α being multiplied with all the components of ~r, here there
is a different scalar being multiplied with the three components of ~r. The spirit is the same. So, again the
function f maps a vector to another vector. The mapping is through the three scalars α1, α2, and α3.

Finally, we can have another type of function defintion which maps a vector to another vector in such a way
that each of the components of the output vector is made up by using a linear combination of the components
of the input vector. Consider the following definition

f(~r) =

α11r1 + α12r2 + α13r3
α21r1 + α22r2 + α23r3
α31r1 + α32r2 + α33r3

 .
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Here, the input is a vector and the output is a vector also just like before. Let us call the output vector ~v.
The above definition can equivalently be written as

~v = f(~r) =

α11 α12 α13

α21 α22 α23

α31 α32 α33

r1r2
r3


= [α][~r],

where [α] and [~r] are shorthand matrix representations. Instead of this matrix representation, we can simply
write the definition for ~v as

~v = f(~r) = α · ~r.

We say that f(~r) maps a vector ~r to another vector ~v. The mapping itself is through the entity α whose
matrix representation comprises nine scalars that are “packed” in a special way in three groups of three. We
say that the special entity α is a general linear mapping from ~r to ~v. This general linear mapping from one
vector to another vector is what referred to as a 2nd-order tensor.

It is extremely important to distinguish between the tensor itself and its matrix representation. Tensor is
the word used to refer to the linear mapping. The matrix representation is just a way of denoting it. Very
importantly, the matrix representation of a tensor is not unique. What do we really mean by “not unique”?
To answer this question, we look back at vectors.

2 Matrix representation is not unique

A vector is an entity that has both magnitude and direction (and, very strictly speaking, also follows the rules
of vector addition). The point to note is that the existence of this entity does not depend on its mathematical
representation. It would be there even if we did not have any mathematical machinery to represent it.
However, in order to talk about vectors and work with them we do need to represent them mathematically.
So we set up a set of coordinate axes and denote the vector through certain coordinates or through functions of
certain coordinates. Corresponding to a particular choice of the coordinate axes, the vector representation is
unique. However, if we choose another set of coordinate axes, the vector representation changes. Nevertheless,
the actual entity, i.e. the vector itself is, of course, the same regardless of the choice of the coordinate axes.

Now again consider the definition ~v = α · ~r. Here ~r and ~v are both vectors. Suppose their matrix represen-
tations corresponding to one particular set of coordinate axes, say, Ox1x2x3 are [r1 r2 r3]T and [v1 v2 v3]T ,
respectively. Then corresponding to these representations, the matrix representation of the tensor α will be
through a unique set of nine scalars. Now, if we choose another set of coordinate axes, say, O′x′1x

′
2x

′
3, then

the matrix representation of ~r and ~v will also change to something different, say, [r′1 r
′
2 r

′
3]T and [v′1 v

′
2 v

′
3]T ,

respectively, Simultaneously, the matrix representation of α will also change to something different com-
prising another unique set of nine scalars. If we keep on choosing different coordinate axes, the matrix
representations of ~r and ~v will keep changing with simultaneous changes in the matrix representation of α.
But the relation ~v = α · ~r must necessarily continue to hold regardless of the choice of the coordinate axes.

3 Index notation and its relation to matrix representation

• The symbol vi denotes the three components v1, v2, and v3 of a vector ~v. We have

~v = vi ≡

v1v2
v3

 .
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Note that we have chosen a column matrix representation. We could easily have chosen a row matrix
representation. But, once, we choose one of these, we have to be consistent throughout because it has
implications in other representation and calculations.

• The symbol Tij denotes the nine components T11, T12, T13, . . . , T33 of a 2nd-order tensor T. We have

T ≡ Tij =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 .
Why is the matrix representation as above and not like the followingT11 T21 T31

T12 T22 T32
T13 T23 T33

.
We will answer this question a little later.

• An index that is repeated (appearing twice) means summation. For instance, the dot product between
two vectors is

~a ·~b ≡ aibi = a1b1 + a2b2 + a3b3 =

a1a2
a3

T b1b2
b3


• An index that appears more than two times makes the whole thing meaningless! For instance, aibici

does not mean anything; it’s just wrong.

• If an index is not repeated in a product, it is referred to as a “free” index. The number of free indices
determines which order tensor the resulting entity is (remember scalars are tensors of order zero, vectors
are tensors of order one). For instance, in the product Tijrj the index j is repeated while the index i
is free. Since one index is free, the product is a tensor of order one, i.e. a vector.

Tijrj = Ti1r1 + Ti2r2 + Ti3r3

≡

T11r1 + T12r2 + T13r3
T21r1 + T22r2 + T23r3
T31r1 + T32r2 + T33r3

 ,
which is indeed a vector.

• We have seen that aibi is a scalar. But what about aibj? Here there are two indices, neither of which is
repeated. So we have two free indices. Accordingly, the product aibj must represent a tensor of order
two that can be denoted as Tij . For the equivalent matrix form we have

Tij = aibj ≡

a1a2
a3

b1b2
b3

T

=

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


Note how the resulting matrix representation has shaped up. It is nota1b1 a2b1 a3b1

a1b2 a2b2 a3b2
a1b3 a2b3 a3b3

.
This explains why

Tij ≡

T11 T12 T13
T21 T22 T23
T31 T32 T33

 and not

T11 T21 T31
T12 T22 T32
T13 T23 T33


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• We have seen that Tijrj is a vector. What about Tjirj? Again there is only one free index and so Tjirj
must be a tensor of order one, i.e. a vector. Let’s expand it and find the equivalent matrix form

Tjirj = T1ir1 + T2ir2 + T3ir3

≡

T11r1 + T21r2 + T31r3
T12r1 + T22r2 + T32r3
T13r1 + T23r2 + T33r3,


which is a vector indeed. But this vector is definitely different from the one that we obtained from
Tijrj .

• Note that if [T] and [~r] are the matrix representations of the 2nd-order tensor T and the vector ~r
respectively, then

Tijrj = [T][~r] whereas Tjirj = [T]T [~r].

• The gradient operator is like a vector. So it can be represented using one free index. Referred to a
particular coordinate system, say, Ox1x2x3, we have

∇ ≡ ∂

∂xi
≡
[
∂

∂x1

∂

∂x2

∂

∂x3

]T
. (Note the transpose making it a column matrix)

• The divergence of a vector is like the dot product of two vectors. The result must be a scalar. We have

∇ · ~v ≡ ∂vi
∂xi
≡

∂/∂x1∂/∂x2
∂/∂x3

T v1v2
v3

 =
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

.

• A shorthand notation for representing partial differentiation is through the use of commas. Thus, for
instance

∂v1
∂x2

≡ v1,2 and
∂vi
∂xi
≡ vi,i

• What about gradient of a vector, ∇~v? This in indical notation is ∂vi/∂xj and is like the product aibj .
There being two free indices, it is a tensor of order two so that it can be represented in the form of a
3× 3 matrix.

∇~v ≡ ∂vi
∂xj
≡ vi,j ≡

v1,1 v1,2 v1,3
v2,1 v2,2 v2,3
v3,1 v3,2 v3,3


• The Kronecker delta δij is a special 2nd-order tensor that has the property that the three components

where i = j are equal to 1; the rest six where i 6= j are 0.

• The Kronecker delta is very useful to substitute indices. Thus, for instance

δijai = aj and δjkTik = Tij
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