

Preliminary Concepts

Configuration: The positions of all the material points of a mechanical system are together referred to as the configuration of the system.

Configuration Space: The set of all configurations that can be taken by a mechanical system is referred to as the configuration space.

Geometric Notation: Any point in the configuration space of a mechanical system is denoted by X. For example, if the mechanical system consists of just one particle, then X can be the position vector of the particle. ## Distance in Configuration Space: When a mechanical system goes from one configuration, say X_{σ} in configuration space, to another configuration, say X_{I} in

configuration space, the "distance" between \times_{o} and \times_{1} is taken to be the maximum of the displacement magnitudes of the individual particles making up the system.

Virtual Displacement

A virtual infinitesimal displacement of a system refers to a change in the configuration of the system as the result of any arbitrary infinitesimal change of the coordinates ... consistent with the <u>forces</u> and <u>constraints</u> imposed on the system at the given instant t. The displacement is called virtual to distinguish it from an actual displacement of the system occurring in a time interval dt, during which the forces and constraints may be changing.

Law of Kinetic Energy Vory Imp. : Work done (due to both end kind forces) = $\Delta K \uparrow$ $W = \int_{F}^{t} \vec{F} \cdot \vec{\nabla} dt \qquad \left[\vec{\nabla} = \frac{d\vec{\nabla}}{dt}\right]$ $= \int_{at}^{t_{1}} m \frac{d\vec{v}}{dt} \cdot \vec{v} dt$ $=\frac{1}{2}\int_{1}^{t_{1}}m\frac{d}{dt}(\vec{v}\cdot\vec{v})dt$ $=\frac{1}{2}\int_{1}^{t_{1}}md(|\vec{v}|^{2})=\Delta K$

Suppose $M'_3 < W'_1 < W'_2 \dots$ If we consider there values to be part of a set and we consider mechanical sys which do not posses infinite energy then this set will have a least upper bound W which, No matter, W' we choose, W' < W W is path-independent Fourie's megnality > W<0 $W \equiv W(X_{\sigma}, X_{I})$ $w' < w \leq 0$

+ Principle of Virtual Work (PVW)

$$W = SW + \frac{1}{2}S^{m}W + \cdots$$

For equilibrium: $SW = 0 \longrightarrow PVW$

$$SW = 0$$

$$\Rightarrow SW_{i} + SW_{e} = 0$$

$$\Rightarrow SW_{i} = -SW_{e}$$

 \exists

$$# \underline{DEFORMABLE Body}$$
Configuration of a deformable body $\rightarrow \delta \vec{u} = \delta u_i$
Convider a deformable body in eqb under the action of traction & body
forces
$$-\delta W_i = \delta W_e = \int_{V} \vec{s} \vec{b} \cdot \delta \vec{u} \, dV + \int_{S} \vec{T} \cdot \delta u \, dS$$

$$= \int_{V} S \vec{b}_i \delta u_i \, dV + \int_{S} \vec{T}_i \delta u_i \, dS$$
Use $T_i = \sigma_j i n_j$

$$\delta W_e = \int_{S} b_i \delta u_i \, dV + \int_{S} \sigma_j \delta u_i \, dS$$

 $SW_e = \int_{V} eb_i Su_i dV + \int_{S} (\sigma_i Su_i) n_j dS$ $= \int \mathcal{B}_{2} \mathcal{S}_{2} \mathcal{S}_{1} dV + \int \frac{\partial}{\partial \mathcal{R}_{1}} \left(\int_{\mathcal{I}} \mathcal{S}_{1} \mathcal{S}_{1} \right) dV$ $= \int Sb_i \delta u_i dv + \int \left(\frac{\partial \overline{J}_j}{\partial \overline{J}_j} \delta u_i + \frac{\partial \delta u_i}{\partial \overline{J}_j} \right) dv$ $= \int \left(S b_{i} + \frac{\partial J_{i}}{\partial x_{j}} \right) S w_{i} dV + \int J_{i} \frac{\partial S w_{i}}{\partial x_{j}} dV$

 $\int \sqrt{y_{1}} n_{j} dS$ S $= \int \sqrt{y_{1}} n dS$ $= \int \nabla \cdot \nabla dv$ $= \int_{-\infty}^{\infty} \frac{\nabla V_{j}}{\nabla r_{j}} dV$

We know that $Sb_i + \frac{\nabla \overline{D}_{ii}}{\nabla n_j} = 0$

 $SW_e = \int \frac{J_1}{J_2} \frac{\partial Su'_{\lambda}}{\partial u'_{j}} dV$ $= \int_{V} \int_{ji} \int_{i} \frac{\partial u_{i}}{\partial x_{j}} dV$ = $\int_{ji} \int_{i} \int_{i} \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} + \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{i}}{\partial x_{j}} \right) dV$ = $\int_{i} \int_{i} \int_{i} \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{i}}{\partial x_{j}} \right) dV$ $= \int \mathcal{O}_{j2} \mathcal{S} \mathcal{E}_{ij} dV + \frac{1}{2} \int \mathcal{O}_{j2} \mathcal{S} \left(\frac{\partial v_{v}}{\partial x_{j}} - \frac{\partial v_{j}}{\partial x_{v}} \right) dV$ $= \int_{Y} \sigma_{i} \delta \mathcal{E}_{ij} dV + \frac{1}{2} \int_{V} \sigma_{i} \delta \left(\frac{\partial u_{i}}{\partial v_{j}} \right) dV - \frac{1}{2} \int_{V} \sigma_{i} \delta \left(\frac{\partial u_{j}}{\partial v_{i}} \right) dV \left[\frac{\sigma_{i}}{2} - \frac{\sigma_{i}}{2} \right]$ $= \int \mathcal{G}_{i} \delta \mathcal{E}_{ij} dV + \frac{1}{2} \int \mathcal{G}_{PK} \delta \left(\frac{\partial u_{K}}{\partial \kappa_{P}} \right) dV - \frac{1}{2} \int \mathcal{G}_{PK} \delta \left(\frac{\partial u_{K}}{\partial \kappa_{P}} \right) dV$

$$-SW_{i} = SW_{e} = \int_{V} J_{i} SE_{i} dV$$

13 # FIRST LAW OF THERMODYNAMICS

$$W_{e} + Q = \Delta U + \Delta K$$

$$f$$

$$heat$$

$$termsfoored$$

$$fo the body$$

$$SW_{e} + SQ = S(\Delta U) + S(\Delta K)$$

$$SW_{e} + SQ = S(\Delta U) + S(\Delta K)$$

Adiabatic process:
$$SQ = 0$$

For a body in static equal: $DK = 0 \rightarrow S(DK) = 0$
 $SW_e = SU$
 $= SU$
 $SW_e = SU$
 $= S \int U_e dV = \int SU_e dV$
 $= S \int U_e dV = \int SU_e dV$

POTENTIAL ENERGY
Mcck 575.
$$\rightarrow$$
 convertative \leftarrow if the virtual work anoc.
with any closed path is zero
orderivative \rightarrow static sense \rightarrow virtual dapl. ence. at infinitational
conservative \rightarrow initial sense \rightarrow virtual displ. are not necessarily
ence. at infinitesimal
speed
We \rightarrow ind. of path \rightarrow dep. on terminal configurations, $W_e = -V_e(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $W_i \rightarrow$ ind. of path \rightarrow dep. on terminal configurations, $W_i = -V_i(X)$
 $H = -V_i(X)$

If both int. and ent. forces are conservative, total virtual nork : $W_e + W_i = W = -\Pi(x)$ = $-(V_e(x) + V_i(x))$

STRAIN ENERGY
Medanical system
$$\rightarrow$$
 elastic \leftarrow int. forces are conservative in the kinetic sense
 V_i (P.E.) \rightarrow Strain Energy
Define a strain energy density V_{i0} s.t. $V_i = \int V_{i0} dV$
Strain energy density will be a fin of the strain components
 $V_{i0} = V_{i0}(\varepsilon_{ij})$
 $\delta V_{i0} = \frac{\nabla V_{i0}}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij}$

NOTE: The strain energy of a system differs from the internal energy only by an additive constant $\delta V_{ivo} = \frac{\partial V_{ivo}}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij} - \delta U_{ivo} = \frac{\partial U_{o}}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij}$ $SV_{i0} \equiv SU_{o}$ Earlier $\rightarrow SWe = \int J.SE.dV$ $V \mapsto (*_2)$ Endier $\rightarrow SW_e = \int SU_0 dV$ $\therefore SW_e = \int_{V} \frac{\partial U_0}{\partial \varepsilon_{ij}} S\varepsilon_{ij} dV - (*)$ Comparing (*1) and (*2), we obtain $\begin{aligned}
 \nabla_{ij} &= \frac{\partial U_0}{\partial \varepsilon_{ij}} & \longrightarrow & \varepsilon_{ij} & \stackrel{?}{=} & \frac{\partial \overline{\Omega}}{\partial \overline{\Omega}_{ij}}
 \end{aligned}$

COMPLEMENTARY ENERGY

$$\begin{aligned}
\nabla_{y} &= \frac{\partial U_{0}}{\partial \hat{z}_{ij}} \quad \Rightarrow \quad \hat{z}_{ij} \stackrel{?}{=} \frac{\partial [?]}{\partial \sigma_{ij}} \\
\text{Complementary energy density:} \quad U_{0}' := -U_{0} + \sigma_{PY} \hat{z}_{PY} \\
T_{0} \quad \text{prove} : \quad \hat{z}_{ij} &= \frac{\partial U_{0}'}{\partial \sigma_{ij}} \\
\text{Proof :} \quad U_{0}' &= -U_{0} + \sigma_{PY} \hat{z}_{PY} \\
\Rightarrow \quad \frac{\partial U_{0}'}{\partial \sigma_{ij}} &= -\frac{\partial U_{0}}{\partial \sigma_{ij}} + \frac{\partial \sigma_{PY}}{\partial \sigma_{ij}} \hat{z}_{PY} + \sigma_{PY} \frac{\partial \hat{z}_{PY}}{\partial \sigma_{ij}} \\
&= -\frac{\partial U_{0}}{\partial \varepsilon_{PY}} \frac{\partial \hat{z}_{PY}}{\partial \sigma_{ij}} + \hat{z}_{Pi} \hat{z}_{PY} + \sigma_{PY} \frac{\partial \hat{z}_{PY}}{\partial \sigma_{ij}} \\
&= -\sigma_{PY} \frac{\partial z_{PY}}{\partial \sigma_{ij}} + \hat{z}_{ij} + \sigma_{PY} \frac{\partial \hat{z}_{PY}}{\partial \sigma_{ij}}
\end{aligned}$$

Hence, proved

Generalization of Castigliano's Theorem of Least Work

$$S\Psi = 0$$

 Ψ : Modified complementary energy
 $\Psi := U' - \int u_i T_i dS$
 S_2

Before the proof, a couple of things to role

$$\frac{\partial \nabla_{ij}}{\partial x_j} + gb_v = 0$$

 $\Rightarrow \frac{\partial \delta \nabla_{ij}}{\partial x_j} = 0 - (\#_1)$
 $= \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1} \delta \varepsilon_{e_2} + \delta \nabla_{e_2} \delta \varepsilon_{e_2} + \delta \nabla_{e_1$

 $SU' = \int SU'_{o} dV$ $= \int \mathcal{E}_{ij} S \mathcal{J}_{ij} dV \qquad (Using \#_2)$ $= \int \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \delta \sigma_{ij} dv$ $= \int \left(\frac{1}{2} \frac{\partial u_{i}}{\partial x_{j}} \delta \sigma_{ij} + \frac{1}{2} \frac{\partial u_{i}}{\partial x_{i}} \delta \sigma_{ij} \right) dv$ $= \int \frac{\partial u_i}{\partial u_j} \delta \mathcal{T}_{ij} dV$ $= \int \frac{\partial}{\partial t_{j}} \left(u_{i} \delta \sigma_{ij} \right) dV - \int \frac{u_{i}}{\nabla t_{i}} \frac{\partial \delta \sigma_{ij}}{\partial t_{j}} dV = \int \frac{u_{i}}{\nabla t_{i}} \frac{\partial \delta \sigma_{ij}}{\partial t_{j}} dV = \int \frac{u_{i}}{\nabla t_{i}} \frac{\partial \delta \sigma_{ij}}{\partial t_{j}} dV$

$$\begin{split} \delta U' &= \int \frac{\sigma}{2\pi j} \left(u_{1} \delta \sigma_{y} \right) dV \\ &= \int u_{1} \delta \sigma_{ij} n_{j} dS \\ &= \int u_{1} \delta \left(\sigma_{j} n_{j} \right) dS \qquad \left[\delta n_{j} = 0 ; \text{ geondry does not change} \right] \\ &= \int u_{1} \delta T_{i} dS \qquad \left[U_{\text{bing}} T_{1} = \sigma_{y} n_{j} \right] \\ &= \int u_{1} \delta T_{i} dS \qquad \left[U_{\text{bing}} T_{1} = \sigma_{y} n_{j} \right] \\ &= \int u_{1} \delta T_{i} dS \qquad + \int u_{1} \delta T_{i} dS \\ &= \int u_{1} \delta T_{i} dS \qquad + \int u_{i} \delta T_{i} dS \\ &= \int u_{i} \delta T_{i} dS \qquad = \int u_{i} \delta T_{i} dS \qquad$$

$$SU' = \int u_{1} ST_{2} dS$$

$$= \int S(u_{1}T_{1}) dS \qquad [U_{1}u_{2}u_{1}] fut that u_{1} is specified even S_{2}, so Su_{1}=0 over S_{2}]$$

$$= S\int u_{1}T_{1} dS$$

$$= S\int u_{1}T_{1} dS = 0$$

$$SU' - S\int u_{1}T_{1} dS = 0$$

$$\Rightarrow S\left(U' - \int_{S_{2}} u_{1}T_{1} dS\right) = 0$$

$$\Rightarrow S\left(U' - \int_{S_{2}} u_{1}T_{1} dS\right) = 0$$

$$\Rightarrow SIU = 0 \qquad \text{Hence, proved}$$

Castigliano's Theorem on Deflections $\overline{u}_{F} = \frac{\partial U'}{\partial F}$ Theorem of the mean for integrals $\overline{Poc} \cdot \text{Theorem} : f(\pi, \gamma) \text{ and } g(\pi, \gamma)$ $\int f(\pi, \gamma) g(\pi, \gamma) dA = K \int g(\pi, \gamma) dA$ where K is some rahre of f(x, y) within A provided g(a, p) does not change in sign in A.

$$SU' = \int_{S} u_{v} ST_{v} dS$$

$$= \int_{S_{0}} u_{v} ST_{v} dS + \int_{S} u_{v} ST_{v} dS + \int_{S} u_{v} ST_{v} dS$$

$$= \int_{S_{0}} u_{v} ST_{v} dS$$

$$= \int_{S_{0}} u_{v} ST_{v} dS$$

$$Our the little region S_{0}, we do not expect ST_{v} to charge sgn$$

$$Our the little region S_{0}, we do not expect ST_{v} to charge sgn$$

$$SU' = \overline{u}_{v} \int_{S} ST_{v} dS, \quad \text{where } \overline{u}_{v} \text{ are the components of the deplacement}$$

$$SU' = \overline{u}_{v} \int_{S_{0}} ST_{v} dS, \quad \text{where } \overline{u}_{v} \text{ are the components of the deplacement}$$

For this point force F., $F_i = \int T_i dS$ $= SF_{i} = S\int_{S}T_{i}dS = \int_{S}ST_{i}dS$ $SU' = \bar{u}_i SF_i$ $SU' = u_i^{SF_i}$ $SU' = u_i^{SF_i}$ $SU' = u_i^{SF}$ $SU' = u_i^{SF}$ $= u_F^{SF} - (\#_3)$ $SU' = \frac{2U}{2F}SF - (#4)$

<u>v=k)</u>

DU DEPG

Comparing
$$(\#_3)$$
 and $(\#_4)$
 $\overline{u}_F = \frac{\Im U'}{\Im F}$
 $\overline{J}_{\text{Ence, proved}}$

For tineur, elastic materials
$$U' \equiv U$$

 $\overline{u}_F = \frac{20U}{2F}$ (Not true for non-tinear material
behaviour!)

Prelude to Problems

 $\overline{u}_{\rm F} = \frac{\partial U'}{\partial F}$ For linear clastic materials: U'= U $U = \int U_0 dV$ $U_{r} = \left(\frac{1}{2}\pi + G\right) \tilde{T}_{e} - 2G \tilde{I}_{e}$ To be ascussed later $= \frac{1}{2F} \left[I_1^{\nu} - 2(1+S) I_2 \right]$ For this ods under bending, JI is dominant. $U_0 = \frac{1}{2F} \sigma_{\eta}^{\nu}$

 $\bigcup = \int U_{p} dV = \int \frac{\sigma^{\gamma}}{2E} dV$ $\sigma = \frac{M_{\star}}{T}$ $=\frac{1}{\mathcal{E}}\int_{\mathcal{T}}^{\mathcal{L}}\int_{\mathcal{T}}\frac{\tilde{M}}{\tilde{T}}\frac{dA}{T}dA dre$ $= \frac{1}{2E} \int \frac{M}{T^{2}} \int \frac{M}{T} dA dx$ $= \frac{1}{2E} \int \frac{M}{T} dx = \int \frac{M}{2ET} dx$

Now, for linear dastic materials:
If
$$U_0$$
 just depended on \overline{II}_c area breasly, then $\overline{C_j} = \frac{\overline{D}U_0}{\overline{D}_c^2j}$ would
lead to a dependence of \overline{C}_{ij} on quadratic terms involving the strain
components because \overline{II}_c involves calic terms.
 $U_0 = U_0(\overline{I}_c, \overline{I}_c)$
If U_0 depended to \overline{I}_c breasly then $\overline{C}_{ij} = \frac{\overline{D}U_0}{\overline{D}_c^2ij}$ would produce a
constant term.
Low Represents a non-zero value of etress even in the deserve of
deformations
Allow possible physically, we will not consider such strations.
So, U_0 should not depend on \overline{I}_c breasly.

I should depend on terms quadratic in the strain components.
Example if U, depends on T'e and I e (linearly)

$$U = A I'e + B Ie$$

 $T_{ij} = \frac{2}{2\epsilon_{ij}} (A I'e + B Ie)$
 \vdots
 \vdots
 $T_{ij} = \frac{2}{2\epsilon_{ij}} (A I'e + B Ie)$
 $T_{ij} = \frac{2}{2\epsilon_{ij}} (A I'e + B Ie)$
 \vdots
 \vdots
 \vdots
 \vdots
 $T_{ij} = \sum_{i=1}^{n} (A I'e + B Ie)$
 $i = \frac{2}{2\epsilon_{ij}} (A I'e + B Ie)$
 \vdots
 \vdots
 \vdots
 \vdots
 \vdots
 \vdots
 $f_{ij} = 2\epsilon_{ij} + 2\epsilon_{ij}$
 $i = 2\epsilon_{ij} + 2\epsilon_{ij}$

 $M - \frac{P}{2}x + P\left(z - \frac{L}{2}\right) + \left(z - \frac{L}{2}\right) = 0$ $M - \frac{P}{2}x + P \langle x - \frac{L}{2} \rangle = 0$ <>> Macanlay bracket Signarity function $\overline{\mathcal{U}}_{p} = \frac{\partial}{\partial P} \int_{2EI}^{L} \frac{M}{2EI} dr = \int_{0}^{L} \frac{M}{EI} \frac{\partial M}{\partial P} dr$

(x-a)

Cordlary to Cartigliand's theorem on deflections
Just like
$$\overline{u}_{F} = \frac{\overline{D}U'}{\overline{D}F}$$
, we have for slope (9)
 $\Theta = \frac{\overline{D}U'}{\overline{D}M_{0}}$
For Hocken materials: $\Theta = \frac{\overline{D}U}{\overline{D}M_{0}}$ [just like $\overline{u}_{F} = \frac{\overline{D}U}{\overline{D}F}$]
For beam problems: $\overline{u}_{F} = \frac{\overline{D}}{\overline{D}F}\int_{\overline{D}EF}^{M_{0}} dm = \int_{0}^{1} \frac{M}{EI}\frac{\overline{D}M}{\overline{D}F} dx$
 $\Theta = \frac{\overline{D}}{\overline{D}M_{0}}\int_{\overline{D}EF}^{M_{0}} drc = \int_{0}^{1} \frac{M}{EI}\frac{\overline{D}M}{\overline{D}M_{0}} dx$

Reaction force at end A? 00 Do not use this method for statically determinate problems $\overrightarrow{D} = \left[R \frac{x^3}{3} - W \frac{x^4}{8} \right]$ $M - Rx + wx = D \Rightarrow M = Rx - w = \frac{x^2}{2}$ $\neq 0 = R \frac{L^3}{3} - W \frac{H}{8}$ $D = \int_{0}^{1} \frac{M}{ET} \frac{\partial M}{\partial R} dr$ $\Rightarrow R = \frac{3NL}{8}$ $\Rightarrow 0 = \int \frac{\left(R - w \frac{2}{2}\right)}{\left(R - w \frac{2}{2}\right)} (x) dx$ $\Rightarrow 0 = \int \frac{(Rx^2 - Wx^3/2)}{FT} dx$

Determine reactions (both forces and moments)

$$M - M_{0} - R_{0} \times + P(x-a)H(x-a) = 0$$

$$M - M_{0} - R_{0} \times + P(x-a)H(x-a) = 0$$

$$R_{0} = \int_{0}^{L} \frac{M}{ET} \frac{\partial M}{\partial R_{0}} \frac{d}{R_{0}} + R_{0} = \frac{P(L-a)(L+2a)}{L^{3}}$$

$$H_{0} = \int_{0}^{L} \frac{M}{ET} \frac{\partial M}{\partial R_{0}} \frac{d}{R_{0}} + M_{0} = -\frac{P(L-a)a}{L^{2}}$$

For linear $d = \frac{\partial U}{\partial P} = \frac{\partial}{\partial P} \int_{0}^{1} \frac{M^{2}}{2ET} dre = \int_{0}^{1} \frac{M}{ET} \frac{\partial M}{\partial P} dre \rightarrow X$ matrial behavior Not valid here because of non-linears miteorial behaviour $M = \int_{-1}^{1} y \, \mathcal{T}_{zx} \, b \, dy$ [MRXET] E = <u>Al</u> = <u>H</u> R c madine of curreture = Jrykers bdy $\frac{Kb}{R^{3}} \int_{-W_{2}}^{W_{2}} \frac{4}{2} dy = \frac{Kb}{R^{3}} \left[\frac{47^{3}}{7^{3}} \right]_{-W_{2}}^{W_{2}} \left[\frac{4}{2} \right]_{-(-\frac{1}{2})}^{W_{2}} = \frac{3Kb}{7R^{3}} \left[\frac{4}{2} \right]_{-(-\frac{1}{2})}^{W_{2}} =$ $=\int_{-W}^{V_2} \gamma \kappa \left(\frac{\gamma}{R}\right)^{V_3} b dy$

For deflection, $d = \frac{2U'}{2P} = \frac{2}{2P} \int f dx$ $= \int_{0}^{1} \frac{\partial f}{\partial M} \frac{\partial M}{\partial P} \frac{\partial F}{\partial M} \frac{\partial F}{\partial P}$ Our $f(m) = \int_{R}^{M} \frac{dm}{R} \Rightarrow \frac{\sigma f}{\sigma M} = \frac{1}{R}$ $\int_{R} \frac{1}{R} \frac{\partial M}{\partial P} dr dr$ o But we have earlier obtained $M^3 = \frac{C}{R}$

 $d = \int_{0}^{L} \frac{M^{3}}{C} \frac{\partial M}{\partial P} dx$ $= 2 \int_{0}^{L/2} \frac{M^{3}}{C} \frac{\partial M}{\partial P} dx$ = 0

 $M - \frac{P}{z}z = 0$ $\Rightarrow M = \frac{P}{2}z$

Total strain energy:

$$U = \int_{\frac{1}{2}EI}^{L_{1}} \frac{M^{2}}{2EI} ds_{1} + \int_{\frac{1}{2}EI}^{L_{1}} \frac{M^{2}}{2EI} + \frac{T^{2}}{2GJ} ds_{2}$$
for BC
for BC
$$d_{A} = \frac{\partial U}{\partial P} = \int_{0}^{L_{1}} \frac{M}{EI} \frac{\partial M}{\partial P} ds_{1} + \int_{0}^{L_{2}} \frac{M}{EI} \frac{\partial M}{\partial P} ds_{2} + \int_{0}^{L_{2}} \frac{T}{GJ} \frac{\partial T}{\partial P} ds_{2}$$

$$= \frac{PL_{1}^{3}}{3EI} + \frac{PL_{2}^{3}}{3EI} + \frac{PL_{1}^{2}L_{2}}{GJ}$$

$$M - PR \sin(\theta - \frac{\pi}{2}) H (\theta - \frac{\pi}{2}) \\ - Q \left[R - R \cos(\theta - \frac{\pi}{2}) H (\theta - \frac{\pi}{2}) \right] = 0$$

Horizontal deflection:

$$d_{H} = \frac{\partial U}{\partial Q} \begin{bmatrix} = \frac{\partial}{\partial Q} \int \frac{M^{2}}{2EI} R d\theta \\ Q = 0 \end{bmatrix} = \int_{0}^{T} \frac{M}{EI} \frac{\partial M}{\partial Q} R d\theta \\ = \int_{0}^{T} \frac{M}{EI} \frac{\partial M}{\partial Q} R d\theta \\ Q = 0 \\ = \frac{PR^{3}}{2EI}$$