Problem Sheet 1: Mathematical Preliminaries

1. What is the order of the following tensors? Expand each of them and write the corresponding matrix form.
(i) $A_{i i}$ (ii) $A_{i j} b_{j}$ (iii) $A_{j i} b_{j}$ (iv) $\frac{\partial u_{i}}{\partial x_{j}}$ (v) $\frac{\partial u_{p}}{\partial x_{p}}$
(vi) $\frac{\partial A_{i j}}{\partial x_{j}}$ (vii) $u_{p, p}+v_{q, q}$ (viii) $u_{p, q}+u_{q, p}$ (ix) $\frac{\partial u_{i}}{\partial t}$ (x) $\frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}}$
2. In the following, \mathbf{A} and \mathbf{B} are second-order tensors and \boldsymbol{v} is a vector. Using the component form, rewrite each of the following in indical notation. Also write the corresponding matrix form.
(i) $\mathbf{A} \cdot \boldsymbol{v}$ (ii) $\mathbf{A}^{\top} \cdot \boldsymbol{v}$ (iii) $\mathbf{A} \cdot \mathbf{B}$ (iv) $\mathbf{A}^{\top} \cdot \mathbf{B}$ (v) $\mathbf{A} \cdot \mathbf{B}^{\top}$ (vi) $\mathbf{A}^{\top} \cdot \mathbf{B}^{\top}$
3. Taking the trace of $\mathbf{A} \cdot \mathbf{B}, \mathbf{A}^{\top} \cdot \mathbf{B}$, and so on result in scalar quantities. If we define $\mathbf{A}: \mathbf{B}:=A_{i j} B_{i j}$ and $\mathbf{A} \cdot \mathbf{B}:=A_{i j} B_{j i}$, then verify the following:
(i) $\mathbf{A}: \mathbf{B}:=A_{i j} B_{i j}=\operatorname{tr}\left(\mathbf{A}^{\top} \cdot \mathbf{B}\right)=\operatorname{tr}\left(\mathbf{B}^{\top} \cdot \mathbf{A}\right)=\operatorname{tr}\left(\mathbf{B} \cdot \mathbf{A}^{\top}\right)$
(i) $\mathbf{A} \cdot \mathbf{B}:=A_{i j} B_{j i}=\operatorname{tr}(\mathbf{A} \cdot \mathbf{B})=\operatorname{tr}\left(\mathbf{B}^{\top} \cdot \mathbf{A}^{\top}\right)=\operatorname{tr}\left(\mathbf{A}^{\top} \cdot \mathbf{B}^{\top}\right)$
4. If $A_{i j}$ is symmetric and $B_{i j}$ is anti-symmetric, show that $A_{i j} B_{i j}$ is equal to 0 .
5. The transformation of a second order tensor is brought about by the rule $A_{i j}^{\prime}=Q_{i p} Q_{j q} A_{p q}$. Verify that the transformation rule in compact form is $\mathbf{A}^{\prime}=\mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{\top}$. Then carry out the transformation of

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 2 & 2 \\
3 & 2 & 4
\end{array}\right]
$$

into a new coordinate system found through a rotation of $60^{\circ}(\pi / 3$ radian $)$ about the x_{3}-axis.
6. An isotropic properly is such that it is identical in all directions. Show by using transformation rules that $a \delta_{i j}$ is a second-order isotropic tensor.

