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1 Introduction

In kinematics, we are concerned with how the fluid motion looks, i.e. we care only about displacement,
velocity, acceleration and so on without concerning ourselves with the agents (forces and moments) that
bring about this motion in the first place.

2 Lagrangian vs Eulerian description

In the Lagrangian description, we focus our attention on an individual fluid particle and follow its motion. In
fact, this way of following the motion is what you are accustomed to in all your experiences with mechanics
(at the pre-JEE level) as well in your first year. When we follow the motion of a block moving down an
inclined plane or a ball rolling on a table, we are implicitly using this Lagrangian description. Here, the
independent variables are taken as time (t) and a label for the particle. For the sake of convenience, this
label can be taken as the position vector X of the particle at the initial time t = 0. Thus, a generic flow
variable F may be expressed as F(X, t) in this description. For instance, the position vector itself may be
considered as a flow variable. The position vector at any time, t is written as x ≡ x(X, t) which is the
position at time, t of a particle which was at X at t = 0. Very important: x(X, 0) = X.

In the Eulerian description, we focus our attention on a particular point in space (referred to as a spatial
point). Through this point in space, various particles pass through at various times. Here, the independent
variables are the position vectors of the various fixed spatial points x and time, t. Thus, a generic flow
variable F may be expressed as F(x, t) in this description.

Note: x is a dependent variable in Lagrangian description while x is an independent variable in Eulerian
description.

Which is a better or more natural way of descrition? The answer depends on what we are trying to describe.
For the case of a block sliding down an incline, the task of tracking the motion of the block naturally calls for
the use of the Lagrangian description. On the other hand, if we are interested in tracking the fluid motion
that takes place in the region around the foot of a dam, we do not need to follow what is happening to
individual particles of water; rather we need to investigate what is happening in those spatial points. So in
this case, the Eulerian description is more natural.

∗For the discussions in this chapter, I mostly follow the chapter on “Kinematics” in the book “Fluid Mechanics” (4th edition)
by Kundu and Cohen
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3 Connection between Lagrangian and Eulerian description

The Lagrangian and Eulerian descriptions are two different ways of looking at the same thing. So it is
possible to establish some connection between the two. Consider the generic flow variable F again. In the
Eulerian description, the value of F at a particular point x at some time t may be equivalently be thought
of as the value of F that is shown by the particle that happens to occupy this position x at that time. This
way of thinking connects the Eulerian description to the Lagrangian description. We can also think of it the
other way round. Thus, there is a one-to-one correspondence between the two descriptions:

F(X, t) ⇐⇒ F(x(X, t), t).

A very useful mathematical connection can be established between the two descriptions on the basis of time
derivatives. Indeed, there are two kinds of time derivatives:

• ∂

∂t

∣∣∣∣
X

≡ D

Dt
: This time derivative is taken keeping our focus fixed on a particular particle, the one

that has the label X; it is referred to as the material derivative or substantial derivative or particle
derivative

• ∂

∂t

∣∣∣∣
x

≡ ∂

∂t
: This time derivative is taken keeping our focus fixed on a particular spatial point, denoted

by x

Before establishing the connection between these two time derivatives, note the definition of velocity:

v :=
∂x

∂t

∣∣∣∣
X

≡ Dx

Dt
. (1)

Now, to establish the connection we use the chain rule of differentiation:

DF
Dt
≡ ∂F(x(X, t), t)

∂t

∣∣∣∣
X

=
∂F
∂t

∣∣∣∣
x

∂t

∂t

∣∣∣∣
X

+
∂F
∂x

∣∣∣∣
t

∂x

∂t

∣∣∣∣
X

=
∂F
∂t

+ v · ∂F
∂x

≡ ∂F
∂t

+ v · ∇F ,

where we note the following:

• We have used the definition of velocity from Eq. (1)

• We have dropped the subscript t in the partial derivative with respect to x

• The partial derivative with respect to x is nothing but the gradient denoted by ∇

• The dot product between v and ∇F ensures that the order of the tensor denoted by the second term
is the same as that of the first term

We can now write

D

Dt
≡ ∂

∂t
+ v · ∇ (2)
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4 Streamline, Pathline, Streakline

There are three common ways to visualize the flow: using streamlines, pathlines, and streaklines.

Streamlines are those curves which are everywhere tangent to the velocity field. If, in a rectangular Cartesian
coordinate system, we consider an infinitesimal element ds = (dx, dy,dz) of a streamline with v = (vx, vy, vz)
being the local velocity vector then by the definition of streamline, we have

ds× v = 0,

or, i(vydz − vzdy)− j(vxdz − vzdx) + k(vxdy − vydx) = 0,

from which we obtain after equating each of the components to zero:

dx

vx
=

dy

vy
=

dz

vz
, (3)

which is the equation that is used to determine the equation of the streamline.

A pathline is the locus traced out by a particle as it passes through different positions in space at different
times. Therefore, it is just the position vector of a particle in the Lagrangian description, x = x(X, t).

A streakline is the curve that joins at a certain time, t the end-points of the pathlines of the various particles
that passes through a specified point from some initial time to the time, t.

Streamlines, pathlines, streaklines overlap each other when the flow is steady.

5 Relative motion

We consider the relative motion between two neighbouring fluid particles located at x and x + dx. The
relative velocity between the two points is given by

v(x + dx)− v(x) = v(x) + dx · ∂v
∂x

+ · · · − v(x) (Taylor series expansion)

≈ dx · ∂v
∂x
≡ dx · ∇v

You have already come across the grouping∇v earlier in the assignment sheet on Mathematical Preliminaries.
It is the gradient of the velocity and is a second-order tensor, equivalently represented in index notation as
∂vi
∂vj

. It can be equivalently represented as a 3 × 3 matrix. Like all matrices, this one can be decomposed

into a sum of symmetric and anti-symmetric parts; thus

∂vi
∂xj

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
︸ ︷︷ ︸

symmetric

+
1

2

(
∂vi
∂xj
− ∂vj

∂xi

)
︸ ︷︷ ︸

anti-symmetric

, (4)

where we observe that the first part is indeed symmetric because there is no effective change in the expression
if we interchange the indices i and j; on the other hand, in the second part if we interchange i and j the
resulting expression is negative of the original one which is why it is anti-symmetric. We may equivalently
write the above decomposition as

∇v =
1

2

{
∇v + (∇v)T

}
︸ ︷︷ ︸

symmetric

+
1

2

{
∇v − (∇v)T

}
︸ ︷︷ ︸

anti-symmetric

, (5)
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where the superscript ‘T’ denotes the transpose. Again, you have already come across this symmetric part
in the assignment sheet on Mathematical Preliminaries. Indeed, this symmetric part is used to define what
is referred to as the strain-rate tensor.1

1We’ll see later that extensive use of this strain-rate tensor will be made in the context of the Navier-Stokes equations.
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