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2D Elasticity – I ∗

1 Plane stress
The salient features of a plane stress situation are:

• Domain bounded by two parallel planes

• Distance between two planes is small compared to other dimen-
sions

• When referred to a rectangular Cartesian coordinate system, it is
usual to take the two planes to be represented by z = ±ℎ such that
the very small distance between the two planes is 2ℎ, and the x −y
plane (denoting the mid-surface) is used to describe the problem.

• The two planes z = ℎ and z = −ℎ are stress-free so that �zz = �xz =
�yz = 0 on each face.

• It is expected that there will be very little variation in �zz , �xz , and
�yz through the thickness; hence, they are approximately taken as
zero throughout the entire domain.

• Again because of the very small thickness, the non-zero stress
components will have little variation with z; they are approxi-
mately taken to be independent of z. Thus,

�xx ≡ �xx (x, y), �yy ≡ �yy(x, y), �xy ≡ �xy(x, y).

• There can be no body forces in the z-direction; this follows im-
mediately from the z-component of the mechanical equilibrium
equation.

From constitutive equation of a linear, elastic, isotropic solid, we have
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for the plane stress situation:

"xx =

1

E
(�xx − ��yy) , (1a)

"yy =

1

E
(�yy − ��xx) , (1b)

"zz = −

�

E
(�xx + �yy) , (1c)

"xy =

1 + �

E

�xy , (1d)

"yz = 0, (1e)
"zx = 0. (1f)

Adding (1a) and (1b) and substituting in (1c), we have

"zz = −

�

1 − �
("xx + "yy) . (2)

NOTE:

• Even though �zz = �xz = �yz = 0, we still have "zz ≠ 0.

• All strains are independent of z.

Now, consider the compatibility equations†:
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−
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+
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+
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=
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−
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+
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+
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=

)

)z (
−
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+
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+
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. (3f)

†Refer to Problem Sheet 1 on “Kinematics”.
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The only compatibility equation that is considered is (3a). The other
three compatibility equations involving "zz are neglected.

Now, using (1a) and (1b) in (3a), we have, after rearranging
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2
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− �

)
2
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2)
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2
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. (4)

Adding and subtracting )
2
�xx

)x
2

and
)
2
�yy

)y
2

, we have

−(1 + �)
(

)
2
�xx
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2

+

)
2
�yy

)y
2 )

+ ∇
2

(�xx + �yy) = 2(1 + �)

)
2
�xy

)x)y

. (5)

Consider the equilibrium equations

)�xx

)x

+

)�xy

)y

+ Fx = 0, (6a)

)�xy

)x

+

)�yy

)y

+ Fy = 0, (6b)

Di�erentiating the �rst of the preceding equations with respect to x and
the second with respect to y , we have
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+

)
2
�xy

)x)y

= −
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)x

, (7a)
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2
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+
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2
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. (7b)

Adding these two equations, we obtain
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+
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)
2
�xy
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= −
(

)Fx

)x

+

)Fy

)y )
. (8)

Substituting (8) in (5), we have

∇
2

(�xx + �yy) = −(1 + �)
(

)Fx

)x

+

)Fy

)y )
. (9)
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We consider the equilibrium equations agains but assume the body forces
to be conservative in nature so that they are expressed as the gradient of
a scalar potential, i.e. Fx = −

)V

)x

and Fy = −

)V

)y

, so that

)�xx

)x

+

)�xy

)y

−

)V

)x

= 0, (10a)

)�xy

)x

+

)�yy

)y

−

)V

)y

= 0. (10b)

We de�ne the following:

�xx − V =

)
2
'

)y
2
, (11a)

�yy − V =

)
2
'

)x
2
, (11b)

�xy = −

)
2
'

)x)y

, (11c)

so that (10a) and (10b) are satis�ed identically.

Using the expressions of �xx and �yy in Eq. (9), we have
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+
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,

or, 2∇
2
V + ∇

2
(∇

2
') = (1 + �)∇

2
V ,

or, ∇
4
' = −(1 − �)∇

2
V (12)

Note that ∇4 is referred to as the biharmonic operator.

If the body forces vanish or if ∇2
V = 0 then we have

∇
4
' = 0. (13)

This equation is referred to as the biharmonic equation, and its solutions
are referred to as the biharmonic solutions.
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2 Plane Strain
Consider an in�nitely long cylindrical (prismatic) body

• If body forces and tractions on the lateral boundaries are indepen-
dent of the longitudinal axis variable, z, and have no z−component
then the deformation �eld can be taken as

u ≡ u(x, y), v ≡ v(x, y)

This deformation is referred to as a state of plane strain in the x −y
plane.

• All cross sections will have identical displacements and thus the
3D problem is reduced to a 2D problem.

Considering the preceding points, we have

"xx =

)u

)x

, "yy =

)v

)y

, "xy =

1

2 (

)u

)y

+

)v

)x )
,

"zz = "zx = "yz = 0.

The only compatibility equation that does not reduce to a 0 = 0 form is

)
2
"xx

)y
2
+

)
2
"yy

)x
2

= 2

)
2
"xy

)x)y

. (14)

Considering the constitutive equation for a linear, elastic, isotropic ma-
terial we have

"xx =

1

E
[�xx − � (�yy + �zz)] , (15a)

"yy =

1

E
[�yy − � (�zz + �xx )] , (15b)

"zz =

1

E
[�zz − � (�xx + �yy)] ⟹ �zz = � (�xx + �yy) , (15c)

"xy =

1 + �

E

�xy , (15d)

�yz = �zx = 0 (Since "yz = "zx = 0) (15e)
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Note that unlike the plane stress case, in the plane strain case we have
�zz ≠ 0.

Substituting the expression of �zz in the expressions for "xx and "yy , we
have

"xx =

1 + �

E
[(1 − �)�xx − ��yy] , (16a)

"yy =

1 + �

E
[(1 − �)�yy − ��xx] . (16b)

We next use these expressions for "xx and "yy (from Eq. (16)(a) and (b)) as
well as for "xy (from Eq. (15)(c)) in the compatibility equation, Eq. (14),
to obtain

1 + �

E

)
2

)y
2
[(1 − �)�xx − ��yy] +

1 + �

E

)
2

)x
2
[(1 − �)�yy − ��xx] = 2

1 + �

E

)
2
�xy

)x)y

,

(17)

or, (1 − �)∇
2

(�xx + �yy) −

)
2
�xx

)x
2

−

)
2
�yy

)y
2

= 2

)
2
�xy

)x)y

. (18)

Considering the equilibrium equations, we have
)�xx

)x

+

)�xy

)y

+ Fx = 0 ⟹

)
2
�xx

)x
2

+

)
2
�xy

)x)y

+

)fx

)x

= 0, (19a)

)�xy

)x

+

)�yy

)y

+ Fy = 0 ⟹

)
2
�xy

)x)y

+

)
2
�yy

)y
2

+

)fy

)y

= 0. (19b)

Partially di�erentiating the �rst of the preceding equations with respect
to x and the second with respect to y, and adding them, we obtain

)
2
�xx

)x
2

+

)
2
�yy

)y
2

+ 2

)
2
�xy

)x)y

= −
(

)fx

)x

+

)fy

)y )
. (20)

Using Eq. (20) in Eq. (18), we obtain

(1 − �)∇
2

(�xx + �yy) = −
(

)fx

)x

+

)fy

)y )
. (21)
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Proceeding similarly as in the plane stress case we consider a conserva-
tive body force per unit volume, we set

�xx =

)
2
'

)y
2
+ V , (22a)

�yy =

)
2
'

)x
2
+ V , (22b)

�xy = −

)
2
'

)x)y

, (22c)

where V is a scalar potential such that fx = −

)V

)x

and fy = −
)V

)y
.

Using these expressions in Eq. (21), we have

(1 − �)∇
2

(

)
2
'

)y
2
+ V +

)
2
'

)x
2
+ V

)
= ∇

2
V ,

or, ∇
4
' = −

1 − 2�

1 − �

∇
2
V . (23)

Again, as in the plane stress case, if the body forces vanish or if ∇2
V = 0

then we have

∇
4
' = 0. (24)

Summary for plane stress and plane strain cases:

Plane stress: ∇
4
' = −(1 − �)∇

2
V , (25)

Plane strain: ∇
4
' = −

1 − 2�

1 − �

∇
2
V . (26)
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