Applied Elasticity (ME40605/ME60401) Mechanical Engineering
Autumn Semester, 2020 T Kharagpur

MATERIAL BEHAVIOUR —
STRESS STRAIN RELATIONS *

1 The Need for Material Behaviour Relations

All of us are familiar with material behaviour relations which are of-
ten referred to as constitutive relations also. For instance, the famous
Hooke’s law. However, let us try to motivate the discussion of material
behaviour relations by discussing why we need them in the first place.
Towards that end, let us take stock of what equations and unknown vari-
ables we have till now, and we want we need in order to have a closed
system of equations.

Just like in fluid mechanics, in solid mechanics too, we need to ensure
that mass conservation is satisfied. We can proceed exactly as was done
in fluid mechanics to obtain the following
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which is, of course, the continuity equation. Here, p is the mass density
of the material that can, in general, vary with time and position, and v
is the velocity. It is extremely important to note that this equation which
was introduced in the context of studying fluids holds true for solids too.
Mass conservation must be satisfied, whether it is fluid or solid.

Next, again like in fluid mechanics, we need to ensure the balance of lin-
ear momentum. This balance has already been discussed in the previous
chapter on “Stress”, and it led to the Cauchy’s equations of motion
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where o is the stress tensor and b is the body force per unit volume.
We had also discussed that for a body in static equilibrium, this equa-
tion reduces to the following form, referred to as the stress equilibrium
equations:

V-o+pb=0. (3)

First, in the continuity equation (1), we have the unknown density p
and the three unknown components of the velocity vector v. Alterna-
tively, instead of the unknown velocity components, we can say that the
unknowns are the three components of the displacement vector u. We

note that the velocity can be immediately found once the displacement

Du
is found using the kinematic definition: v := Or In any case, what we

have are (1 + 3 =)4 unknowns and 1 equation.

Next, in the stress equilibrium equations (3), we have the six unknown
components of the stress tensor o and three equations. So, in total, we
have (1+3+6 =)10 unknowns and (1+3 =)4 equations. There is, therefore,
a discrepancy of 6 equations. These are what we need to find.

It is to fill this discrepancy of 6 equations that we need to use the material
behaviour or constitutive relations.

We can use six constitutive relations in the form o = f(¢). But note that
these six relations are actually expressions of the six components of ¢ in
terms of the six components of ¢. Thus, in introducing the six equations,
we have apparently ended up introducing another six unknowns! But
remember that we already have our six strain-displacement relations.

So, overall, we have 16 unknowns: p, the three components of the dis-
placement vector (u), the six components of the strain tensor (¢), and the
six components of the stress tensor (o). We also have 16 equations: the
continuity equation, the three mechanical equilibrium equations, and the
six strain-displacement relations.

In order to arrive at a specific form for the constitutive relations, we will
use the following assumptions:

« Linearity
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« No rate or history effects
« Uniformity or Homogeneity

These assumptions lead to the following relations:
0jj = Cijklfkl (4)

where Cjj; = C is a 4th order tensor called the elasticity tensor. These
relations can be simplified somewhat by further considerations as fol-
lows.

2 Minor Symmetry

We first interchange i and j in Eq. (4) to obtain:

0ji = Cjiki&xl- (5)

We subtract Eq. (5) from Eq. (4) to obtain

0= (Cijkl - Cjikl)gkls (6)
= Cijki = Gjikr- (7)

The symmetricity about the first two indices mean that out of the (3x3x3x
3) = 81 components of the fourth order elasticity tensor only (3x2x3x3) =
54 are independent. Proceeding further, if we next interchange k and [
in Eq. (4), we obtain

Oij = Cijlkglk- (8)
But since we know that ¢, = ¢4, so we must have
0jj = Cijlkfkl- )

Now, subtracting Eq. (9) from Eq. (4), we obtain

0 = (Cijrr = Cijie) i, (10)
- Cijkl = Cijlk- (11)



Applied Elasticity Mechanical Engineering
Material Behaviour T Kharagpur

Again, just as before, the symmetricity about the third and fourth indices
mean that of the previously obtained 54 independent components of the
elasticity tensor, we actually have (3 x2x3x2) = 36 components that are
really independent.

We note that Ciji; = Cjiy and Cyji; = Cyjy are referred to as the minor
symmetries.

The minor symmetries are utilized to simplify the matrix representation
of the stress-strain relations through what is referred to as the Voigt no-
tation.

3 Voigt Notation

In the Voigt notation, the following mappings are used to denote the
index pairs:

11—1, 222, 33— 3,
23=32—4, 13=31+—5, 12=21—6

Using these index pair mappings, the six independent components of the
stress matrix and the strain matrix are represented in Voigt notation as
the components of column matrices with six rows:

01 &
op} &
011 012 O13 o &11 €12 €13 e
3 3
012 0Oz2 03| o and &2 &2 &3 > e (12)
4 4
013 023 033 13 &3 &3
O5 &
3 &

The components of the elasticity tensor are rewritten as:

Ci1z2 = Ciz, Cias3 > Cas, etc. (13)
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Thus, the 6 x 1 stress and the 6 x 1 strain column matrices are connected
through a 6 x 6 matrix consisting of the 36 independent components of
the elaticity matrix rewritten in Voigt notation:

—0'1- —Ell Elz 213 214 215 Clé- [ & ]
o) 221 922 923 £24 Ezs Cyl| &
03 231 232 933 234 935 936 & (14)
04 241 942 243 244 245 Cu| | 264

Os Es1 Csy Csz3 Csy Cs5 Cse||265

0s] |Ca Ce2 Css Coa Css Ces||286)]

where we must be careful to note the factor "2" in front of the shear strain
components.

It is also extremely important to note that based on just the minor sym-
metries, the 6 x 6 matrix is not symmetric, i.e Cip # Cyy, Ci3 # Csyy, etc. It
would be symmetric only under what is referred to as major symmetry,
i.e. when Cijkl = Cklij-

4 Major Symmetry

The major symmetry arises if the stress tensor can be written as

ol

o = , 15
- (15)
where U, is the strain energy density."
Now, from the previous relation, we have
do; U
—H-—— (16)

a&‘kl 88k1(9€ij ’

TDiscussions involving the strain energy density will be done in the course
Advanced Mechanics of Solids (ME60402). Students may refer to notes here:
http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/advmechsolids/
2020/notes/energy.pdf


http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/advmechsolids/2020/notes/energy.pdf
http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/advmechsolids/2020/notes/energy.pdf
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Again, we can write

oU,
Okl = —0, (17)
d¢xl
and again we have as before
0 2°U,
9ok _ T (18)
8€ij afijaé‘kl
02Uk 02Uk
But, we must have L based on the continuity of the

agklagij agijagkl
partial derivatives of the strain energy density. Consequently, we have

(19)

acr,j _ aO'kl

agkl 8£ij ’
and so if we have o0;; = Cyjxe; and oy = Cyyy€55, then we end up with
Cijk1 = Crijs (20)

or, Cpg=Cgyp. (21)

Based on this major symmetry, if we go back to the Voigt notation, we
can immediately conclude that the 6 x 6 matrix is indeed symmetric, so
that the 36 independent components actually reduce to 21 independent
components. Further reductions in the number of independent compo-
nents are possible based on symmetry arguments. (We are not going to
discuss them here.) We note that the “highest” amount of symmetry is
possible for an isotropic material where the material properties are are
completely direction-independent. For such an isotropic material, the 21
independent components reduce to just 2 independent components.

5 Linear, Elastic, Isotropic Behaviour

We note a result from a tensor algebra which states that a general fourth-
order isotropic tensor can be expressed in terms of the Kronecker delta
as follows¥

Cijk1 = a0ii61 + POik b1 + ¥ 8ubji. (22)

*In the problem sheet, you will be asked to verify this result.
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It appears from the above that there are 3 constants involved instead of
the 2 that was previously mentioned. Let’s see how we can reduce the 3
to 2.

First, we interchange i and j, so that

Cjiki = @6jib1 + POxbi + ¥ 51k (23)

We subtract Eq. (23) from Eq. (22) to obtain:

0 = (B = y)0ub + (v = P)dudjr- (24)
The above relation can be true in general only if § = y.

Similarly, if we interchange j and ! in Eq. (22), we will again end up with
p=v
So, in reality there are only 2 independent coefficients in Eq. (22)

Cijer = a6;0k1 + P(6ixcSj1 + 6:16j1c)-

It is conventional to use the symbols A and G instead of o and f; thus

Cijkt = A6k + G(8ix 6j1 + 5 dji). (25)

Now, using this equation in the stress-strain relation, we have

0jj = Cijklfkl
or, oy = {A8;8u + G(8uSy + 8udix) } ex,
or, o0y = Agkkaij + 2G€ij (26)

This is the constitutive relation for a linear, elastic, isotropic solid.

This equation represents the general constitutive behaviour of a linear,
elastic, isotropic solid. The constants A and G are referred to as the Lamé
parameters.
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