Kinematics* ${ }^{\dagger}$

1 Deformation and displacement

1.1 Deformation map

Consider a body in a intial reference state denoted by \mathcal{B}. Under some given loading, let this body go from \mathcal{B} to a deformed state \mathcal{B}^{\prime}. In this process, various material points that make up the body move in such a way that in general the distance between any two points in the state \mathcal{B}^{\prime} will be different from that in the state \mathcal{B}. We want to have a mathematical framework to quantify this deformation.

We set up a set of coordinate axes and consider the motion of a particular point in the body. Let the position vector of this point referred to our coordinate axes be \mathbf{X}. (Note that from now on we will use bold symbols like \mathbf{X} to refer to a vector instead of \vec{X}.) After deformation, let the position vector of this same point be \mathbf{x}. In terms of components, we have $\mathrm{X} \equiv\left(X_{1}, X_{2}, X_{3}\right)$ and $\mathbf{x} \equiv\left(x_{1}, x_{2}, x_{3}\right)$. Using the indicial notation, we can write these as $\mathbf{X} \equiv X_{i}$ and $\mathbf{x} \equiv x_{i}$.

We note that \mathbf{x}, in general, will be a function of the initial position vector X as well as time, t, i.e. $\mathbf{x} \equiv \mathbf{x}(\mathbf{X}, t)$. This means that we have taken up a Lagrangian description of our system.In terms of components we have

$$
\begin{aligned}
& x_{1} \equiv x_{1}\left(X_{1}, X_{2}, X_{3}, t\right), \\
& x_{2} \equiv x_{2}\left(X_{1}, X_{2}, X_{3}, t\right), \\
& x_{3} \equiv x_{3}\left(X_{1}, X_{2}, X_{3}, t\right) .
\end{aligned}
$$

Using the indicial notation, we can write

$$
x_{i}=x_{i}\left(X_{j}, t\right) .
$$

[^0]DANGER: In the above indicial notation, why do we need to write X_{j} for the dependence of x_{i} ? To answer this, we must note that each of x_{1}, x_{2}, and x_{3} is a function of all three of X_{1}, X_{2}, and X_{3}. If, suppose, we were to write $x_{i}\left(X_{i}\right)$ then that would be quite confusing because then two interpretations would be possible. First interpretation could be that x_{1} is dependent only on X_{1}, x_{2} only on X_{3}, and x_{3} only on X_{3}. Second interpretation could be that some kind of summation is involved because there is a repeated index. However, both these interpretations would be totally wrong. To avoid these confusions or wrong interpretations, we write $x_{i}\left(X_{j}\right)$ and NOT $x_{i}\left(X_{i}\right)$.

We say that any one of the following:

$$
\begin{align*}
\mathbf{x} & \equiv \mathbf{x}(\mathbf{X}, t), \tag{1}\\
\text { or, } \quad x_{i} & \equiv x_{i}\left(X_{j}, t\right) \tag{2}
\end{align*}
$$

represents the deformation map.

1.2 Displacement

We define the displacement as the difference between the final and the initial position vectors of a point. Since the final position vector \mathbf{x} is a function of the initial position vector \mathbf{X}, therefore the displacement, \mathbf{u} of the point is also a function of the initial position vector \mathbf{X} and time t

$$
\mathbf{u}(\mathbf{X}, t):=\mathbf{x}(\mathbf{X}, t)-\mathbf{X} .
$$

From now on, we consider the dependence on time to be implicilty included and stop mentioning t as an independent variable. Thus

$$
\begin{equation*}
\mathbf{u}(\mathrm{X})=\mathbf{x}(\mathrm{X})-\mathrm{X} \tag{3}
\end{equation*}
$$

In terms of components we have

$$
\begin{aligned}
& u_{1}\left(X_{1}, X_{2}, X_{3}\right)=x_{1}\left(X_{1}, X_{2}, X_{3}\right)-X_{1}, \\
& u_{2}\left(X_{1}, X_{2}, X_{3}\right)=x_{2}\left(X_{1}, X_{2}, X_{3}\right)-X_{2}, \\
& u_{3}\left(X_{1}, X_{2}, X_{3}\right)=x_{3}\left(X_{1}, X_{2}, X_{3}\right)-X_{3} .
\end{aligned}
$$

Or, using indicial notation, we can write in a very short form:

$$
u_{i}\left(X_{j}\right)=x_{i}\left(X_{j}\right)-X_{i} .
$$

Now although we can track the motion of an individual particle, just by following this motion, we cannot quantify the deformation. To do that, we need to look at the distance between two material points.

1.3 Quantification of deformation

We consider another neighbouring point Q (neighbour of P) whose position vector in the initial reference state is given by $\mathbf{X}+\mathrm{dX}$. Let the position vector of this neighbouring point in the deformed state be $\mathbf{x}+\mathrm{dx}$. The displacement of this neighbouring point Q will then be

$$
\begin{equation*}
\mathbf{u}(\mathbf{X}+\mathrm{d} \mathbf{X})=(\mathbf{x}+\mathrm{d} \mathbf{x})-(\mathbf{X}+\mathrm{d} \mathbf{X}) . \tag{4}
\end{equation*}
$$

However, from (3) we have $\mathbf{u}(\mathbf{X})=\mathbf{x}-\mathbf{X}$. Therefore, from (4) we obtain

$$
\begin{gather*}
\mathbf{u}(\mathbf{X}+\mathrm{d} \mathbf{X})=\mathbf{u}(\mathbf{X})+\mathrm{d} \mathbf{x}-\mathrm{d} \mathbf{X} \\
\text { or, } \quad \mathrm{d} \mathbf{x}=\mathrm{d} \mathbf{X}+\mathbf{u}(\mathbf{X}+\mathrm{d} \mathbf{X})-\mathbf{u}(\mathbf{X}) . \tag{5}
\end{gather*}
$$

In terms of components we have

$$
\begin{align*}
& \mathrm{d} x_{1}=\mathrm{d} X_{1}+u_{1}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)-u_{1}\left(X_{1}, X_{2}, X_{3}\right), \tag{6a}\\
& \mathrm{d} x_{2}=\mathrm{d} X_{2}+u_{2}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)-u_{2}\left(X_{1}, X_{2}, X_{3}\right), \tag{6b}\\
& \mathrm{d} x_{3}=\mathrm{d} X_{3}+u_{3}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)-u_{3}\left(X_{1}, X_{2}, X_{3}\right) . \tag{6c}
\end{align*}
$$

Again, using indicial notation, we can write in a very short form

$$
\begin{equation*}
\mathrm{d} x_{i}=\mathrm{d} X_{i}+u_{i}\left(X_{j}+\mathrm{d} X_{j}\right)-u_{i}\left(X_{j}\right) \tag{7}
\end{equation*}
$$

To proceed, we use Taylor series expansion to put the aforementioned equation in a form involving gradients (instead of differences). However, this step will involve the Taylor series expansion of a function of more than one variable. We first focus on how to go about doing that.

Brief refresher on Taylor series expansion:

To refresh our memory about Taylor series expansion, we first consider a function of one variable. If $f(x)$ denotes the function value corresponding to the point x, then for a neighbouring point $x+\mathrm{d} x$ we have $f(x+\mathrm{d} x)$, which can be expanded about the point x as

$$
f(x+\mathrm{d} x)=f(x)+\frac{\mathrm{d} x}{1!} \frac{\mathrm{d} f}{\mathrm{~d} x}+\frac{(\mathrm{d} x)^{2}}{2!} \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\cdots
$$

Now, instead of one variable, consider a function of two variables. If $f(x, y)$ denotes the function value corresponding to the point (x, y), then for a neighbouring point $x+\mathrm{d} x, y+\mathrm{d} y$, we have $f(x+\mathrm{d} x, y+\mathrm{d} y)$, which can be expanded about the point (x, y) as

$$
\begin{aligned}
f(x+\mathrm{d} x, y+\mathrm{d} y) & =f(x, y)+\frac{\mathrm{d} x}{1!} \frac{\partial f}{\partial x}+\frac{\mathrm{d} y}{1!} \frac{\partial f}{\partial y}+\frac{(\mathrm{d} x)^{2}}{2!} \frac{\partial^{2} f}{\partial x^{2}}+2 \frac{\mathrm{~d} x \mathrm{~d} y}{2!} \frac{\partial^{2} f}{\partial x \partial y}+\frac{(\mathrm{d} y)^{2}}{2!} \frac{\partial^{2} f}{\partial y^{2}}+\cdots, \\
& =f(x, y)+\left(\mathrm{d} x \frac{\partial}{\partial x}+\mathrm{d} y \frac{\partial}{\partial y}\right) f+\frac{1}{2}\left(\mathrm{~d} x \frac{\partial}{\partial x}+\mathrm{d} y \frac{\partial}{\partial y}\right)^{2} f+\cdots
\end{aligned}
$$

Similarly, if we consider a function of three variables we have

$$
\begin{aligned}
f(x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)= & f(x, y, z)+\left(\mathrm{d} x \frac{\partial}{\partial x}+\mathrm{d} y \frac{\partial}{\partial y}+\mathrm{d} z \frac{\partial}{\partial z}\right) f \\
& +\frac{1}{2}\left(\mathrm{~d} x \frac{\partial}{\partial x}+\mathrm{d} y \frac{\partial}{\partial y}+\mathrm{d} z \frac{\partial}{\partial z}\right)^{2} f+\cdots
\end{aligned}
$$

For our purpose, the Taylor series expansion upto only the linear term will be sufficient. So we may write

$$
f(x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z) \approx f(x, y, z)+\left(\mathrm{d} x \frac{\partial}{\partial x}+\mathrm{d} y \frac{\partial}{\partial y}+\mathrm{d} z \frac{\partial}{\partial z}\right) f
$$

The function, f, of three variables evaluated at $(x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)$ and represented by $f(x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)$ may be compared with the second term on the r.h.s of each of Eqs (6a), (6b), (6c), i.e. with the terms representing the displacement components $u_{1}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)$, $u_{2}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)$, and $u_{3}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right)$. These displacement components may also be approximated using upto
the linear terms of the Taylor series expansion as

$$
\begin{align*}
u_{1}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right) \approx & \approx u_{1}\left(X_{1}, X_{2}, X_{3}\right) \\
& +\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{1} \tag{8a}
\end{align*}
$$

$$
u_{2}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right) \approx u_{2}\left(X_{1}, X_{2}, X_{3}\right)
$$

$$
\begin{equation*}
+\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{2} \tag{8b}
\end{equation*}
$$

$$
u_{3}\left(X_{1}+\mathrm{d} X_{1}, X_{2}+\mathrm{d} X_{2}, X_{3}+\mathrm{d} X_{3}\right) \approx u_{3}\left(X_{1}, X_{2}, X_{3}\right)
$$

$$
\begin{equation*}
+\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{3} . \tag{8c}
\end{equation*}
$$

Substituting Eqs (8a), (8b), and (8c) in Eqs (6a), (6b), and (6c), respectively, we obtain

$$
\begin{align*}
& \mathrm{d} x_{1}=\mathrm{d} X_{1}+\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{1} \tag{9a}\\
& \mathrm{~d} x_{2}=\mathrm{d} X_{2}+\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{2} \tag{9b}\\
& \mathrm{~d} x_{3}=\mathrm{d} X_{3}+\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) u_{3} \tag{9c}
\end{align*}
$$

Now, the operator $\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right)$ may be interpreted as the dot product of the vector $\mathrm{d} \mathbf{X}$ (whose components are $\mathrm{d} X_{1}, \mathrm{~d} X_{2}$, and $\mathrm{d} X_{3}$) and the gradient vector ∇ (whose components are $\frac{\partial}{\partial X_{1}}, \frac{\partial}{\partial X_{2}}$, and $\left.\frac{\partial}{\partial X_{3}}\right)$. Thus, we have

$$
\left(\mathrm{d} X_{1} \frac{\partial}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial}{\partial X_{3}}\right) \equiv \mathrm{d} \mathbf{X} \cdot \nabla
$$

which can be used in Eqs (9a), (9b), and (9c) to give

$$
\begin{align*}
& \mathrm{d} x_{1}=\mathrm{d} X_{1}+\mathrm{d} \mathbf{X} \cdot \nabla u_{1}, \tag{10a}\\
& \mathrm{~d} x_{2}=\mathrm{d} X_{2}+\mathrm{d} \mathbf{X} \cdot \nabla u_{2}, \tag{10b}\\
& \mathrm{~d} x_{3}=\mathrm{d} X_{3}+\mathrm{d} \mathbf{X} \cdot \nabla u_{3} . \tag{10c}
\end{align*}
$$

These three equations (10a), (10b), and (10c) can be written in a compact vector form as

$$
\begin{equation*}
\mathrm{d} \mathbf{x}=\mathrm{d} \mathbf{X}+\mathrm{dX} \cdot \nabla \mathbf{u} . \tag{11}
\end{equation*}
$$

Alternatively, Eqs (10a), (10b), and (10c) can be written in a very short form using indicial notation as

$$
\begin{equation*}
\mathrm{d} x_{i}=\mathrm{d} X_{i}+\mathrm{d} X_{j} \frac{\partial u_{i}}{\partial X_{j}} \tag{12}
\end{equation*}
$$

The term $\nabla \mathbf{u}$, or, equivalently, $\partial u_{i} / \partial X_{j}$ is called the displacement gradient. It is the gradient of a vector. Remember that we have encountered something similar in Fluid Mechanics: the velocity gradient.

2 Strain

Although Eq. (11) or, equivalently, Eq. (12) contains all the information about the deformation, we would like to see explicitly how much deformation has taken place. We do so by comparing the two lengths: $|\mathrm{dx}|$ (after deformation) and $|\mathrm{dX}|$ (before deformation). A similar approach had been used in introducing strain (in Class XI) or in the discussion of normal strain (in first year mechanics): consider a length L and let it get stretched to a length $l=L+\Delta L$; then the normal strain is defined by comparing the two lengths as $(l-L) / L$. In fact, we are going to do something similar in order to obtain a general three-dimensional version of strain that will cover both normal strains and shear strains.

So, we want to compare $|\mathrm{d} \mathbf{x}|$ and $|\mathrm{d} \mathbf{X}|$. We define the engineering strain as

$$
\begin{equation*}
\varepsilon_{\mathrm{E}}:=\frac{|\mathrm{d} \mathbf{x}|-|\mathrm{d} \mathbf{X}|}{|\mathrm{d} \mathbf{X}|} \tag{13}
\end{equation*}
$$

However, both dx and dX are vectors and their magnitudes, i.e. $|\mathrm{dx}|$ and $|d X|$ will involve square roots. So, actually it is easier to compare $|\mathrm{dx}|^{2}$ with $|\mathrm{dX}|^{2}$ because then we can simply compare the dot products:

$$
\begin{aligned}
|\mathrm{d} \mathbf{x}|^{2} & =\mathrm{dx} \cdot \mathrm{~d} \mathbf{x}, \\
|\mathrm{dX}|^{2} & =\mathrm{d} \mathbf{X} \cdot \mathrm{~d} .
\end{aligned}
$$

Now, substituting the expressions for $\mathrm{d} x_{1}, \mathrm{~d} x_{2}$, and $\mathrm{d} x_{3}$ from Eqs (9a), (9b), and (9c), respectively in the expression for $|\mathrm{d} \mathbf{x}|^{2}$, we have

$$
\begin{aligned}
|\mathrm{d} \mathbf{x}|^{2}=\mathrm{d} \mathbf{x} \cdot \mathrm{~d} \mathbf{x}= & \left(\mathrm{d} X_{1}+\mathrm{d} X_{1} \frac{\partial u_{1}}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial u_{1}}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial u_{1}}{\partial X_{3}}\right)^{2} \\
& +\left(\mathrm{d} X_{2}+\mathrm{d} X_{1} \frac{\partial u_{2}}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial u_{2}}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial u_{2}}{\partial X_{3}}\right)^{2} \\
& +\left(\mathrm{d} X_{3}+\mathrm{d} X_{1} \frac{\partial u_{3}}{\partial X_{1}}+\mathrm{d} X_{2} \frac{\partial u_{3}}{\partial X_{2}}+\mathrm{d} X_{3} \frac{\partial u_{3}}{\partial X_{3}}\right)^{2} .
\end{aligned}
$$

Expanding and collecting terms we obtain the following

$$
\begin{align*}
|\mathrm{d} \mathbf{x}|^{2}= & \left(\mathrm{d} X_{1}\right)^{2}+\left(\mathrm{d} X_{2}\right)^{2}+\left(\mathrm{d} X_{3}\right)^{2} \\
& +2\left(\mathrm{~d} X_{1}\right)^{2}\left[\frac{\partial u_{1}}{\partial X_{1}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{1}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{1}}\right)^{2}\right\}\right] \\
& +2\left(\mathrm{~d} X_{2}\right)^{2}\left[\frac{\partial u_{2}}{\partial X_{2}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{2}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{2}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{2}}\right)^{2}\right\}\right] \\
& +2\left(\mathrm{~d} X_{3}\right)^{2}\left[\frac{\partial u_{3}}{\partial X_{3}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{3}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{3}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{3}}\right)^{2}\right\}\right] \\
& +2 \mathrm{~d} X_{1} \mathrm{~d} X_{2}\left(\frac{\partial u_{1}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{1}} \frac{\partial u_{1}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{1}} \frac{\partial u_{2}}{\partial X_{2}}+\frac{\partial u_{3}}{\partial X_{1}} \frac{\partial u_{3}}{\partial X_{2}}\right) \\
& +2 \mathrm{~d} X_{2} \mathrm{~d} X_{3}\left(\frac{\partial u_{2}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{2}}+\frac{\partial u_{1}}{\partial X_{2}} \frac{\partial u_{1}}{\partial X_{3}}+\frac{\partial u_{2}}{\partial X_{2}} \frac{\partial u_{2}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{2}} \frac{\partial u_{3}}{\partial X_{3}}\right) \\
& +2 \mathrm{~d} X_{3} \mathrm{~d} X_{1}\left(\frac{\partial u_{3}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{3}}+\frac{\partial u_{1}}{\partial X_{3}} \frac{\partial u_{1}}{\partial X_{1}}+\frac{\partial u_{2}}{\partial X_{3}} \frac{\partial u_{2}}{\partial X_{1}}+\frac{\partial u_{3}}{\partial X_{3}} \frac{\partial u_{3}}{\partial X_{1}}\right) . \tag{14}
\end{align*}
$$

Noting that $|\mathrm{d} \mathbf{X}|^{2}=\left(\mathrm{d} X_{1}\right)^{2}+\left(\mathrm{d} X_{2}\right)^{2}+\left(\mathrm{d} X_{3}\right)^{2}$, we recast Eq. (14) as

$$
\begin{align*}
&|\mathrm{d} \mathbf{x}|^{2}-|\mathrm{d} \mathbf{X}|^{2}=2\left[\left(\mathrm{~d} X_{1}\right)^{2} E_{11}+\left(\mathrm{d} X_{2}\right)^{2} E_{22}+\left(\mathrm{d} X_{3}\right)^{2} E_{33}\right. \\
&\left.+2 \mathrm{~d} X_{1} \mathrm{~d} X_{2} E_{12}+2 \mathrm{~d} X_{2} \mathrm{~d} X_{3} E_{23}+2 \mathrm{~d} X_{3} \mathrm{~d} X_{1} E_{31}\right] \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
& E_{11}=\frac{\partial u_{1}}{\partial X_{1}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{1}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{1}}\right)^{2}\right\}, \tag{16a}\\
& E_{22}=\frac{\partial u_{2}}{\partial X_{2}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{2}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{2}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{2}}\right)^{2}\right\}, \tag{16b}\\
& E_{33}=\frac{\partial u_{3}}{\partial X_{3}}+\frac{1}{2}\left\{\left(\frac{\partial u_{1}}{\partial X_{3}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial X_{3}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial X_{3}}\right)^{2}\right\}, \tag{16c}\\
& E_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{1}} \frac{\partial u_{1}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{1}} \frac{\partial u_{2}}{\partial X_{2}}+\frac{\partial u_{3}}{\partial X_{1}} \frac{\partial u_{3}}{\partial X_{2}}\right), \tag{16d}\\
& E_{23}=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{2}}+\frac{\partial u_{1}}{\partial X_{2}} \frac{\partial u_{1}}{\partial X_{3}}+\frac{\partial u_{2}}{\partial X_{2}} \frac{\partial u_{2}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{2}} \frac{\partial u_{3}}{\partial X_{3}}\right), \tag{16e}\\
& E_{31}=\frac{1}{2}\left(\frac{\partial u_{3}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{3}}+\frac{\partial u_{1}}{\partial X_{3}} \frac{\partial u_{1}}{\partial X_{1}}+\frac{\partial u_{2}}{\partial X_{3}} \frac{\partial u_{2}}{\partial X_{1}}+\frac{\partial u_{3}}{\partial X_{3}} \frac{\partial u_{3}}{\partial X_{1}}\right) . \tag{16f}
\end{align*}
$$

Alternatively, Eq. (14) can be written in a very short form using indicial notation as

$$
\begin{equation*}
|\mathrm{d} \mathbf{x}|^{2}=|\mathrm{d} \mathbf{X}|^{2}+2 \mathrm{~d} X_{i} \mathrm{~d} X_{j}\left\{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}+\frac{\partial u_{k}}{\partial X_{i}} \frac{\partial u_{k}}{\partial X_{j}}\right)\right\} . \tag{17}
\end{equation*}
$$

The terms inside the curly brackets in Eq. (17) represent the six terms, $E_{11}, E_{22}, E_{33}, E_{12}, E_{21}, E_{23}, E_{32}, E_{31}$ and E_{13}; thus we have

$$
\begin{equation*}
E_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}+\frac{\partial u_{k}}{\partial X_{i}} \frac{\partial u_{k}}{\partial X_{j}}\right), \tag{18}
\end{equation*}
$$

so that Eq. (17) becomes

$$
\begin{equation*}
|\mathrm{d} \mathbf{x}|^{2}=|\mathrm{d} \mathbf{X}|^{2}+2 \mathrm{~d} X_{i} \mathrm{~d} X_{j} E_{i j} . \tag{19}
\end{equation*}
$$

The entity, $E_{i j}$ is what is referred to as the finite strain tensor. It is a second-order tensor (there are two free indices i and j), and it can be
represented by a 3×3 matrix. It is also a symmetric tensor. This fact can be readily verified by interchanging i and j in Eq. (18). Thus, there are only 6 unique elements in the 3×3 matrix representation of the finite strain tensor. These 6 elements are of course $E_{11}, E_{22}, E_{33}, E_{12}, E_{23}$, and E_{31}. And, you can verify for yourself that we indeed have $E_{12}=E_{21}, E_{23}=E_{32}$, and $E_{31}=E_{13}$.
VERY IMPORTANT: If each of $\left|\frac{\partial u_{i}}{\partial X_{j}}\right| \ll 1$, then the quadratic terms in the expressions of each component of $E_{i j}$ can be dropped. Under this consideration, the resulting strain tensor is referred to as the infinitesimal strain tensor and is denoted by ε or $\varepsilon_{i j}$. Thus, we have

$$
\begin{equation*}
E_{i j} \approx \varepsilon_{i j} \tag{20}
\end{equation*}
$$

In indicial notation, $\varepsilon_{i j}$ is thus given by

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}\right), \tag{21}
\end{equation*}
$$

which can be equivalently represented in matrix form as

$$
[\varepsilon] \equiv\left[\begin{array}{ccc}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \tag{22}\\
\varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{1}}\right) & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{2}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{2}}\right) & \frac{\partial u_{2}}{\partial X_{2}} & \frac{1}{2}\left(\frac{\partial u_{2}}{\partial X_{3}}+\frac{\partial u_{3}}{\partial X_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{3}}{\partial X_{1}}+\frac{\partial u_{1}}{\partial X_{3}}\right) & \frac{1}{2}\left(\frac{\partial u_{3}}{\partial X_{2}}+\frac{\partial u_{2}}{\partial X_{3}}\right) & \frac{\partial u_{3}}{\partial X_{3}}
\end{array}\right] .
$$

Often we use the rectangular Cartesian coordinate system where X_{1} corresponds to x, X_{2} corresponds to y, and X_{3} corresponds to z. Then u_{1} corresponds to u_{x} or u, u_{2} to v or u_{y}, and u_{3} to w or u_{z}. Additionally, ε_{11} corresponds to $\varepsilon_{x x}, \varepsilon_{22}$ to $\varepsilon_{y y}, \varepsilon_{33}$ to $\varepsilon_{z z}, \varepsilon_{12}=\varepsilon_{21}$ to $\varepsilon_{x y}=\varepsilon_{y x}, \varepsilon_{23}=\varepsilon_{32}$ to
$\varepsilon_{y z}=\varepsilon_{z y}, \varepsilon_{31}=\varepsilon_{13}$ to $\varepsilon_{z x}=\varepsilon_{x z}$, and we have

$$
\begin{align*}
\varepsilon_{x x}= & \frac{\partial u}{\partial x} \tag{23}\\
\varepsilon_{y y} & =\frac{\partial v}{\partial y} \tag{24}\\
\varepsilon_{z z} & =\frac{\partial w}{\partial z} \tag{25}\\
\varepsilon_{x y}=\varepsilon_{y x}= & \frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right), \tag{26}\\
\varepsilon_{y z}=\varepsilon_{z y}= & \frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right), \tag{27}\\
\varepsilon_{z x}=\varepsilon_{x z}= & \frac{1}{2}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right) . \tag{28}
\end{align*}
$$

VERY IMPORTANT: These six relations are referred to as the straindisplacement relations.

If the displacement components u, v, and w are known as functions of x, y, and z, then the strain components can be found out using these strain-displacement relations. Thus, from a knowledge of the displacement field, the strain field can be determined.
Finally, we reconsider Eq. (19) with $\left|\frac{\partial u_{i}}{\partial X_{j}}\right| \ll 1$, so that $E_{i j} \approx \varepsilon_{i j}$

$$
\begin{equation*}
|\mathrm{d} \mathbf{x}|^{2}=|\mathrm{d} \mathbf{X}|^{2}+2 \mathrm{~d} X_{i} \mathrm{~d} X_{j} \varepsilon_{i j} \tag{29}
\end{equation*}
$$

We write $\mathrm{d} X_{i}$ as $|\mathrm{d} \mathbf{X}| N_{i}$ where $N_{i} \equiv \hat{\mathrm{~N}}$ is the unit vector along $\mathrm{d} X_{i} \equiv \mathrm{dX}$. Similarly, we write $\mathrm{d} X_{j}=|\mathrm{d} \mathbf{X}| N_{j}$. Note that $\mathrm{d} X_{i}$ and $\mathrm{d} X_{j}$ represent the same vector dX. Similary, N_{i} and N_{j} represent the same unit vector \hat{N}. Then from Eq. (29), we have

$$
\begin{aligned}
|\mathrm{d} \mathbf{x}|^{2} & =|\mathrm{d} \mathbf{X}|^{2}+2|\mathrm{~d} \mathbf{X}|^{2} N_{i} \varepsilon_{i j} N_{j} \\
& =|\mathrm{d} \mathbf{X}|^{2}\left(1+2 N_{i} \varepsilon_{i j} N_{j}\right)
\end{aligned}
$$

Note that the combination $N_{i} \varepsilon_{i j} N_{j}$ is a scalar quantity (no free indices) and in compact representation it is the quadratic form $\hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathbf{N}}$,. Thus,
we have

$$
|\mathrm{d} \mathbf{x}|^{2}=|\mathrm{d} \mathbf{X}|^{2}\left(1+2 \hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathbf{N}}\right) .
$$

We can now use the preceding relation to find an expression of the engineering strain in terms of the unit normals and the infinitesimal strain tensor. Thus, we have the following:

$$
\frac{|\mathrm{dx}|^{2}}{|\mathrm{dX}|^{2}}=1+2 \hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathrm{~N}}
$$

or, $\quad\left|1+\varepsilon_{E}\right|^{2}=1+2 \hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathbf{N}} \quad$ (using Eq. (13))
or, $\quad 1+2 \varepsilon_{\mathrm{E}}=1+2 \hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathbf{N}} \quad$ (under small deformations $\varepsilon_{\mathrm{E}} \ll 1$)
or, $\quad \varepsilon_{\mathrm{E}}=\hat{\mathbf{N}}^{T} \cdot \boldsymbol{\varepsilon} \cdot \hat{\mathbf{N}} \equiv N_{i} \varepsilon_{i j} N_{j}$
Given the strain at a point, this expression allows us to determine the engineering strain along the direction of $\hat{\mathbf{N}}$.

3 Rigid-body rotation

Let us look once more at (12)

$$
\begin{align*}
\mathrm{d} x_{i} & =\mathrm{d} X_{i}+\frac{\partial u_{i}}{\partial X_{j}} \mathrm{~d} X_{j} \\
& =\mathrm{d} X_{i}+\underbrace{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}\right) \mathrm{d} X_{j}}_{(1)}+\underbrace{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}-\frac{\partial u_{j}}{\partial X_{i}}\right) \mathrm{d} X_{j}}_{\text {(2) }} \tag{31}
\end{align*}
$$

(1) We have already interpreted this term as the strain. So this term can be interpreted as the total deformation associated purely with the strain.
(2) This term represents the rigid-body rotation - devoid of any strains.

Let us consider rigid-body rotation in more detail. First consider a situation where there are no strains, so that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}\right)=0 \tag{32}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathrm{d} x_{i}=\mathrm{d} X_{i}+\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}-\frac{\partial u_{j}}{\partial X_{i}}\right) \mathrm{d} X_{j} . \tag{33}
\end{equation*}
$$

We denote the rotation tensor by Ω :

$$
\begin{equation*}
\Omega_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}-\frac{\partial u_{j}}{\partial X_{i}}\right) . \tag{34}
\end{equation*}
$$

Since $\Omega_{i j}$ is anti-symmetric, the diagonal terms are zero. So the matrix representation can be done using only three independent components:

$$
\begin{align*}
\Omega_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}-\frac{\partial u_{j}}{\partial X_{i}}\right) & \equiv\left[\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial X_{2}}-\frac{\partial u_{2}}{\partial X_{1}}\right) & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial X_{3}}-\frac{\partial u_{3}}{\partial X_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{2}}{\partial X_{1}}-\frac{\partial u_{1}}{\partial X_{2}}\right) & 0 & \frac{1}{2}\left(\frac{\partial u_{2}}{\partial X_{3}}-\frac{\partial u_{3}}{\partial X_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{3}}{\partial X_{1}}-\frac{\partial u_{1}}{\partial X_{3}}\right) & \frac{1}{2}\left(\frac{\partial u_{3}}{\partial X_{2}}-\frac{\partial u_{2}}{\partial X_{3}}\right) & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] .
\end{align*}
$$

Here the subscripts of ω have been chosen so that $\Omega_{i j} \mathrm{~d} X_{j}$ can be written as $\omega \times \mathrm{dX}$ with

$$
\boldsymbol{\omega}=\left[\begin{array}{l}
\omega_{1} \tag{36}\\
\omega_{2} \\
\omega_{3}
\end{array}\right]
$$

Thus from (33), we have

$$
\begin{equation*}
\mathrm{dx}=\mathrm{dX}+\omega \times \mathrm{d} \mathbf{X} . \tag{37}
\end{equation*}
$$

Note that $\omega \times \mathrm{dX}$ must be perpendicular to dX . Further, if $|\omega| \ll 1$ and $|\mathrm{d} \mathbf{X}| \ll 1$ then $|\boldsymbol{\omega} \times \mathrm{d} \mathbf{X}| \ll 1$, and we have $|\mathrm{dx}| \approx|\mathrm{dX}|$ and the motion is approximately rigid-body motion.

4 Principal strains and principal axes of strain

We have seen from Eq. (30) that the engineering strain at a point in the direction of the unit normal vector $\hat{\mathrm{N}}$ is

$$
\varepsilon_{\mathrm{E}}=\varepsilon_{i j} N_{i} N_{j} .
$$

As we keep on changing $\hat{\mathbf{N}}$, ε_{E} will change. An important question to answer is: what is the maximum possible value of ε_{E} and which $\hat{\mathbf{N}}$ does it correspond to? This is a special type of extremization problem because we simultaneously need to satisfy the constraint that $|\hat{\mathbf{N}}|=1$. So this is a constrained optimization problem and we need to use the method of Lagrange multipliers. Thus, we set

$$
\begin{equation*}
L=\varepsilon_{i j} N_{i} N_{j}+\lambda\left(1-N_{k} N_{k}\right), \tag{38}
\end{equation*}
$$

where λ is the Lagrange multiplier. For the extremization

$$
\begin{align*}
& \frac{\partial L}{\partial N_{k}}=0, \\
& \text { or, } \quad \frac{\partial}{\partial n_{k}}\left(\varepsilon_{i j} N_{i} N_{j}+\lambda\left(1-N_{k} N_{k}\right)\right)=0 . \tag{39}
\end{align*}
$$

The apparently difficult part in the above is the partial derivative of the term $\varepsilon_{i j} N_{i} N_{j}$. We isolate out

$$
\begin{equation*}
\frac{\partial}{\partial N_{k}}\left(N_{i} N_{j}\right)=\frac{\partial N_{i}}{\partial N_{k}} N_{j}+N_{i} \frac{\partial N_{j}}{\partial N_{k}}=\delta_{i k} N_{j}+N_{i} \delta_{j k} \tag{40}
\end{equation*}
$$

where the appearance of the Kronecker deltas can be verified through expanding $\partial N_{i} / \partial N_{k}$ and $\partial N_{j} / \partial N_{k}$ as 3×3 matrices. Going back to (39), we now have

$$
\begin{array}{ll}
& \varepsilon_{i j} \delta_{i k} N_{j}+\varepsilon_{i j} N_{i} \delta_{j k}-2 \lambda N_{k}=0, \\
\text { or, } & \varepsilon_{k j} N_{j}+\varepsilon_{i k} N_{i}-2 \lambda N_{k}=0, \\
\text { or, } & \left.\varepsilon_{j k} N_{j}+\varepsilon_{i k} N_{i}-2 \lambda N_{k}=0, \quad \text { (using symmetry property: } \varepsilon_{k j}=\varepsilon_{j k}\right) \\
\text { or, } & \varepsilon_{i k} N_{i}+\varepsilon_{i k} N_{i}-2 \lambda N_{k}=0, \quad \text { (since } j \text { and } i \text { are repeated indices, } \\
& \quad \text { using either one is fine) } \\
\text { or, } & 2 \varepsilon_{i k} N_{i}-2 \lambda N_{k}=0, \\
\text { or, } & \varepsilon_{i k} N_{i}-\lambda \delta_{i k} N_{i}=0 \quad \text { (using substitution property of Kronecker delta), } \\
\text { or, } & \left(\varepsilon_{i k}-\lambda \delta_{i k}\right) N_{i}=0, \tag{41}
\end{array}
$$

which in matrix form is

$$
\begin{equation*}
([\varepsilon]-\lambda \mathbb{I})[\hat{\mathbf{N}}]=0, \tag{42}
\end{equation*}
$$

where I is the identity matrix, the matrix equivalent of Kronecker delta.
This is the familiar form of an eigenvalue problem. The direction $\hat{\mathbf{N}}$ in which the engineering strain ε_{E} is extremised is an eigenvector of the strain tensor $\varepsilon_{i j}$ while λ is the corresponding eigenvalue or the desired "extreme" value of the engineering strain. It is these extreme values that are referred to as the principal strains and the directions are referred to as the principal directions.

5 Strain compatibility

Given a displacement field u_{i} we can find the strain tensor $\varepsilon_{i j}$. Now what about the reverse situation: given $\varepsilon_{i j}$, can we find u_{i} ?

Since $\varepsilon_{i j}$ is symmetric, there are only six independent strain components. Each of these strain components are expressed in terms of the displacement field components. These expressions can be viewed as partial differential equations (PDEs) for u_{i} components (because $\varepsilon_{i j}$ are given). But there is a problem: there are six PDEs but only three variables to find. So there must be additional relationships among the components of $\varepsilon_{i j}$. In other words, any arbitrary set of six numbers cannot be the components of $\varepsilon_{i j}$ because then a compatible displacement field may not be found. Let's consider just such a situation (in an easier 2D framework). It is given:

$$
\varepsilon_{11}=x_{2}^{2}, \quad \varepsilon_{12}=0, \varepsilon_{22}=0 .
$$

Then

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x_{1}}=x_{2}^{2} \Rightarrow u_{1}=x_{1} x_{2}^{2}+f\left(x_{2}\right), \\
& \frac{\partial u_{2}}{\partial x_{2}}=0 \Rightarrow u_{2}=g\left(x_{1}\right)
\end{aligned}
$$

So

$$
\varepsilon_{12}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}=2 x_{1} x_{2}+f^{\prime}\left(x_{2}\right)+g^{\prime}\left(x_{1}\right)
$$

According to the given strain field, $\varepsilon_{12}=0$. But the above expression can never be identically 0 . The problem is with the presence of the $x_{1} x_{2}$ term. Had it been just $2 x_{1}+f^{\prime}\left(x_{2}\right)+g^{\prime}\left(x_{1}\right)$ then we could have had a situation like

$$
\begin{aligned}
g^{\prime}\left(x_{1}\right) & =-2 x_{1}+c, \\
\text { and } \quad f^{\prime}\left(x_{2}\right) & =-c,
\end{aligned}
$$

to ensure that $\varepsilon_{12}=0$ identically. In that case

$$
\begin{aligned}
& f\left(x_{2}\right)=-c x_{2}+k_{1}, \\
& \text { and } g\left(x_{1}\right)=-x_{1}^{2}+c x_{1}+k_{2},
\end{aligned}
$$

where k_{1} and k_{2} are arbitrary constants.

[^0]: *Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in
 ${ }^{\dagger}$ For the Dual Degree students, these notes will be a repetition of what was covered in Section 1 of Mechanics of Solids in Autumn, 2019.

