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1 Preliminary Concepts

Configuration The positions of all the material points of a me-

chanical system are together referred to as the

con�guration of the system.

Configuration
space

The set of all con�gurations that can be taken by

a mechanical system is referred to as the con�g-

uration space.

Geometric
notation

Any point in the con�guration space of a me-

chanical system is denoted by X . For example, if

the mechanical system consists of just one parti-

cle, then X can be the position vector of the par-

ticle.

Distance in
configuration

space

When a mechanical system goes from one con-

�guration (say, point X0 in con�guration space)

to another con�guration (say, point X1 in con�g-

uration space), the “distance” between X0 and X1
is taken to be the maximum of the displacement

magnitudes of the individual particles making up

the system.

∗
Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in

†
The development of the theory mostly follows the classic “Energy Methods in Ap-

plied Mechanics” by Henry L. Langhaar (Dover Publications)
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Path in
configuration

space

The con�guration X of a mechanical system is

said to be a function of a real variable t̄ in the

interval a ≤ t̄ ≤ b if, to each value of t̄ in this

interval, there exists a single con�guration; thus

X ≡ X(t̄), t̄ ∈ [a, b]. The function so formed

represents a path in con�guration space.

Note that not every path is admissible because

the constraints of the mechanical system have to

be respected.

Important: The variable t̄ is not necessarily

time. If t̄ is indeed time, then X ≡ X(t) is called

the “motion” of the system.

2 Virtual Displacement
According to the classic book by Goldstein et al.

‡
:

A virtual (in�nitesimal) displacement of a system refers to a
change in the con�guration of the system as the result of any
arbitrary in�nitesimal change of the coordinates ... consistent
with the forces and constraints imposed on the system at the
given instant t . The displacement is called virtual to distin-
guish it from an actual displacement of the system occurring
in a time interval dt , during which the forces and constraints
may be changing.

In terms of the preliminary concepts, the virtual displacement can be

realized by the following:

• Freeze time �rst.

• Consider paths in con�guration space corresponding to some real

variable t ′ (which is strictly not the time t).

• Restrict to paths which are admissible i.e. respect the constraints

of the system.

‡
H. Goldstein, C. P. Poole and J. Safko, Classical Mechanics, 3rd ed., Pearson
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Figure 1: Virtual displacement vs. Real Displacement

These can be understood by considering the simplest of mechanical sys-

tems: a single particle travelling along the x-direction as depicted in

Fig. 1. The path taken by the particle corresponding to time (t), i.e. the

motion of the particle is depicted in red. A small increment in time, dt
corresponds to a small real displacement dx . We freeze time at t = t0 and

consider the virtual path (depicted in blue) in a plane parallel to the t ′−x
plane. We note that x(t ′ = 0) = x(t = t0).

The virtual displacement of the particle at any t ′ is given by

u = x(t ′) − x(t ′0)
= x(t0 + t ′ − t0) − x(t ′0)

= x(t ′0) + (t
′ − t ′0)

dx
dt ′

||||t′=t′0
+
1
2
(t ′ − t ′0)

2 dx
dt ′

||||t′=t′0
+ ⋯ − x(t ′0)

= (t ′ − t ′0)
dx
dt ′

||||t′=t′0
+
1
2
(t ′ − t ′0)

2 dx
dt ′

||||t′=t′0
+ ⋯

= �u +
1
2
�2u + ⋯ (Written using the � operator as in the language of calculus of variations)

Note that when t ′ → t ′0, the displacement u is well approximated by

just the �rst term on the R.H.S. i.e. �u only. Of course the virtual dis-

placement corresponding to such a small increment in t ′ is also small.

This virtual in�nitesimal displacement (�u) is also referred to as the �rst

variation of the displacement. In fact, the � operator
§

can be read as “the

§
NOT to be confused with the Kronecker delta - they are completely separate things!
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�rst variation of”.

3 Law of kinetic energy
The work of all forces (external AND internal) that act on a mechanical
system equals the increase of kinetic energy of the system.

W = ∫
t1

t0
F ⋅ v dt

= ∫
t1

t0
m
dv
dt

⋅ vdt

=
1
2 ∫

t1

t0
m
d
dt
(v ⋅ v) dt

= ΔT . (1)

This law is restricted to inertial reference frames. ΔT changes value from

one such reference frame to another. Therefore, W also changes value

with change of reference frame.

When a mechanical system begins to move it is gaining kinetic energy.

So by the law of kinetic energy, the external and internal forces must be

doing net positive work. Therefore, the system does not move sponta-

neously unless it can experience some arbitrarily small displacement for

which the net work of all forces is positive.

Spontaneous movement is impossible if this work done is less or equal to

zero for all small displacements. These small displacements are not nec-

essarily realized, so they are virtual displacements. Likewise the work

done is virtual work.

4 Fourier’s inequality
Amotionless mechanical system remains at rest if the virtual work done by
all external and internal forces is less than or equal to zero for every small
virtual displacement that is consistent with the constraints.
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Example: Brick resting on a table. If the brick slides slightly, friction

performs negative work. If it tilts slightly, gravity performs negative

work. If it executes a small hop no work is done. So the virtual work is

less than or equal to zero for each case.

Very important: Fourier’s inequality is su�cient but not necessary for

equilibrium.

Example: A ball that is just balanced on a dome is in a state of equi-

librium. But when rolled slightly gravity performs positive work. So

despite the virtual work not being less than or equal to zero, the ball

is in equilibrium. The equilibrium is not a stable one, but that is a dif-

ferent story! The problem with Fourier’s inequaility is that it does not

take cognizance of the fact that the virtual work, although positive, is

an in�nitesimal of higher order than the virtual displacement of the ball.

revised to require that the virtual work is stationary in the sense that it

is an in�nitesimal of higher order than the displacment.

Thus, it would be very desirable to have some condition which is both

necessary and su�cient for equilibrium - that brings us to the principle

of virtual work.

5 An important aside
Before starting the discussion on the principle of virtual work, note some-

thing very important:

In going from one con�guration X0 to another con�guration X1, there

can be a number of di�erent paths and associated with each such path

there will be a virtual work. Thus, if we denote the virtual work corre-

sponding to a particular choice of path as W ′
then there can be many

such W ′
. Each such W ′

will be path-dependent. Now, consider the set

of all such W ′
. Unless the mechanical system under consideration pos-

sesses unlimited energy, this set ofW ′
will have a least upper bound, say

W . That is, W is the smallest value such that each W ′ ≤ W . This least

upper boundW is something uniquely identi�ed with the con�gurations

X0 and X1, and it does not depend on any particular path between the

con�gurations. Thus, W is path-independent; in other words it is simply
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a function of the two con�gurations X0 and X1. It is therefore referred

to as the work function and denoted completely as W(X0, X1).

Now, if W ′ ≤ 0 for any path that goes from a con�guration X0 to a

neighbouring con�guration X , then it must also be true that W(X0, X) ≤
0. The reverse will also be true. Thus, Fourier’s inequality may be recast

in terms of the work function as:

Fourier’s inequality: The con�gurationX0 is in equilibrium if

W(X0, X) ≤ 0 for all con�gurations X in the neighbourhood

of X0.

As already mentioned, this inequality is only a su�cient but not a neces-

sary condition for equilibrium. The necessary condition is given by the

principle of virtual work.

6 Principle of virtual work
If the forces do not change discontinuously, then the necessary and su�-

cient condition for a point X0 in con�guration space to be in equilibrium

is lim
s→0

W
s
= 0, where s is the distance

¶
between X0 and another point X

in the neighbourhood of X0 and W is the work function associated with

the two con�guration points X0 and X .

If the variational form of W exists, i.e. if W can be expressed as

W = �W +
1
2!
�2W + O(s3), (2)

then lim
s→0

W
s
= 0 is equivalent to �W = 0. This form is the conventionally

written form of the principle of virtual work. We are not going to delve

into how the variational form is equivalent to the limit form. For the

purposes of this course, it will be enough to use the fact that for equi-

librium, the �rst variation of the total work (due to both external and

internal forces) must be zero. If the total work is decomposed into the

work due to external forces We and that due to internal forces Wi then

¶
For the meaning of “distance", refer to the preliminary concepts in §1
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�W = 0 gives us

−�Wi = �We . (3)

7 Deformable Body
The con�guration of a deformable body is de�ned by the displacement

vector �eld. The deformable body is carried from one con�guration to

another “neighbouring” con�guration through (�u1, �u2, �u3) which are

the components of �u.

Now, consider the body to be in equilibrium under the action of traction

forces and body forces. Then, by the principle of virtual work, we have

−�Wi = �We = ∫
V
�b ⋅ �u dV + ∫

S
T ⋅ �u dS

≡ ∫
V
�bi�ui dV + ∫

S
Ti�ui dS.

Referring to the chapter “Analysis of Stress” under the section “The
state of stress at a point”, we have

Ti = �jinj ,

where �ji is the stress and nj is the unit normal vector to the plane which

is tangent to the surface at the point we are considering the traction. We

then have

�We = ∫
V
�bi�ui dV + ∫

S
�jinj�ui dS

= ∫
V
�bi�ui dV + ∫

V

)
)xj

(�ji�ui) dV (Using Gauss divergence theorem)

= ∫
V
�bi�ui dV + ∫

V [
)�ji
)xj

�ui + �ji
)�ui
)xj ]

dV

= ∫
V (�bi +

)�ji
)xj )

�ui dV + ∫
V
�ji
)�ui
)xj

dV
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Again referring to the chapter “Analysis of Stress” under the section

“Cauchy’s equation of motion and mechanical equilibrium equa-
tions”, we know that for a body in equilibrium we have

�bi +
)�ji
)xj

≡ �b + ∇ ⋅ � = 0.

Therefore,

�We = ∫
V
�ji
)�ui
)xj

dV

= ∫
V
�ji�

)ui
)xj

dV (Interchanging the order of � and partial derivatives)

= ∫
V
�ji� [

1
2 (

)ui
)xj

+
)uj
)xi)

+
1
2 (

)ui
)xj

−
)uj
)xi)] dV

= ∫
V
�ji�"ij dV +

1
2 ∫

V (�ji
)ui
)xj

− �ji
)uj
)xi)

dV

= ∫
V
�ji�"ij dV +

1
2 ∫

V (�ji
)ui
)xj

− �ij
)uj
)xi)

dV (Using �ji = �ij)

In the second integral we note that the indices are i and j are repeated

in both the terms. So they can be easily substituted by something else.

In the �rst term we substitute i by k and j by p. In the second term, we

substitute i by p and j by k, to obtain

�We = ∫
V
�ji�"ij dV +

1
2 ∫

V (�pk
)uk
)xp

− �pk
)uk
)xp)

dV

= ∫
V
�ji�"ij dV (4)

8 First law of thermodynamics
According to the �rst law of thermodynamics, we have

�We + �Q = �U + �T ,

whereQ is the heat transferred into the body andU is the internal energy

of the body.
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For an adiabatic process: Q = 0.

For a body in equilibrium: �T = 0.

Therefore, we obtain �We = �U . If we de�ne U0 as the internal energy

density per unit volume, then we have

�We = �U = � ∫
V
U0 dV = ∫

V
�U0 dV . (5)

9 Potential energy
A mechanical system is said to be conservative if the virtual work corre-

sponding to a virtual displacement of the system completely around any

closed path is zero. For virtual displacements executed with in�nitesi-

mal speed, the system is conservative in the static sense. For virtual dis-

placements that are not necessarily executed with in�nitesimal speed,

the system is conservative in the kinetic sense.

If the virtual work, We , associated with the external forces is indepen-

dent of path and depends only on the terminal con�gurations then the

external forces are said to be conservative. Because of the sole depen-

dence on terminal con�gurations We can be expressed as a point func-

tion: We = −Ve(X ). The initial con�guration is not mentioned because

it a�ects only an additive constant. This point function Ve is called the

potential energy of the external forces.

Similarly, if the virtual work, Wi , associated with the internal forces is

independent of path, then the internal forces are said to be conservative

and Wi can be expressed as a point function: Wi = −Vi(X ). Here, Vi is

called the potential energy of internal forces.

If both internal and external forces are conservative then the total virtual

work W = We + Wi can be expressed as a point function: W = −Π(X) =
−(Ve(X ) + Vi(X )).

10 Strain energy
A mechanical system is said to be elastic if the internal forces are conser-

vative in the kinetic sense. Then Vi(X ), the potential energy of internal
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forces is called the strain energy. We can also de�ne a strain energy

density (Vi0) as the strain energy per unit volume. The strain energy

density depends on the strain components: Vi0 ≡ Vi0("ij). Thus,

�Vi0 =
)Vi0
)"ij

�"ij . (6)

The strain energy of a system di�ers from the internal energy only by

an additive constant. Since during any deformation process we track

changes of internal energy this additive constant is irrelevant. So, Vi ≡ U
and Vi0 ≡ U0. Because the strain energy di�ers from the internal energy

only by an additive constant, from Eq. (6), we have

�U0 =
)U0
)"ij

�"ij . (7)

Similarly, we rewrite Eq. (5)

�We = ∫
V
�U0 dV (8)

but reinterpret it as a relation between work due to external forces and

strain energy.

Combining Eq. (7) and Eq. (8), we have

�We = ∫
V

)U0
)"ij

�"ij dV . (9)

Finally, comparing Eq. (4) with Eq. (9), we obtain

�ij =
)U0
)"ij

. (10)

11 Complementary Energy
We have found that

�ij =
)U0
)"ij
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We can �nd a related expression where on the L.H.S., instead of �ij we

have "ij , and where on the R.H.S., instead of the derivative w.r.t. "ij , we

have a derivative w.r.t. �ij . In order to �nd such an expression, we intro-

duce something called the compelementary energy density

U ′
0 = −U0 + �pq"pq. (11)

To Prove: "ij =
)U ′

0

)�ij
Proof: Di�erentiating both sides of Eq. (11), we have

)U ′
0

)�ij
= −

)U0
)�ij

+ �pi�qj"pq + �pq
)"pq
)�ij

= −
)U0
)"pq

)"pq
)�ij

+ "ij + �pq
)"pq
)�ij

= −�pq
)"pq
)�ij

+ "ij + �pq
)"pq
)�ij

= "ij (12)

The volume integral of the complementary energy density function U ′
0

is de�ned as the complementary energy of the body; thus

U ′ = ∫
V
U ′
0 dV .

12 Generalization of Castigliano’s theorem
of least work

Despite the name, this theorem does not directly deal with any “work”

nor there is anything that directly takes on a “least” or “minimum” value.

Instead, it deals with a modi�ed form of the complementary energy (to

be represented by Ψ) and expresses an extremum condition.

Theorem: Consider a body whose boundary S consists of two parts: a
part S1 on which the traction vector is given, and a part S2 on which the
displacement vector is given. Then of all states of stress that satisfy the
mechanical equilibrium equations and the boundary conditions on S1, the
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state of stress which represents the actual equilibrium corresponds to an
extremum of the modi�ed complementary energy, thus,

�Ψ = 0 ,

where the modi�ed complementary energy is given by

Ψ = U ′ − ∫
S2
uiTi dS

Proof: Before launching into the proof, we need to show a couple of

things:

First, for the stress state that satis�es the mechanical equilibrium equa-

tions, we have

)�ij
)xj

+ �bi = 0.

Taking the variation of this equation, we have

)��ij
)xj

= 0, (13)

where we use the fact that since the body forces �bi are given to us, their

variations are zero.

Second, considering the de�nition of the complementary energy density

in Eq. (11), and taking the variation, we have

�U ′
0 = −�U0 + ��pq"pq + �pq�"pq
= −�ij�"ij + ��pq"pq + �pq�"pq
= ��pq"pq (14)
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We now launch into the actual proof:

�U ′ = ∫
V
�U ′

0 dV (15)

= ∫
V
"ij��ij dV (Using Eq. (14))

= ∫
V

1
2 (

)ui
)xj

+
)uj
)xi)

��ij dV

= ∫
V

)ui
)xj

��ij dV (Using �ij = �ji)

= ∫
V

)
)xj

(ui��ij) dV − ∫
V
ui
)��ij
)xj

dV

= ∫
S
ui��ijnj dS (Using Gauss divergence theorem in the 1st integral above, and Eq. (13) in the 2nd)

= ∫
S2
ui��ijnj dS + ∫

S1
ui��ijnj dS

= ∫
S2
ui� (�ijnj) dS + ∫

S1
ui� (�ijnj) dS (Geometry does not change so that �nj = 0)

= ∫
S1
ui�Ti dS + ∫

S2
ui�Ti dS

= ∫
S2
ui�Ti dS (Tractions are speci�ed on S1; so �Ti = 0) (16)

The modi�ed complementary energy is de�ned as Ψ = U ′ − ∫
S2
uiTi dS.

Taking the �rst variation, we have

�Ψ = �U ′ − ∫
S2
(Ti�ui + ui�Ti) dS

= �U ′ − ∫
S2
ui�Ti dS (Displacements are speci�ed on S2; so �ui = 0)

Finally, using Eq. (16), we can conclude that last line above should be

zero. Therefore, we obtain

�Ψ = 0 Q.E.D (17)
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13 Castigliano’s theorem on de�ections
Theorem: If an elastic body is mounted in such a way that rigid body
displacements are prevented and the body is in equilibrium under the action
of surface tractions, body forces, and “point forces”, then at the point of
application of such a “point force”, say F ≡ Fi , the displacement component
ūF along the direction of F is given by

ūF =
)U ′

)F

Proof: Let F1, F2, . . . denote the “point forces”. Each of these “point

forces” is considered to be distributed on a small spot of surface.

The complementary energy U ′
depends on F1, F2, . . . as well as on surface

tractions and body forces.

The boundary S is divided into S1 and S2. On S2, the displacement vector

is 0 because of constraints. Within S1, consider a small area S0 on which

a concentration of load is applied - it is this concentration of load which

is understood to result in the “point force”.

Consider a variation of the surface traction that vanishes in the region

of S1 that excludes S0. Then by Castigliano’s theorem of least work, we

have

�U ′ = ∫
S
ui�Ti dS

= ∫
S0
ui�Ti dS

According to the theorem of the mean for integrals if f (x, y) and '(x, y)
are continuous real functions in a region A of the (x, y) plane and '(x, y)
does not change sign in A then

∫
A
f (x, y)'(x, y) dA = K ∫

A
'(x, y) dA,

where K is the value of f (x, y) at some point in A.
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Since we may suppose Ti not to change within the little region S0, we

can conclude

�U ′ = ūi ∫
S0
�Ti dS,

where ūi are the components of the displacement vector ui at some point

within S0.

Now, for the “point force” vector Fi , we have

Fi = ∫
S0
Ti dS

or, �Fi = ∫
S0
�Ti dS.

Therefore, we have

�U ′ = ūi�Fi .

We consider the unit vector along Fi to be Ni so that Fi = NiF , which

gives us �Fi = Ni�F . Then, we have

�U ′ = ūiNi�F
= ūF�F ,

where ūF is the component of the displacement vector in the direction

of the “point force” Fi .

Furthermore, we have

�U ′ =
)U ′

)F
�F .

Therefore, we must have

ūF =
)U ′

)F
.

For Hookean materials, i.e. linear, elastic solid materials, the comple-

mentary energy is idential to the strain energy, i.e. U ′ = U , so that for

these materials

ūF =
)U
)F

(True only for Hookean materials)

This special case was what was derived by Castigliano himself.
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