Problem Sheet 1: Mathematical Preliminaries

1. What is the order of the following tensors? Expand each of them and write the corresponding matrix form.

(i)
$$A_{ii}$$
 (ii) $A_{ij}b_j$ (iii) $A_{ji}b_j$ (iv) $\frac{\partial u_i}{\partial x_j}$ (v) $\frac{\partial u_p}{\partial x_p}$
(vi) $\frac{\partial A_{ij}}{\partial x_j}$ (vii) $u_{p,p} + v_{q,q}$ (viii) $u_{p,q} + u_{q,p}$ (ix) $\frac{\partial u_i}{\partial t}$ (x) $\frac{\partial^2 u_i}{\partial x_i \partial x_j}$

- 2. In the following, A and B are second-order tensors and v is a vector. Using the component form, rewrite each of the following in indical notation. Also write the corresponding matrix form.
 (i) A ⋅ v (ii) A^T ⋅ v (iii) A ⋅ B (iv) A^T ⋅ B (v) A ⋅ B^T (vi) A^T ⋅ B^T
- 3. Taking the trace of $\mathbf{A} \cdot \mathbf{B}$, $\mathbf{A}^{\mathsf{T}} \cdot \mathbf{B}$, and so on result in scalar quantities. If we define $\mathbf{A} : \mathbf{B} := A_{ij}B_{ij}$ and $\mathbf{A} \cdot \mathbf{B} := A_{ij}B_{ji}$, then verify the following:
 - (i) $\mathbf{A} : \mathbf{B} := A_{ij}B_{ij} = \operatorname{tr}(\mathbf{A}^{\mathsf{T}} \cdot \mathbf{B}) = \operatorname{tr}(\mathbf{B}^{\mathsf{T}} \cdot \mathbf{A}) = \operatorname{tr}(\mathbf{B} \cdot \mathbf{A}^{\mathsf{T}})$ (i) $\mathbf{A} \cdot \mathbf{B} := A_{ij}B_{ji} = \operatorname{tr}(\mathbf{A} \cdot \mathbf{B}) = \operatorname{tr}(\mathbf{B}^{\mathsf{T}} \cdot \mathbf{A}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{A}^{\mathsf{T}} \cdot \mathbf{B}^{\mathsf{T}})$
- 4. If A_{ij} is symmetric and B_{ij} is anti-symmetric, show that $A_{ij}B_{ij}$ is equal to 0.
- 5. The transformation of a second order tensor is brought about by the rule $A'_{ij} = Q_{ip}Q_{jq}A_{pq}$. Verify that the transformation rule in compact form is $\mathbf{A}' = \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{\mathsf{T}}$. Then carry out the transformation of

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 3 & 2 & 4 \end{bmatrix}$$

into a new coordinate system found through a rotation of 60° ($\pi/3$ radian) about the x_3 -axis.

6. An isotropic properly is such that it is identical in all directions. Show by using transformation rules that $a\delta_{ij}$ is a second-order isotropic tensor.