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Stress∗†

1 Traction across a plane at a point
Consider an area A in a given plane and containing a point P within a
body as shown in Fig. 1. Suppose the plane divides the body into two
regions, Region I and Region II. Consider Region I. Draw a normal n̂ to
the plane at P and pointing from Region I towards Region II. Over the
area A, Region II exerts forces on Region I. Suppose this system of forces
is statically equivalent to a force F acting at P in a de�nite direction and
a couple C about a de�nite axis. Let us make the area A small, ensuring
that the point P is always inside it. Then the force F and the couple C
tend to zero limits and the direction of F tends to a limiting direction.
We assume that as A tends to zero, the number |F|/A tends to a non-zero
limit while |C|/A tends to 0 (which is sensible because smaller the area,
the smaller will be the distance from the de�nite axis referred to earlier
leading to a couple that vanishes).

We de�ne a vector

T = lim
A→0

F
A

(1)

called the stress vector or the traction vector.‡

Note that the traction vector depends on the location of P as well as the
choice of the plane on which A is located. Since the orientation of this
plane is given by n̂, so T depends the position vector of P and n̂. If n̂ is
di�erent, T will be di�erent.

∗Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in
†The Dual Degree students who were in Section 1 of Mechanics of Solids in Autumn,

2019 will �nd a lot common in these notes. However, unlike the previous chapter, there
a number of new things!

‡The way in which most modern mechanicians present the concepts of traction and
stress can be traced back to the way it was presented in the classic, “A Treatise on the
Mathematical Theory of Elasticity” by A. E. H. Love. My way is no exception.
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Figure 1: Traction

Note also that just as Region II exerts forces on Region I, so also Region I
exerts forces on Region II over the area; these forces must necessarily be
equal in magnitude and opposite in direction from Newton’s third law
(important: it is not necessary for the whole body to be in equilibrium
for these forces to be equal and opposite). Thus, in a fashion identical to
what was discussed previously, a stress vector or traction vector can be
de�ned on the plane and considering the unit vector, −n̂. We then have

T (x, n̂) = −T (x, −n̂) , (2)

where it is important to note that the position vector x is the same for
both traction vectors because we are considering the same point P just
from two di�erent sides.

2 Surface tractions
The nature of the action between two bodies in contact is assumed to be
of the same nature as the action between two portions of the same body
separated by an imaginary surface. If the point P in the previous discus-
sion is moved to a point P ′ on the bounding surface of the body with the
position vector x changing to x′ and n̂ changing to n̂′ that coincides with
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the unit outward normal at P ′, the resulting traction vector T′ (x′, n̂′) is
referred to as the surface traction.

Very important: Whether it is the traction across an imaginary plane
inside a body or the surface traction which acts at the actual bounding
surface of a body, the direction of the traction vector does not, in general,
coincide with that of n̂.

The traction vector can be decomposed into a component normal to the
plane (de�ned by n̂) and a component parallel to the plane.

3 Connection between traction vector and
stress

We are going to establish the connection between traction vector and
stress. In order to do that we proceed via the balance of linear momentum
wherein the balance of mass will be embedded also.

3.1 Balance of Linear Momentum
Consider the balance of linear momentum applied to a general material
volume element in integral form

D
Dt ∫Vm(t)

�v dV = ∫
Vm(t)

�b dV + ∫
Sm(t)

T dS, (3)

where Vm(t) is the domain contained in the material volume element, Sm
is the bounding surface, � is the density of the material, v is the velocity,
b is the body force per unit mass acting at a generic point within the
volume element, and T is the traction acting at a generic point on the
bounding surface.
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Using the Reynolds’ transport theorem on the l.h.s. we have:

D
Dt ∫Vm(t)

�v dV = ∫
Vm(t)

)(�v)
)t

dV + ∫
Sm(t)

(�v)v ⋅ n̂ dS,

= ∫
Vm(t) [

)(�v)
)t

+ ∇ ⋅ {(�v) ⊗ v}] dV (4)

(Using Gauss’ divergence theorem)

= ∫
Vm(t) [

v
{
)�
)t

+ ∇ ⋅ (�v)
}
+ �

{
)v
)t

+ v ⋅ ∇v
}

] dV (5)

Now, note that from the balance (or, conservation) of mass, we have the
following continuity equation:

)�
)t

+ ∇ ⋅ (�v) = 0. (6)

It is very important to note that while we �rst came across the continuity
equation in �uid mechanics, but this equation is not restricted to the
scope of �uid mechanics only. It is equally applicable to solid mechanics;
in general it is applicable to all of continuum mechanics. Using Eq. (6)
in Eq. (5), we have

D
Dt ∫Vm(t)

�v dV = ∫
Vm(t)

�
{
)v
)t

+ v ⋅ ∇v
}
dV

We further note that the combination of terms, )v
)t
+v ⋅∇v is nothing but

the material time derivative of the velocity, Dv
Dt

, which is nothing but the
acceleration itself. So, we have:

D
Dt ∫Vm(t)

�v dV = ∫
Vm(t)

�
{
)v
)t

+ v ⋅ ∇v
}
dV (7)

Substituting the above in Eq. (3), we have

∫
Vm(t)

�
Dv
Dt

dV = ∫
Vm(t)

�b dV + ∫
Sm(t)

T dS. (8)
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In order to establish the connection between the traction vector and
stress, we are going to apply this form of the balance of linear momen-
tum equation to a special kind of material volume shaped in the form
of a tetrahedron. Considering this special geometrical shape helps us to
take advantage of certain geometrical features as well to establish the
desired connection; this advantage will come to light in the subsequent
discussions.

3.2 Balance of linear momentum applied to a tetra-
hedron

Consider the equilibrium of a tetrahedron having one vertex at the ori-
gin O with the three edges meeting at this vertex to be oriented along
the coordinate axes. Now, the application of the balance of linear mo-
mentum in integral form, Eq. (8) to this general tetrahedron may seem
rather daunting. However, we are going to simplify this application by
using the mean value theorem of integration. Let us state this theorem
without using too much mathematical jargon as follows:

Mean value theorem of integration: The value of the inte-
gral of a continuous function over a certain domain is equal to
the value of the integrand somewhere in the domain multiplied
by the size of the domain.

So, practically speaking, what is this theorem telling us?

First consider a 1D domain L: Let X be a generic point in the domain;
suppose L is bounded by X = a and X = b. Then, for a function, f (X ),
the mean value theorem of integration tells us that

∫
b

a
f (X ) dx = f (X ∗)ΔL,

where a ≤ X ∗ ≤ b and ΔL = (b−a) is, of course, the size of the 1D domain,
i.e. its length.

Similarly, consider a 2D domain S: Let X having components (X1, X2) be
a generic point in the domain. Then, for a function, f (X), the mean value
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theorem of integration tells us that

∫
S
f (X) dS = f (X∗)ΔS,

where X∗ is some point in S, and ΔS is the size of the 2D domain, i.e. its
area.

Finally, consider a 3D domain V : Let X having components (X1, X2, X3)
be a generic point in the domain. Then, for a function, f (X), the mean
value theorem of integration tells us that

∫
V
f (X) dV = f (X∗)ΔV ,

where X∗ is some point in V , and ΔV is the size of the 3D domain, i.e. its
volume.

Figure 2: Stress equilibrium

In order to apply the balance of linear momentum, Eq. (8), to the tetra-
hedron, we are going to need the mean value theorem of integration for
2D and 3D domains. Let us �rst rewrite Eq. (8) by collecting the volume
integrals together. Thus, we have:

∫
Vm(t)

� (
Dv
Dt

− b) dV = ∫
Sm(t)

T dS. (9)
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The mean value theorem of integration for 3D domain can be directly
applied over the entire volume of the tetrahedron OABC on the l.h.s. For
the r.h.s, however, the mean value theorem of integration for 2D domain
needs to be applied piecewise over the four triangles, ABC, OCB, OAC,
and OAB.

We thus obtain:

[� (
Dv
Dt

− b)]

P ∗OABC
ΔVOABC = T(P ∗ABC , n̂)ΔABC

+ T(P ∗OCB, −ê1)ΔOCB
+ T(P ∗OAC , −ê2)ΔOAC
+ T(P ∗OAB, −ê3)ΔOAB, (10)

where P ∗OABC , P ∗ABC , P ∗OCB, P ∗OAC , and P ∗OAB are some speci�c points, in the
tetrehedron OABC, in the triangle OCB, in the triangle OAC, and in the
triangle OAB, respectively. Further, the unit outward normal to triangle
ABC is n̂, while the unit outward normals to the triangles OCB, OAB,
and OAB are (−ê1), (−ê2), and (−ê3), respectively. Note that ê1, ê2, and ê3
are the unit vectors along the positive X1, X2, and X3 axes, respectively.

Referring to Eq. (2), we have the following:

T(P ∗OCB, −ê1) = −T(P
∗
OCB, ê1), (11a)

T(P ∗OAC , −ê2) = −T(P
∗
OAC , ê2), (11b)

T(P ∗OAB, −ê3) = −T(P
∗
OAB, ê3), (11c)

We note that the volume of the tetrahedron OABC is:

ΔVOABC =
1
3
ℎΔABC, (12)

where ℎ is the “height” of the tetrahedron, i.e. the length of the perpen-
dicular from point O to the triangle ABC.

Furthermore, the triangles OCB, OAC, and OAB can be viewed as the
projection of the triangle ABC on to the plane X2X3, the plane X3X1, and
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the plane X1X2, respectively. Then we note that

ΔOCB = (ΔABC)n1, (13a)
ΔOAC = (ΔABC)n2, (13b)
ΔOAB = (ΔABC)n3, (13c)

where n1, n2, and n3 are the components of the unit outward n̂ to the
triangle ABC, i.e. n̂ = n1ê1 +n2ê2 +n3ê3. The above three relations can be
readily obtained by �rst considering the area, ΔABC as a vector directed
along n̂ and then taking the dot product with ê1, ê2, and ê3, respectively.

Substituting equations (11), (12) and (13) in Eq. (10), we obtain

[� (
Dv
Dt

− b)] (P
∗
OABC , n̂)

1
3
ℎΔABC = T(P ∗ABC , n̂)ΔABC

− T(P ∗OCB, ê1)(ΔABC)n1
− T(P ∗OAC , ê2)(ΔABC)n2
− T(P ∗OAB, ê3)(ΔABC)n3. (14)

We cancel out the ΔABC from the l.h.s and the r.h.s, and then take the
limit ℎ → 0. In the process of taking this limit, the triangle ABC moves
increasingly closer to the origin O. And, in the limiting condition, the
di�erent points P ∗OABC , P ∗ABC , P ∗OCB, P ∗OAC , and P ∗OAB “converge” to the same
point O. Very importantly, in this limiting condition, the l.h.s vanishes
(because of the presence of ℎ) whereas the r.h.s does not. Therefore, we
end up with the following equation:

0 = T(O, n̂) − T(O, ê1)n1 − T(O, ê2)n2 − T(O, ê3)n3 (15)

We drop the repeated dependence on O and use a shortened form as
follows:

T(O, n̂) ≡ T(n),
T(O, ê1) ≡ T(1),
T(O, ê2) ≡ T(2),
T(O, ê3) ≡ T(3).
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Then, from Eq. (15), we obtain:

T(n) = T(1)n1 + T(2)n2 + T(3)n3. (16)

This equation is a vector equation, and in terms of the traction vector
components along the three coordinate axis directions, we have the fol-
lowing:

T(n)1 = T(1)1n1 + T(2)1n2 + T(3)1n3, (17a)
T(n)2 = T(1)2n1 + T(2)2n2 + T(3)2n3, (17b)
T(n)3 = T(1)3n1 + T(2)3n2 + T(3)3n3 (17c)

Each of the nine traction vector components in the r.h.s of the three pre-
ceding equations are what are referred to as the stress components. Our
original objective of establishing the connection between the traction
vector and stress is thus achieved.

In index notation, the preceding three equations can be written as

T(n)i = T(j)inj , (18)

where T(j)i represents the component of the traction vector T(j) along the
i-th direction, and is denoted, alternatively, as �ji . Thus, we have

Ti = �jinj , (19)

where we have dropped the explicit denotion of n. We identify this re-
lation as a dot product (because one of the indices is repeated) and so
rewrite the equivalent vector (or, compact) notation as

T = �T ⋅ n̂, (20)

or, the equivalent matrix representation as

[T] = [�]T[n̂], (21)

where the ‘T’ in the superscript refers to the transpose.

VERY IMPORTANT: We state (without proving) that conservation of
angular momentum in the absence of body couples leads to the conclu-
sion that the stress tensor is symmetric, i.e. � = �T.
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In expanded form, we have from Eq. (21)

T1 = �11n1 + �12n2 + �13n3, (22a)
T2 = �12n1 + �22n2 + �23n3, (22b)
T3 = �13n1 + �23n2 + �33n3. (22c)

Eqs (19), (20), (21), and (22) are di�erent forms of what are referred to as
the Cauchy’s formula (sometimes Cauchy’s stress theorem or Cauchy’s
law).

4 Cauchy’s equation ofmotion andmechan-
ical equilibrium equations

Going back to Eq. (8), we have

∫
Vm
�
Dv
Dt

dV = ∫
Vm
�b dV + ∫

Sm
T dS

= ∫
Vm
�b dV + ∫

Sm
� ⋅ n̂ dS

= ∫
Vm
�b dV + ∫

Vm
∇ ⋅ � dV (Using divergence theorem)

(23)

Thus we can write

∫
Vm (

�
Dv
Dt

− �b − ∇ ⋅ �) dV = 0,

(24)

or, using the arbitrariness of the material volume we have

�
Dv
Dt

− �b − ∇ ⋅ � = 0. (25)

If the body is in equilibrium, we have

�b + ∇ ⋅ � = 0. (26)
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Referring to a rectangular Cartesian coordinate system, Eq. (26) can be
expressed in component form as

)�11
)x1

+
)�12
)x2

+
)�13
)x3

+ �b1 = 0,

)�12
)x1

+
)�22
)x2

+
)�23
)x3

+ �b2 = 0,

)�13
)x1

+
)�23
)x2

+
)�33
)x3

+ �b3 = 0.

(27a)

(27b)

(27c)

VERY IMPORTANT: Eq. (26) or, equivalently, the three equations col-
lectively in in Eqs (27) is known as the mechanical equilibrium equations.

5 Normal and shear components of traction
It has already been pointed out that, in general, the traction vector T
acting at a point in a plane with unit normal n̂ is not parallel to n̂. So, it
is possible to resolve T into components parallel and perpendicular to n̂.

We denote the component parallel to n̂ as TN and call it the normal com-
ponent. We have

TN = T ⋅ n̂ = (�T ⋅ n̂) ⋅ n̂, (28)
or, in indical notation TN = Tini = �jinjni , (29)

or, in matrix representation TN = ([�]T[n̂])
T [n̂] ≡ [n̂]T[�][n̂] (30)

or, in expanded form TN = �11n21 + �22n
2
2 + �33n

2
3

+ 2�12n1n2 + 2�23n2n3 + 2�13n1n3.
(31)

Note that since TN is the component of the traction T along n̂, TN may
be equivalently denoted by �nn, i.e. TN ≡ �nn.

Note also that the expressions for TN (or, �nn) are exactly like the ones
we had found, in the previous chapter, for the engineering strain along
a particular direction.
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Likewise, we denote the component of T perpendicular to n̂ and lying
in the same plane as T and n̂ as T S and call it the shear component. We
have

(T S)
2 = |T|2 − (TN)

2 (32)

or, (T S)
2 = (T 2

1 + T
2
2 + T

2
3 ) − (TN)

2 . (33)

Substituting the expressions for T1, T2, and T3 from Eqs (22) and the ex-
pression for TN from Eq. (31), we can obtain T S .

When we use Eq. (32), we are implicitly saying that TN and T S are in the
same plane contained by T and n̂. So another way of �nding T S would
be by taking the dot product T ⋅ ês , where ês is perpendicular to n̂ and is
contained in the plane formed by T and n̂.

Let us now try to �nd an expression for ês . The unit vector that is per-
pendicular to both T and n̂ is T × n̂

|T × n̂|
. Now, ês is the unit vector that

should be perpendicular to both this newly found unit vector and n̂, so

that ês = n̂ × (
T × n̂
|T × n̂|)

.

In terms of unit vectors, therefore, we have the following:

T = TN n̂ + T S ês . (34)

Just as we had used �nn to denote the component of T along n̂, we can
use �ns to denote the component of T along ês .

Now, consider another unit vector, say, êt that is lying in the plane per-
pendicular to n̂, has a common origin as n̂ and T but, unlike ês , is not
coplanar with T and n̂. If we take the dot product T ⋅ êt , then the re-
sulting component would also lie on the plane perpendicular to n̂. It is
important to note that while ês is unique, we can have in�nite such êt .
In fact, ês is a special case of êt distinguished by its requirement to be
coplanar with T and n̂.

The component of T given by the dot product T ⋅ ês is also a shearing
component of T. However, T S = T ⋅ ês is a special shearing component
distinguished by its requirement to be coplanar with T and n̂.
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Just as we had used �nn and �ns to denote the components of T along n̂
and ês , respectively, we use �nt to denote the component of T along êt .

VERY IMPORTANT: In the previous chapter on Kinematics, the shear
component of strain tensor was physically interpreted by referring to
elemental line segments along two perpendicular directions. Similarly,
here, the shearing components of T can be related to two perpendicular
directions. We can say that �nt = T ⋅ êt is related n̂ and êt while �ns ≡
T S = T ⋅ ês is related to n̂ and ês . We have the following:

�nt = [T ⋅ êt] ,
= [T]T [êt] ,
= [� ⋅ n̂]T [êt] ,

= ([�]T [n̂])
T [êt] ,

= [n̂]T [�] [êt] .

Similarly, we have �ns ≡ T S = [n̂]T [�] [ês].

6 Principal stress
In the previous chapter on Kinematics, after we had found an expression
for the normal or engineering strain along a given direction (or, unit
vector) in terms of a given strain tensor, we had set about the problem
of �nding the directions along which the normal strain was maximum
– these strains being referred to as the principal strains. We are at a
corresponding point in this chapter. We have in our hands the expression
for the normal stress �nn ≡ TN , and we set about the following problem:

Given a state of stress � referred to coordinate axes along the directions ê1,
ê2, and ê3, which n̂ maximizes �nn ≡ TN ?

We could proceed exactly as in the previous chapter by using the method
of Lagrange multiplier but we take up another method as follows:

We �rst note that for TN to be maximum, T must be parallel to n̂.
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Now, referred to ê1, ê2, and ê3, we have:

n̂ = ê1n1 + ê2n2 + ê3n3.

Therefore, T ∥ n̂ with its magnitude entirely contributed by TN must be

T = TN n̂,
or, T = ê1(TNn1) + ê2(TNn2) + ê3(TNn3). (35)

The plane de�ned by n̂ is the principal plane and TN is the principal
stress. Henceforth, we will denote TN by � . Using this new notation,
Eq. (35) can be written in component form as

T1 = �n1, (36a)
T2 = �n2, (36b)
T2 = �n3. (36c)

Now, subtracting the three Cauchy’s formula equations, Eq. (22)(a), (b),
and (c) respectively, from Eqs. (36)(a), (b), and (c) gives us

(�11 − �) n1 + �21n2 + �31n3 = 0, (37a)
�12n1 + (�22 − �) n2 + �32n3 = 0, (37b)
�13n1 + �23n2 + (�33 − �) n3 = 0. (37c)

For non-trivial solutions of n1, n2, and n3, we must have

||||||

�11 − � �21 �31
�12 �22 − � �23
�13 �23 �33 − �

||||||
= 0. (38)

On expanding,

� 3 − (�11 + �22 + �33) � 2 + (�11�22 + �22�33 + �33�11 − � 212 − �
2
23 − �

2
31) �

− (�11�22�33 + 2�12�23�31 − �11� 223 − �22�
2
31 − �33�

2
12) = 0,

or, � 3 − I1� 2 + I2� − I3 = 0, (39)
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where

I1 = �11 + �22 + �33, (40a)
I2 = �11�22 + �22�33 + �33�11 − � 212 − �

2
23 − �

2
31

=
||||
�11 �12
�12 �22

||||
+
||||
�22 �23
�23 �33

||||
+
||||
�33 �31
�31 �11

||||
, (40b)

I3 = �11�22�33 + 2�12�23�31 − �11� 223 − �22�
2
31 − �33�

2
12,

=
||||||

�11 �12 �13
�12 �22 �23
�13 �23 �33

||||||
. (40c)

Here, I1, I2, and I3 are stress invariants. These are not the only stress
invariants. Other invariants can be formed from them. For instance,
2I 21 − 6I2 is another stress invariant.

There are a couple of important facts associated with principal stresses
and principal directions that follow from general theory of eigenvalues
(covered in Mathematics II in First Year):

(i) Eigenvalues of a real, symmetric matrix are real. The stress matrix
is real and symmetric. So the principal stresses are always real (as
one would, of course, expect!)

(ii) The eigenvectors corresponding to distinct eigenvalues are orthog-
onal to each other. So if the principal stress values are all di�erent,
then the principal directions are mutually perpendicular to each
other.

7 State of stress referred to principal direc-
tions

We can choose to orient the coordinate axes along three mutually per-
pendicular principal directions. In that case, the state of stress shapes up
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(in matrix representation) as

[�] =
⎡
⎢
⎢
⎣

� (1) 0 0
0 � (2) 0
0 0 � (3)

⎤
⎥
⎥
⎦
, (41)

where � (1), � (2), � (3) are the three principal stresses. The fact that the
stress matrix referred to axes that are directed along the principal di-
rections must be diagonal is embedded in the de�nition of the principal
stress itself. The principal stresses are de�ned to be the normal compo-
nents of the traction vectors on those planes where the traction vector
is parallel to the unit normal to the plane itself. In other words, a com-
ponent along a direction perpendicular to this unit normal (i.e. along
the plane itself) must be necessarily zero. So, if the principal directions
themselves are chosen as the coordinate axes, then the traction vector
corresponding to each principal plane will be entirely along the axis per-
pendicular to the plane and along the plane there will be no component
- meaning that along the other two coordinate axes which necessarily
must lie on the plane, there can be no component of the traction. Thus,
stress components along these two directions (the shear directions) must
be zero.

8 Octahedral stress
Consider the coordinate axes aligned along the principal directions. A
plane that is equally aligned to these axes is called an octahedral plane.
For such a plane, |n1| = |n2| = |n3|. Now, since we must have n21+n22+n23 = 1,
therefore

|n1| = |n2| = |n3| =
1√
3
. (42)

Note that there can be eight such planes and together they form an oc-
tahedron.

Normal and shear stress on each of these planes are referred to as octa-
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hedral normal stress and octahedral shear stress

�oct = �11n21 + �22n
2
2 + �33n

2
3

=
1
3
(�11 + �22 + �33) =

1
3
I1. (43)

�oct = (�11 − �22)2 n21n
2
2 + (�22 − �33)

2 n22n
2
3 + (�33 − �11)

2 n23n
2
1

=
1
9 [(�11 − �22)2 + (�22 − �33)2 + (�33 − �11)2]

=
1
9 [2 (�11 + �22 + �33)2 − 6 (�11�22 + �22�33 + �33�11)]

=
1
9 (2I 21 − 6I2) (44)

From the last equation we have

|�oct| =
√
2
3 (I 21 − 3I2)

1/2 (45)

9 Decomposition into mean and deviatoric
parts

A general state of stress matrix can be decomposed as follows:

[�] ≡
⎡
⎢
⎢
⎣

�11 �12 �13
�12 �22 �23
�13 �23 �33

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

�m 0 0
0 �m 0
0 0 �m

⎤
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[�M]

+
⎡
⎢
⎢
⎣

�11 − �m �12 �13
�12 �22 − �m �23
�13 �23 �33 − �m

⎤
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[�D]

,

(46)

where �m is taken as �m =
1
3
(�11 + �22 + �33) ≡

1
3
I1 with I1 being the �rst

stress invariant of � . Equivalently, �m = 1
3 tr(�) where tr is the trace. In

the above, �M is the mean stress tensor and �D is the deviatoric stress
tensor. Note also that the �rst stress invariant of the deviatoric stress
tensor, �D, is 0 while the �rst invariant of the mean stress tensor, �M is
I1 itself.
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