Mathematical Preliminaries *

1 Vector representations

A vector quantity exists independent of its mathematical representation.
But if we have to work with it, we do need to represent it mathematically. There can be various ways of representing a vector:

Direct or compact notation: v

Component form: $v_{1} \hat{\mathbf{e}}_{1}+v_{2} \hat{\mathbf{e}}_{2}+v_{3} \hat{\mathbf{e}}_{3}$ OR, $\sum_{i=1}^{3} v_{i} \hat{\mathbf{e}}_{i}$
Index or indical notation: v_{i}
Matrix representation: $[\mathbf{v}] \equiv\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$

2 Dot product

Let us now look at the dot product:

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =a_{i} b_{i} \\
& =\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& =[\mathbf{a}]^{\top}[\mathbf{b}]
\end{aligned}
$$

[^0]In component form:

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\left(a_{1} \hat{\mathbf{e}}_{1}+a_{2} \hat{\mathbf{e}}_{2}+a_{3} \hat{\mathbf{e}}_{3}\right) \cdot\left(b_{1} \hat{\mathbf{e}}_{1}+b_{2} \hat{\mathbf{e}}_{2}+b_{3} \hat{\mathbf{e}}_{3}\right) \\
& =\left(a_{i} \hat{\mathbf{e}}_{i}\right) \cdot\left(b_{j} \hat{\mathbf{e}}_{j}\right) \\
& =a_{i} b_{j} \hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j} \\
& =a_{i} b_{j} \delta_{i j} \\
& =a_{i} b_{i}
\end{aligned}
$$

A special property of the Kronecker delta is its "ability" to substitute indices, and it is this property that has been used in the last step above.

3 Dyadic product

We have seen what happens in the case of the dot product: $[\mathbf{a}]^{\top}[\mathbf{b}]$. Next, what happens if we do $[\mathrm{a}][\mathrm{b}]^{\top}$?
We obtain: $\left[\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right]$.
This entity is represented by $a_{i} b_{j}$. In terms of a single variable two indices are used; for instance $T_{i j}$.

In direct or compact notation, it is written as $\mathbf{a} \otimes \mathbf{b}$. Note that $\mathbf{a} \otimes \mathbf{b} \neq \mathbf{b} \otimes \mathbf{a}$. In fact, $\mathbf{a} \otimes \mathbf{b}=(\mathbf{b} \otimes \mathbf{a})^{\top}$.

In component form, we have: $\left(a_{i} \mathbf{e}_{i}\right) \otimes\left(b_{j} \mathbf{e}_{j}\right)=a_{i} b_{j}\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)$
Note:

$$
\begin{aligned}
& \mathbf{e}_{1} \otimes \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& \mathbf{e}_{1} \otimes \mathbf{e}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

and so on.
The dyadic product \otimes sums up the order of the tensors. Thus, if we have a vector \mathbf{v} and two second-order tensors T and S , then $\mathrm{T} \otimes \mathbf{v}=\mathcal{A}$ is a tensor of order 3 , and $\mathbf{S} \otimes \mathbf{T}=\mathbb{C}$ is a tensor of order 4 .

4 Contraction

We can also have operations between tensors that reduce the order.
Consider $\mathbf{T} \otimes \mathbf{v} \equiv T_{i j} v_{k}$. Now set $k=j$. This operation is referred to as contraction. The resulting entity $T_{i j} v_{j}$ has only one free index and so it is a tensor of order 1, i.e. a vector. Contraction reduced the order from 2 to 1 .

The dot product was a special case of contraction.
Contraction can be between any two indices. Consider again $\mathbf{T} \otimes \mathbf{v} \equiv$ $T_{i j} v_{k}$. Instead of setting $k=j$, we set $k=i$ this time. Then the resulting entity $T_{i j} v_{i}$ is again a tensor or order 1 . However, importantly, $T_{i j} v_{j} \neq$ $T_{i j} v_{i}$ which can easily be verified by expanding. In the direct or compact notation, we have

$$
\begin{aligned}
T_{i j} v_{j} & \equiv \mathrm{~T} \mathbf{v} \\
T_{i j} v_{i} & \equiv \mathbf{T}^{\top} \mathbf{v}
\end{aligned}
$$

Contraction between tensors of order 2 can have various possibilities:

$$
\begin{aligned}
\mathrm{ST} & \equiv S_{i j} T_{j l}, \\
\mathrm{~S}^{\top} \mathrm{T} & \equiv S_{j i} T_{j l}, \\
\mathrm{ST}^{\top} & \equiv S_{i j} T_{l j}, \\
\mathrm{~S}^{\top} \mathrm{T}^{\top} & \equiv S_{j i} T_{l j}
\end{aligned}
$$

We can work out the preceding expressions in a more explicit way using the component form. For instance:

$$
\begin{aligned}
\mathbf{T v} & \equiv T_{i j} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \cdot v_{k} \hat{\mathbf{e}}_{k} \\
& \equiv T_{i j} v_{k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \cdot \hat{\mathbf{e}}_{k} \\
& \equiv T_{i j} v_{k} \delta_{j k} \hat{\mathbf{e}}_{i} \\
& \equiv T_{i j} v_{j} \hat{\mathbf{e}}_{i} \\
\mathbf{S T} & \equiv S_{i j}\left(\hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j}\right) \cdot T_{k l}\left(\hat{\mathbf{e}}_{k} \otimes \hat{\mathbf{e}}_{l}\right) \\
& \equiv S_{i j} T_{k l} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{j} \cdot \hat{\mathbf{e}}_{k} \otimes \hat{\mathbf{e}}_{l} \\
& \equiv S_{i j} T_{k l} \delta_{j k} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{l} \\
& \equiv S_{i j} T_{k l} \hat{\mathbf{e}}_{i} \otimes \hat{\mathbf{e}}_{l}
\end{aligned}
$$

[^0]: *Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in

