Advanced Mechanics of Solids (ME60402) Mechanical Engineering
Spring Semester, 2021 II'T Kharagpur

BEAM THEORY — BENDING AND BUCKLING *

Overview:
+ Consider only lateral loading: Two methods: éIT = 0 and VWE

+ Consider both laterial loading and axial loading i.e. both bending and stretching: again
two methods: 8II = 0 and VWE. Both the methods will show that bending and stretching

are decoupled.

« Now, suppose we switch off the lateral loading and consider axial “negative stretching”,
i.e. axial compression by inverting the sign of the axial load. Then again - following
from what we found in the last point — we should not expect this negative stretching to
have anything to do with bending. However, this expectation does not match with our
physical knowledge that axial compression can indeed result in bending in the form of
buckling. The root cause of the problem is the linearity in the kinematics. Buckling is
an instability and to model it we need a non-linear ingredient in our theory.

1 Only lateral loading

1.1 Using principle of stationary potential energy

IT= Vint + Vext

LMZ L
=/ ﬁdx—/ qowdx
0 0
2

d
Since MR = EI w1th — W, we have
R~ dx?

L4 2w 2 L
II = —EI dx - dx.
/0 (dx2> X /Oqowx

Now, by the principle of stationary potential energy (DISCUSS THIS SEPARATELY), SII = 0
for a body in equilibrium. Then

SIl = 0,

L1 d’w\ d?Sw L
or, /O—EI(2@> I dx - /q05wdx 0,

oy diwds L
or, waow EI—cSw / 2 5w dx - / goSw dx = 0.
dx2 dx o
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Therefore, we must have the governing equation:

dtw
EI@ = qO,

together with the boundary conditions that at x = 0 and x = L:

d’w

either EI@ =0, or d—:: is specified,;
43

either EI—o =0, or w isspecified.
dx3

1.2 Using virtual work equation

We have from Energy Methods:

/ 0,0¢; = / t;0u; dS. (considering no body force) (1)
14 s

We use the following kinematical hyphotheses:

dw
u=-z—o1},
dx
v =0,
w = w(x)

using which we obtain from the strain-displacement relations, the following:

ou d’w (2a)

Exx = — = 2, a
ox dx?
Jdvu
ow

&,=—=0, 2c
py (2c)
1 /0u oJv

&y==|—+—1]=0, (2d)
2\dy Jx
1 /0v Jdw

=7 —+—=—)=0, (2e)
2\dz Jy
1 /0 0

er=-(2+ ) =0 (2f)
2\ odx 0z

Then, from Eq. (1)

L ,h L
/ / bode, dx dz = / qodw dx,
o J-1 0

2
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We cannot proceed further without invoking the material behaviour. We assume, as before, a
Hookean material, so that o,, = E¢,,. Using this stress-strain relationship, we have

L b L
/ / bEe, 6ep, dx dz = / qodw dx,
o J-b 0
L ,h L

or, / 2 bE%S(sxx)2 dx dz = / qodw dx,
0 - 0

Lore 1 w)’ L
/ bE—5 <_2F> dx dz = / qdow dx, (from Eq. (2a)),
0

(6}

Ay

ﬁ

d?Sw L
] // bEz—<2@> i dxdz-/0 qodw dx,

L d2wd®sw : ) L ) o
or, /0 E— I el dx / % bz° dz = /0 qdw dx, (since w is independent of z)

L dwd?sw L
or, /EIdx2 i dx=/0 qodw dx.

This last equation is exactly the same one that was obtained previously when using the prin-
ciple of stationary potential energy (see previous subsection). Again, integrating twice by
parts we obtain the same governing equation and boundary conditions as in the previous
subsection.

(o)

=

2 Axial and Lateral Load - both bending and stretching

2.1 Using the principle of stationary potential energy

IT= Vint + Vext

= Vint,stretch + Vint,bend + Vext,axial + Vext,lateral (3)

L p2 L pp2 L L L
= /0 SEA dx + 0 2E] dx —/0 Pép(x - L)u, dx —/0 (-P)dp(x - 0)uy dx —/0 qow dx
Use MR = EI as before and the following:
pP= /axx dA,
A

du
= E— dA
/A dx
du
dx’

=EA

Thus, we have
Lq d 2 Lq d2w 2 L
m- / SEA(SE ) dx+ / ZEI dx - / P&o(x - L)u, dx
0 2 dx o dx? o

L L
+ / Pép(x - 0)u, dx - / qow dx.
0 0
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Now, using the principle of stationary potential energy, we have
Sl = 0,
/L 1EA 2duS dSu, d +/L lEI d?w d?6w d
or, - x —— dx
o 2 dx / dx o dx2 dx?

L L L
/ Pép(x — L)Su, dx + / Pép(x - 0)u, dx —/ gow dx =0,
0 0

du, d>w dSw Pw, 1" Pdtw
or, [EA 5us] / 5us dx + [EIEE 0 - [ Iﬁéw]o + A wéw dx
L
- POyt Pouley [ uowdr =0
0
Therefore, we must have the following governing equations:
d?u
EA =0, 4
02 (4)
d4
EI— =0, 5
dx? ©)

together with the boundary conditions: At x = L and at x = 0:

du
-P=0 or u; isspecified,

either
x
d?w d

either EI@ =0 or d_:cv is specified,
d3

either EI>% =0 or w is specified.
dx3

2.2 Using virtual work equation

We again start from the virtual work equation:

/o*ijée,-j dv = /t,-c?ul- dS. (considering no body force)
v s

We use the following kinematical hyphotheses:

~ dw
u=u-z o
v=0,
w = w(x)
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using which we obtain from the strain-displacement relations, the following:

ou du, d*w (72)

Exx = < —Z a
dx dx dx?
v

&,y =— =0, 7b

w=5 (7b)
ow

£,=—=0, 7c
0z (7¢)
1 /0u dv

by = (o) = (7d)
2\dy oJx
1 /0dv ow

&=\ —+—1]=0, (7e)
2\0dz 9y
1 (/ow OJu

Ex=—|—+—]=0. (71)
2\ ox 0z

Then, from Eq. (6), we have

L L L L
/ / bo, 0&, dx dz = / Pép(x - L)u, dx + / (=P)ép(x - 0)u, dx + / qodw dx,
o J-h 0 0 0

Again, we cannot proceed further without invoking the material behaviour. We assume, as
before, a Hookean material, so that o,, = E¢,,. Using this stress-strain relationship, we have

L kb L L L
/ / bEe Oy, dx dz = / Pép(x - L)u, dx - / Pép(x - 0)u, dx + / qdwdx. (8)
o J-& 0 0 0

Considering the Lh.s of the preceding equation, we have the following

/ bEexchexx dx dz

/ / leé(é‘xx
o2
21 du,  d*w)’
/ / EbE§ ( i ZE) dx dz (using Eq. (7a))
du, d’w déu,  d%6w
E _ _
//b5< d2>( dx2>dxdz
2z du, déu du, d*6w
:/0 /2 bde I dz dx - //h bEzdx I dz dx

L k 2 L ,t 2, 42
—/ bEz d'w dou, dzdx+/ bEz 4 wd ow
0 0 _h

N\E‘

[SIE

dx dz

1\.&

h dx? dx dx? dx2

2 2

L du, dSu : Ldy, 26w [?
- S5 E | bdzdx- [ =22 E | bz dzd
/0 dx dx Zh zax /0 dx dx? [}21 zdzax

2

o dx? dx dx? dx?

z dx

L @wdsu, [: L d24y d26 H
aw uE/ bzdzdx+/ —W—WE/ bz? dz dx
-% 0 -£
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Noting that

we have

dx dx dx? dx?

L ,t L L 2., 2
/ / bEe, Sep, dx dz = / EAdus dou, dx + / EICl wdow dx, (9)
o J-4 0 0

so that from Eq. (8), we have

L du, dSu, L d?wd?Sw L L L
/OEAdx I dx+/0 EI@ i dx—/O Pép(x - L)ug dx+/0 P5D(x—0)usdx—/0 qodw dx = 0.
(10)

Note that this equation is exactly the same as Eq. (3) and so the exact same governing equa-
tions and boundary conditions will be obtained as in the previous section.

VERY IMPORTANT POINT: What the above derivation shows is that based on our kine-
matical hypothesis, the stretching (i.e. the solution involving u;) decouples from the bending
(i.e. the solution involving w).

3 Buckling

We start with the following nonlinear strain-displacement relation*

1 /0u; Ju, Jdurd
Eij:_ i_‘_ﬁ_‘_ﬂﬂ (ll)
2\ 9x; 0Jx; 9x; 9x;

As before, we consider the following kinematical hypothesis:

dw
Uu=u—-z—,
* Tdx
v=0,
w = w(x).

*Refer to the lecture notes on kinematics available at http://www.facweb.iitkgp.ac.in/
~jeevanjyoti/teaching/mechsolids/2019/kinem.pdf


http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/mechsolids/2019/kinem.pdf
http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/mechsolids/2019/kinem.pdf
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However, to address buckling we additionally assume the following:

ow
ox

du
>
ax

(12)

ou 1 u 2 v 2 ow ou 1 (ow 2
E.n=—+- — )+ — ) + — =—+-—1,
ox 2 X X X ox 2\ dx
av 1| [fou\® [ov\® [ow)’
Eyy=—-+7 v R U A =0,
ay 2 y dy y
ow 1 u 2 v 2 ow 2 1 /ow 2
E,=—+- — ] + — ) + — =—(—,
z 2 z 2z 2z 2\ ox
1|du oJdv oJdudu Jdvdv JIwaow
Ey=c-{—+—+——+——+——1=0,
2|10y OJx Jxdy OJxdy OJx dy
E - 1| ov Lo 8w u 8u v 80 ow ow B
¥ 2|9z 9y ay 8z oy 8z ay 2z
1|odw oJu oJudu Jdvdv JIwaiIw
sz__ vt ot ot oot o=
2 { dx 0dz 0zJdx OJdzdx 0z 0x }
The notes for this section are incomplete.
4 Elastica
The exact version of
1 L /d2w\? 1. L [(dw)’
—EI/(S—W dx——P/(S—W -0
2 o dx? 2 J dx

is the following:

1

—EI

2

1 L
or, —EI/ 5<%

2 ds
I EI/ %—déed -
b ds ds ¥

L
or, [EI—S@} —EI/ —50ds— /sin959ds=0
0

L 2 L
/5<%> —P/ d(ds — cos 0ds) = 0
0 ds 0
2 L
>—P/ sin 60ds = 0
0

L
/ sindfds=0

(13)
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From the above, we can extract the following governing differential equation and boundary
conditions as follows:

d’e )
EI@+P5m0:0, (14)
. do . .
either EI e 0 or 6 isspecified (15)
s

Considering the governing differential equation, we can proceed towards a solution through

d
a standard trick of multiplying throughout by T
$

d*6de do
ElwawLPsm@d—:
d (df
or, _EI£ <$> —Pa(cose)—o
2
or, 1EI(iiiQ) =PcosO+c (16)
s

do
At x = 0 and x = L, 0 is not specified; so EId— = 0. However, we denote 8 at x = 0 as « and 6
s

at x = L as —«. Thus, we obtain

0=Pcosa+c (17)
Therefore, we have
2
—EI <d6> = P(cos 6 - cosa),
ds
do 2P :
or, - (cos 0 - cos a) (-ve because 0 decreases from « to —a through 0)

ds
or, / ds = / \ /
2P \/cos JcosO-cosa

or, =
R
2
or, /\’ >
sin? ——51 28

2

/fﬁ

0
Set sin 5 = K sin ¢, where K = sin > Then, we have

or,

1
7 €08 gd@ = K cos pdo (18)
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Furthermore, for the limits of the integration, we have

. . a . T
When 6 =a, Ksmq0=s1n§=>s1nq0=1=>q)=—

When 6 =0, Ksing=0 = ¢=0.

Utilizing the above in the integration, we obtain

) \/E “ do
NP / K? - K?sin’
\F "2 2K cos pdg
/ cos 9K cos @’
( /2 qu)
/ cos 2
_ Jﬁ " adg
NP ./o 1-K?sin® ¢ ’
Pryjer P ( ) /
1- K2 sin’

’EI /2 2d
where Pryer = ]T—, and the integration S S is known as the complete
L 0 1-K?sin® ¢

elliptic integral of the first kind. We finally obtain

/ . (19)
PEuler 1- KZ Sll’l

In a given physical situation, we know the load P, so we know the LHS of the above equation.
Thus we have to find K such that the RHS = LHS.

Note that sin 8 = ‘31—”3”. Therefore,

2
Elj—f +Psin @ =0, (20)
d*6 dw

Integrating once with respect to s, we obtain

do
EI— + Pw=c. (22)
ds

Atx=0and x = L, EI? = 0 and w = 0. Therefore, ¢ = 0, and we have
s

w = —E@ (23)
P ds’
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However, we had found earlier that

rol—

& E(cos@—cosa)

do 4P (  ,a ., 0
— =—_|— | sin* = - sin* — |,
ds EI 2 2
4P (  ,a ., 0
w=_|— | sin®* — - sin* — |,
EI 2 2

Since we know K, we can find w as a function of 0 where 6 € [-a, «]. This means that know
w along the entire length length of the beam, i.e. we know the deflection of the beam.

3

do [zp

It is useful to also know the maximum value of the deflection. Clearly the maximum value of
the deflection is where the slope vanishes, i.e. 8 = 0. Thus, we have

.2
Wmax = | 5 SI E,

P

4E]
= /—K
P

_ PEuIer 2L
- P

K. (24)

Thus, the maximum deflection normalized by the length of the beam can be written as

Wmax 2 K (25)
L - Y \IP/PEuler.

10
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