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2D ErLasTIiCITY -1~

1 Plane stress

The salient features of a plane stress situation are:

Domain bounded by two parallel planes

Distance between two planes is small compared to other dimen-
sions

When referred to a rectangular Cartesian coordinate system, it is
usual to take the two planes to be represented by z = +h such that
the very small distance between the two planes is 2k, and the x - y
plane (denoting the mid-surface) is used to describe the problem.

The two planes z = h and z = —h are stress-free so that ¢,, = gy, =
oy, = 0 on each face.

It is expected that there will be very little variation in o,,, 0,,, and
o, through the thickness; hence, they are approximately taken as
zero throughout the entire domain.

Again because of the very small thickness, the non-zero stress
components will have little variation with z; they are approxi-
mately taken to be independent of z. Thus,

Oxx = Uxx(x’ J’)’ Oyy = ny(x’ y)’ Oxy = ny(x’ y)

There can be no body forces in the z-direction; this follows im-
mediately from the z-component of the mechanical equilibrium
equation.

From constitutive equation of a linear, elastic, isotropic solid, we have
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for the plane stress situation:

1
Exx = E (Uxx - Vo—yy) > (18.)
1
Eyy 7 (ay vaxx) , (1b)
€2z = ’ (O-xx + Uyy) (1C)
1+v
Exy = B Oy (1d)
&y, =1, (16)
£ = 0. (1f)

Adding (1a) and (1b) and substituting in (1c), we have

v

£ = 1oy (exx + gyy) . (2)

NOTE:
« Even though o,, = 0,, = 0y, = 0, we still have ¢, # 0.
« All strains are independent of z.
Now, consider the compatibility equations:
2 2 2
aa;;x ’ aajcyZy ) zjxi;;yz’ (3a)

82 82 - 82 g

9? szz / e
ﬁzz /§z8x (3¢)

azeé 38),{ 857(
Yoz ax< /éy 0z (3d)

9? &y _ 857{ 65},{ o€
Az0x ( By oz " 32/)’ G

Fe az( oo 24, %)

0x0y 0z ox

TRefer to Problem Sheet 1 on “Kinematics”.
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The only compatibility equation that is considered is (3a). The other

three compatibility equations involving ¢,, are neglected.

Now, using (1a) and (1b) in (3a), we have, after rearranging

9? 9* 9? 0* 21 + v) 00,y
V—+— | O+ | — -v— ) 0y, = 2(1 + v)—.
ox: ay*) " ox: ay*) Y dxdy

2

0
Adding and subtracting 7

0y
oxady

%o, 00
-(1+v) ( e + ayzy) + V2 (O'xx + Uyy) =2(1+v)

Consider the equilibrium equations

00xx 00y

+ +F =0,
ox ay
0 2}
&.,.&.'_Fy:O,
ox ay

(4)

©)

(6a)

(6b)

Differentiating the first of the preceding equations with respect to x and

the second with respect to y, we have

P0px 0y oF,
+—2 =X

ox?  0x9y ox

0y N oy, _9F,

dyox  9y: 9y’

Adding these two equations, we obtain

3 0xx . dayy . zazaxy __ (9 95 '
ax? ay? dxdy ax 9y

Substituting (8) in (5), we have

oF, OF
& (axx + O'yy) =-(1+v) ( + —y> .

ox  dy

(7a)

(7b)

(8)

)
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We consider the equilibrium equations agains but assume the body forces
to be conservative in nature so that they are expressed as the gradient of

o oV
a scalar potential, i.e. F, = -——— and F, = ———, so that
ox ay

d0yx 00y, IV
+ —-— =0,
ox ay ox
00y, 00y, dV
—_— + R . U —

= 0.
ox ay ady

We define the following:

_ Py
-k

_ ¢
-24

_ %
Ty = " oxdy’

so that (10a) and (10b) are satisfied identically.

Using the expressions of oy, and oy, in Eq. (9), we have

A e ¥ & %@
—_—+ — Vyr— |+ —+— V+—)=>0Q+v
ox?  9y? ay? ax?  9y? ox?

or, 2V*V +V*(V @) = (1 + v)V?V,
or, V¢ =-(1- V)WV

Note that V* is referred to as the biharmonic operator.

If the body forces vanish or if V*V = 0 then we have

Vi = 0.

(10a)

(10b)

(11a)

(11b)

(11¢)

o’V *V
) ox? + 8_y2
(12)
(13)

This equation is referred to as the biharmonic equation, and its solutions

are referred to as the biharmonic solutions.

).
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2 Plane Strain

Consider an infinitely long cylindrical (prismatic) body

« If body forces and tractions on the lateral boundaries are indepen-
dent of the longitudinal axis variable, z, and have no z-component
then the deformation field can be taken as

u=u(xy), v=uv(xy)

This deformation is referred to as a state of plane strain in the x -y
plane.

« All cross sections will have identical displacements and thus the
3D problem is reduced to a 2D problem.

Considering the preceding points, we have

du Jdvu 1 /0u oJv
& = £ = £ = — — +t— 5
ToaxT Y eyt Y 2\ay  ox
0

€22 = Ex = &y

The only compatibility equation that does not reduce to a 0 = 0 form is

A P (14
ay? ox? dxady

Considering the constitutive equation for a linear, elastic, isotropic ma-
terial we have

Ex = % [0 = v (0yy + 022)] (15a)
€y = % [0}y = V(02 + 0] (15b)
o=z [0 v (00t )] = Gz v(onray), (159
ey = —— 0 (15d)
Gye = 0o = 0 (Since &, = £, = 0) (15¢)
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Note that unlike the plane stress case, in the plane strain case we have
0., 0.

Substituting the expression of o, in the expressions for &, and ¢, we
have

1+v

[(1 - V)O-xx - VO'yy] > (16&)

gxx

—_
+
<

Eyy [(1 - V)oy, - chxx] . (16b)

!

We next use these expressions for &, and ¢, (from Eq. (16)(a) and (b)) as
well as for ¢, (from Eq. (15)(c)) in the compatibility equation, Eq. (14),
to obtain

1+v 9 1+v 9 1+ vdio,
— |(1 = V)Oxx — VO | + ———— |(1 = V)O,) — VOxx| = z
E 9y’ (1= Vo = vory ] E ox? (1= oy = vore] E oxdy
(17)
0y 00 do.
or, (1= VWV (0xx+0yy) - —— - —2 =2—2. 18
(1= (o0 3,) = 7 = T =220 (18)
Considering the equilibrium equations, we have
d 9 oy 0 ofy
O'xx+ ny+Fx:0: Ox +ﬂ+i:0’ (19a)
ax oy ox?  Jdxdy Ix
d 0 9 9 d
99y %y g PO T Wy g

ax ay oxdy  dy* 9y

Partially differentiating the first of the preceding equations with respect
to x and the second with respect to y, and adding them, we obtain

2 2 2
aaxx+80yy+280'xy=_ 3_fx+<9_fy ) (20)
ox? ay? x93y ox dy
Using Eq. (20) in Eq. (18), we obtain
ofx . 9f;
1- V2 (0 ==+, 21
(1-v) (0' + O'yy> (8x + 8y> (21)
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Proceeding similarly as in the plane stress case we consider a conserva-

tive body force per unit volume, we set

82
Oxx = _(P + V,
oy?
)
o.yy = w + V,
)
Oxy = =% - >
oxdy
, . ov ov
where V is a scalar potential such that f, = T and f, = —5
x

Using these expressions in Eq. (21), we have

9* 9?
(l—v)V2<8(p+V+—q2)+V)=V2V,

y? ox
1-2v
or, V4(p = - V2V,
1-v

(22a)

(22b)

(22¢)

(23)

Again, as in the plane stress case, if the body forces vanish or if V2V = 0

then we have

Vi = 0.

Summary for plane stress and plane strain cases:

Plane stress: V¢ = —(1 - v)V?V,
1-2v
1-v

ViV

Plane strain: V¢ = -

(24)

(25)

(26)
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