Advanced Mechanics of Solids (ME60402) Mechanical Engineering
Spring Semester, 2021 II'T Kharagpur

CrAassicAL PLATE THEORY

We use the following kinematical hypothesis:
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using which we obtain from the strain-displacement relationships, the following:
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Since ¢y, and ¢, are zero, from Hooke’s law, it follows that o, and o, are also zero. Addi-
tionally, since ¢,, = 0, s0 0;, = V(0 + 0y,). Now, 0, and o, are not zero, therefore o, is not
zero. However, we forcibly assume plane stress conditions and take o, = 0.

Using o0,, = 0 in the following relations from Hooke’s law:
1

Exx = E [O—xx -V (O-yy + O-zz)] >

—_

Eyy = E [Uyy - V(O'xx + Uzz)] >

we have

E

Oxx = (gxx + ve )
1 _ VZ yy)o

Oyy = PR (gyy + Vé‘xx) .

Considering the virtual work equation:

/Gij5€ij dv = /tl-5u,» dA,
Vv A
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we have from the left hand side
LHS = /O',-j5€l~j dv
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We note in the last step that stretching and bending are completely decoupled. Considering
only bending and using the following definitions
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we obtain the following:
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Considering the terms (1) with (2) and (3) with (4), and using Green’s theorem, we obtain (after
transposing the negative sign from the left hand side)

2
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ddw ddw ddw 2w
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We note that the terms on the right hand side can be classified as boundary integral terms
(those within ¢) and domain integral terms (those within fA) The domain integral terms ex-

pressed in terms of M,, M,, and M, can be rewritten in terms of the displacement component
w; thus
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Setting D = 12(1—2) (it is referred to as the bending rigidity), and proceeding similarly as
-V
above for M, and M,,, we have
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My=-D|— +v— |, (3a)
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oxady
Using these expressions of M,, M,, and M,,, we have
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Therefore, we have the following
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Now, going back to the right hand side of the virtual work equation and considering the
contribution due only to bending we have

RHShending = / tLou; dA = / qéw dA.
A A

Bringing together the left hand and right hand sides, we thus have
LHSbending = RHSbending,

from which we obtain the following:
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Now, consider the x-component of the mechanical equilibrium equations, and integrate as
follows:
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Similarly, we have
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h/2
where Q, = / oy dz.

h/2

Going back to Eq. (5) and considering the terms (1) together with (2), and (3) together with (9),
we obtain

20 20 20 20
/(DV4W - q) owdA - 7{ [Mx—wnx + My—wny] ds - 7{ [Mxy—wnx + Mxy—wny ds
A ox ay dy ox

+?§Qx5wnxds+ y{ Q,8wnyds = 0. (6)

Now we want to convert the preceding equation from the (x, y) coordinate system to the
(s, n) coordinate system where s is the coordinate along the periphery of the plate and n is the

coordinate perpendicular to it. Towards that end, we first establish the relationship between
0 0 J 0

—,—an :
ds on ox dy

. . . Ao . N s s dyc dx.
For any point on the periphery given by r = xi+yj, the unit normalis &, = n,i+n,j = L)
s ds

Then for an elemental line segment at r we have,
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dx. dy. s
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or, &

Consider the gradient of any arbitrary scalar ¢ first in the (x, y) coordinate system and next
in the (s, n) coordinate system. Thus we have
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Comparing the two expressions of V¢, we obtain
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Then from Eq. (6), we obtain

s
?{Qchwdy %chswdx 0,

or, /A(Dv4w - q) SwdA - %MX (—nyag—sw + Ny aj:’) n.ds + M, ( (935_:/ + nyaj—:}> (=ny)ds
dwu a5w+ 0w ds s Mo - 85w+ 0w (-n,)d
ey nx—as ny—an neds oy ny—as nx—an ny)ds
+ 75 Q.6wn,ds - f Qyéw(-ny)ds = 0,
. adw
or, (DV w - q) owdA + (Mxnynx - M,n.n,, - Mxyn + M,y y) —d
A

2]
+ 7{ (—Mxni - Myni - 2Mxynxny) a—wds
n

+ 7{ (anx + Qyny) dwds = 0. (7)
From stress-transformation we have

Opn = MyOxx + 2NNy Oy, + 13,0y, (8a)

Ops = NyNy, (ayy - crxx) + (ni - ni) Oys (8b)
from which we obtain

M, = n’M, + 2n,n,M,, + n, ‘M, (9a)

M, = nyn, (My - Mx) (nx - ny) M,,. (9b)

Using Eqns (9a) and (9b) in Eq. (7), we obtain
/(DV4W q) SwdA - %MHS W - }IgM 85_wds + }1{ 0,8wds = 0. (10)

85 aMns
Now, ?{ Mns—wd Mnséw] }15 p dwds. For a closed contour, [Mnséw]f = 0; therefore
s

/(DV4W— q) 5wdA+?§aM"35 ds - 7§M M—st+7§Qn5wds =

A

or, /(DV4W— q) SwdA + ?{ (aMns ) Swds - %M a5—st =0. (11)
A

So, the governing equation is

DV*w = g, (12)
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and the boundary conditions are given by

ns

Either +Q,=0 or, w isspecified, (13a)

d
Either M, =0 or, a_w is specified. (13b)
n



