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1 Preliminary Concepts

Configuration The positions of all the material points of a mechanical system are together
referred to as the con�guration of the system.

Configuration space The set of all con�gurations that can be taken by a mechanical system is re-
ferred to as the con�guration space.

Geometric notation Any point in the con�guration space of a mechanical system is denoted by X .
For example, if the mechanical system consists of just one particle, then X can
be the position vector of the particle.

Distance in

configuration space

When a mechanical system goes from one con�guration (say, point X0 in
con�guration space) to another con�guration (say, point X1 in con�guration
space), the “distance” between X0 and X1 is taken to be the maximum of the
displacement magnitudes of the individual particles making up the system.

Path in

configuration space

The con�guration X of a mechanical system is said to be a function of a real
variable t̄ in the interval a ≤ t̄ ≤ b if, to each value of t̄ in this interval, there
exists a single con�guration; thus X ≡ X (t̄), t̄ ∈ [a, b]. The function so formed
represents a path in con�guration space.
Note that not every path is admissible because the constraints of the mechan-
ical system have to be respected.
Important: The variable t̄ is not necessarily time. If t̄ is indeed time, then
X ≡ X (t) is called the “motion” of the system.

2 Virtual Displacement

According to the classic book by Goldstein et al.1:

A virtual (in�nitesimal) displacement of a system refers to a change in the con�guration of the system as the
result of any arbitrary in�nitesimal change of the coordinates ... consistent with the forces and constraints
imposed on the system at the given instant t . The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval dt , during which the forces and constraints
may be changing.

In terms of the preliminary concepts, the virtual displacement can be realized by the following:
∗I have mostly followed the classic “Energy Methods in Applied Mechanics” by Henry L. Langhaar (Dover Publications) for this chapter.
1H. Goldstein, C. P. Poole and J. Safko, Classical Mechanics, 3rd ed., Pearson
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Figure 1: Virtual displacement vs. Real Displacement

• Freeze time �rst.

• Consider paths in con�guration space corresponding to some real variable t′ (which is strictly not the time t).

• Restrict to paths which are admissible i.e. respect the constraints of the system.

These can be understood by considering the simplest of mechanical systems: a single particle travelling along the
x-direction as depicted in Fig. 1. The path taken by the particle corresponding to time (t), i.e. the motion of the
particle is depicted in red. A small increment in time, dt corresponds to a small real displacement dx . We freeze
time at t = t0 and consider the virtual path (depicted in blue) in a plane parallel to the t′ − x plane. We note that
x(t′ = 0) = x(t = t0).

The virtual displacement of the particle at any t′ is given by

u = x(t′) − x(t′0)

= x(t0 + t′ − t0) − x(t′0)

= x(t′0) + (t
′ − t′0)

dx
dt′

||||t′=t′0
+
1
2
(t′ − t′0)

2 dx
dt′

||||t′=t′0
+⋯ − x(t′0)

= (t′ − t′0)
dx
dt′

||||t′=t′0
+
1
2
(t′ − t′0)

2 dx
dt′

||||t′=t′0
+⋯

= �u +
1
2
�2u +⋯ (Written using the � operator as in the language of calculus of variations)

Note that when t′ → t′0, the displacement u is well approximated by just the �rst term on the R.H.S. i.e. �u only. Of
course the virtual displacement corresponding to such a small increment in t′ is also small. This virtual in�nitesimal
displacement (�u) is also referred to as the �rst variation of the displacement. In fact, the � operator2 can be read as
“the �rst variation of”.

3 Law of kinetic energy

The work of all forces (external AND internal) that act on a mechanical system equals the increase of kinetic energy of
the system.

2NOT to be confused with the Kronecker delta - they are completely separate things!
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W = ∫
t1

t0
F ⋅ v dt

= ∫
t1

t0
m
dv
dt

⋅ vdt

=
1
2 ∫

t1

t0
m
d
dt
(v ⋅ v) dt

= ΔT . (1)

This law is restricted to inertial reference frames. ΔT changes value from one such reference frame to another.
Therefore, W also changes value with change of reference frame.

When a mechanical system begins to move it is gaining kinetic energy. So by the law of kinetic energy, the external
and internal forces must be doing net positive work. Therefore, the system does not move spontaneously unless it
can experience some arbitrarily small displacement for which the net work of all forces is positive.

Spontaneous movement is impossible if this work done is less or equal to zero for all small displacements. These
small displacements are not necessarily realized, so they are virtual displacements. Likewise the work done is virtual
work.

4 Fourier’s inequality

A motionless mechanical system remains at rest if the virtual work done by all external and internal forces is less than
or equal to zero for every small virtual displacement that is consistent with the constraints.

Example: Brick resting on a table. If the brick slides slightly, friction performs negative work. If it tilts slightly,
gravity performs negative work. If it executes a small hop no work is done. So the virtual work is less than or equal
to zero for each case.

Very important: Fourier’s inequality is su�cient but not necessary for equilibrium.

Example: A ball that is just balanced on a dome is in a state of equilibrium. But when rolled slightly gravity performs
positive work. So despite the virtual work not being less than or equal to zero, the ball is in equilibrium. The
equilibrium is not a stable one, but that is a di�erent story! The problem with Fourier’s inequaility is that it does
not take cognizance of the fact that the virtual work, although positive, is an in�nitesimal of higher order than the
virtual displacement of the ball.

Thus, it would be very desirable to have some condition which is both necessary and su�cient for equilibrium - that
brings us to the principle of virtual work.

5 An important aside

Before starting the discussion on the principle of virtual work, note something very important:

In going from one con�guration X0 to another con�guration X1, there can be a number of di�erent paths and
associated with each such path there will be a virtual work. Thus, if we denote the virtual work corresponding to
a particular choice of path as W ′ then there can be many such W ′. Each such W ′ will be path-dependent. Now,
consider the set of all such W ′. Unless the mechanical system under consideration possesses unlimited energy, this
set of W ′ will have a least upper bound, say W . That is, W is the smallest value such that each W ′ ≤ W . This least
upper bound W is something uniquely identi�ed with the con�gurations X0 and X1, and it does not depend on any
particular path between the con�gurations. Thus,W is path-independent; in other words it is simply a function of the
two con�gurations X0 and X1. It is therefore referred to as the work function and denoted completely as W (X0,X1).
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Now, if W ′ ≤ 0 for any path that goes from a con�guration X0 to a neighbouring con�guration X , then it must also
be true that W (X0,X ) ≤ 0. The reverse will also be true. Thus, Fourier’s inequality may be recast in terms of the
work function as:

Fourier’s inequality: The con�guration X0 is in equilibrium if W (X0,X ) ≤ 0 for all con�gurations X in
the neighbourhood of X0.

As already mentioned, this inequality is only a su�cient but not a necessary condition for equilibrium. The necessary
condition is given by the principle of virtual work.

6 Principle of virtual work

If the forces do not change discontinuously, then the necessary and su�cient condition for a point X0 in con�gu-

ration space to be in equilibrium is lim
s→0

W
s

= 0, where s is the distance3 between X0 and another point X in the
neighbourhood of X0 and W is the work function associated with the two con�guration points X0 and X .

If the variational form of W exists, i.e. if W can be expressed as

W = �W +
1
2!
�2W + O(s3), (2)

then lim
s→0

W
s
= 0 is equivalent to �W = 0. This form is the conventionally written form of the principle of virtual

work. We are not going to delve into how the variational form is equivalent to the limit form. For the purposes of
this course, it will be enough to use the fact that for equilibrium, the �rst variation of the total work (due to both
external and internal forces) must be zero. If the total work is decomposed into the work due to external forces We
and that due to internal forces Wi then �W = 0 gives us

−�Wi = �We . (3)

7 Deformable Body

The con�guration of a deformable body is de�ned by the displacement vector �eld. The deformable body is carried
from one con�guration to another “neighbouring” con�guration through (�u1, �u2, �u3) which are the components
of �u.

Now, consider the body to be in equilibrium under the action of traction forces and body forces. Then, by the
principle of virtual work, we have

−�Wi = �We = ∫
V
�b ⋅ �u dV + ∫

S
T ⋅ �u dS

≡ ∫
V
�bi�ui dV + ∫

S
Ti�ui dS.

Referring to the chapter “Analysis of Stress” under the section “The state of stress at a point”, we have

Ti = �jinj ,

where �ji is the stress and nj is the unit normal vector to the plane which is tangent to the surface at the point we
3For the meaning of “distance", refer to the preliminary concepts in §1
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are considering the traction. We then have

�We = ∫
V
�bi�ui dV + ∫

S
�jinj�ui dS

= ∫
V
�bi�ui dV + ∫

V

)
)xj

(�ji�ui) dV (Using Gauss divergence theorem)

= ∫
V
�bi�ui dV + ∫

V [
)�ji
)xj

�ui + �ji
)�ui
)xj ] dV

= ∫
V (�bi +

)�ji
)xj )

�ui dV + ∫
V
�ji

)�ui
)xj

dV

Again referring to the chapter “Analysis of Stress” under the section “Cauchy’s equation of motion and me-

chanical equilibrium equations”, we know that for a body in equilibrium we have

�bi +
)�ji
)xj

≡ �b + ∇ ⋅ � = 0.

Therefore,

�We = ∫
V
�ji

)�ui
)xj

dV

= ∫
V
�ji�

)ui
)xj

dV (Interchanging the order of � and partial derivatives)

= ∫
V
�ji� [

1
2 (

)ui
)xj

+
)uj
)xi )

+
1
2 (

)ui
)xj

−
)uj
)xi )] dV

= ∫
V
�ji�"ij dV +

1
2 ∫

V (�ji
)ui
)xj

− �ji
)uj
)xi )

dV

= ∫
V
�ji�"ij dV +

1
2 ∫

V (�ji
)ui
)xj

− �ij
)uj
)xi )

dV (Using �ji = �ij )

In the second integral we note that the indices are i and j are repeated in both the terms. So they can be easily
substituted by something else. In the �rst term we substitute i by k and j by p. In the second term, we substitute i
by p and j by k, to obtain

�We = ∫
V
�ji�"ij dV +

1
2 ∫

V (�pk
)uk
)xp

− �pk
)uk
)xp )

dV

= ∫
V
�ji�"ij dV (4)

8 First law of thermodynamics

According to the �rst law of thermodynamics, we have

�We + �Q = �U + �T ,

where Q is the heat transferred into the body and U is the internal energy of the body.

For an adiabatic process: Q = 0.

For a body in equilibrium: �T = 0.

Therefore, we obtain �We = �U . If we de�ne U0 as the internal energy density per unit volume, then we have

�We = �U = � ∫
V
U0 dV = ∫

V
�U0 dV . (5)
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9 Potential energy

A mechanical system is said to be conservative if the virtual work corresponding to a virtual displacement of the
system completely around any closed path is zero. For virtual displacements executed with in�nitesimal speed,
the system is conservative in the static sense. For virtual displacements that are not necessarily executed with
in�nitesimal speed, the system is conservative in the kinetic sense.

If the virtual work, We , associated with the external forces is independent of path and depends only on the terminal
con�gurations then the external forces are said to be conservative. Because of the sole dependence on terminal
con�gurations We can be expressed as a point function: We = −Ve(X ). The initial con�guration is not mentioned
because it a�ects only an additive constant. This point function Ve is called the potential energy of the external
forces.

Similarly, if the virtual work, Wi , associated with the internal forces is independent of path, then the internal forces
are said to be conservative and Wi can be expressed as a point function: Wi = −Vi(X ). Here, Vi is called the potential
energy of internal forces.

If both internal and external forces are conservative then the total virtual work W = We +Wi can be expressed as a
point function: W = −Π(X ) = −(Ve(X ) + Vi(X )).

10 Strain energy

A mechanical system is said to be elastic if the internal forces are conservative in the kinetic sense. Then Vi(X ), the
potential energy of internal forces is called the strain energy. We can also de�ne a strain energy density (Vi0) as the
strain energy per unit volume. The strain energy density depends on the strain components: Vi0 ≡ Vi0("ij ). Thus,

�Vi0 =
)Vi0
)"ij

�"ij . (6)

The strain energy of a system di�ers from the internal energy only by an additive constant. Since during any
deformation process we track changes of internal energy this additive constant is irrelevant. So, Vi ≡ U and Vi0 ≡ U0.
Because the strain energy di�ers from the internal energy only by an additive constant, from Eq. (6), we have

�U0 =
)U0
)"ij

�"ij . (7)

Similarly, we rewrite Eq. (5)

�We = ∫
V
�U0 dV (8)

but reinterpret it as a relation between work due to external forces and strain energy.

Combining Eq. (7) and Eq. (8), we have

�We = ∫
V

)U0
)"ij

�"ij dV . (9)

Finally, comparing Eq. (4) with Eq. (9), we obtain

�ij =
)U0
)"ij

. (10)
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11 Complementary Energy

We have found that

�ij =
)U0
)"ij

We can �nd a related expression where on the L.H.S., instead of �ij we have "ij , and where on the R.H.S., instead of
the derivative w.r.t. "ij , we have a derivative w.r.t. �ij . In order to �nd such an expression, we introduce something
called the compelementary energy density

U ′
0 = −U0 + �pq"pq . (11)

To Prove: "ij =
)U ′

0
)�ij

Proof: Di�erentiating both sides of Eq. (11), we have

)U ′
0

)�ij
= −

)U0
)�ij

+ �pi�qj"pq + �pq
)"pq
)�ij

= −
)U0
)"pq

)"pq
)�ij

+ "ij + �pq
)"pq
)�ij

= −�pq
)"pq
)�ij

+ "ij + �pq
)"pq
)�ij

= "ij (12)

The volume integral of the complementary energy density function U ′
0 is de�ned as the complementary energy of

the body; thus

U ′ = ∫
V
U ′
0 dV .

12 Generalization of Castigliano’s theorem of least work

Despite the name, this theorem does not directly deal with any “work” nor there is anything that directly takes on a
“least” or “minimum” value. Instead, it deals with a modi�ed form of the complementary energy (to be represented
by Ψ) and expresses an extremum condition.

Theorem: Consider a body whose boundary S consists of two parts: a part S1 on which the traction vector is given, and
a part S2 on which the displacement vector is given. Then of all states of stress that satisfy the mechanical equilibrium
equations and the boundary conditions on S1, the state of stress which represents the actual equilibrium corresponds to
an extremum of the modi�ed complementary energy, thus,

�Ψ = 0 ,

where the modi�ed complementary energy is given by

Ψ = U ′ − ∫
S2
uiTi dS

Proof: Before launching into the proof, we need to show a couple of things:
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First, for the stress state that satis�es the mechanical equilibrium equations, we have
)�ij
)xj

+ �bi = 0.

Taking the variation of this equation, we have
)��ij
)xj

= 0, (13)

where we use the fact that since the body forces �bi are given to us, their variations are zero.

Second, considering the de�nition of the complementary energy density in Eq. (11), and taking the variation, we
have

�U ′
0 = −�U0 + ��pq"pq + �pq�"pq
= −�ij�"ij + ��pq"pq + �pq�"pq
= ��pq"pq (14)

We now launch into the actual proof:

�U ′ = ∫
V
�U ′

0 dV (15)

= ∫
V
"ij��ij dV (Using Eq. (14))

= ∫
V

1
2 (

)ui
)xj

+
)uj
)xi )

��ij dV

= ∫
V

)ui
)xj

��ij dV (Using �ij = �ji)

= ∫
V

)
)xj

(ui��ij) dV − ∫
V
ui
)��ij
)xj

dV

= ∫
S
ui��ijnj dS (Using Gauss divergence theorem in the 1st integral above, and Eq. (13) in the 2nd)

= ∫
S2
ui��ijnj dS + ∫

S1
ui��ijnj dS

= ∫
S2
ui� (�ijnj) dS + ∫

S1
ui� (�ijnj) dS (Geometry does not change so that �nj = 0)

= ∫
S1
ui�Ti dS + ∫

S2
ui�Ti dS

= ∫
S2
ui�Ti dS (Tractions are speci�ed on S1; so �Ti = 0) (16)

The modi�ed complementary energy is de�ned as Ψ = U ′ − ∫
S2
uiTi dS. Taking the �rst variation, we have

�Ψ = �U ′ − ∫
S2
(Ti�ui + ui�Ti) dS

= �U ′ − ∫
S2
ui�Ti dS (Displacements are speci�ed on S2; so �ui = 0)

Finally, using Eq. (16), we can conclude that last line above should be zero. Therefore, we obtain

�Ψ = 0 Q.E.D (17)
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13 Castigliano’s theorem on de�ections

Theorem: If an elastic body is mounted in such a way that rigid body displacements are prevented and the body is in
equilibrium under the action of surface tractions, body forces, and “point forces”, then at the point of application of such
a “point force”, say F ≡ Fi , the displacement component ūF along the direction of F is given by

ūF =
)U ′

)F

Proof: Let F1, F2, . . . denote the “point forces”. Each of these “point forces” is considered to be distributed on a small
spot of surface.

The complementary energy U ′ depends on F1, F2, . . . as well as on surface tractions and body forces.

The boundary S is divided into S1 and S2. On S2, the displacement vector is 0 because of constraints. Within S1, con-
sider a small area S0 on which a concentration of load is applied - it is this concentration of load which is understood
to result in the “point force”.

Consider a variation of the surface traction that vanishes in the region of S1 that excludes S0. Then by Castigliano’s
theorem of least work, we have

�U ′ = ∫
S
ui�Ti dS

= ∫
S0
ui�Ti dS

According to the theorem of the mean for integrals if f (x, y) and '(x, y) are continuous real functions in a region A
of the (x, y) plane and '(x, y) does not change sign in A then

∫
A
f (x, y)'(x, y) dA = K ∫

A
'(x, y) dA,

where K is the value of f (x, y) at some point in A.

Since we may suppose Ti not to change within the little region S0, we can conclude

�U ′ = ūi ∫
S0
�Ti dS,

where ūi are the components of the displacement vector ui at some point within S0.

Now, for the “point force” vector Fi , we have

Fi = ∫
S0
Ti dS

or, �Fi = ∫
S0
�Ti dS.

Therefore, we have

�U ′ = ūi�Fi .

We consider the unit vector along Fi to be Ni so that Fi = NiF , which gives us �Fi = Ni�F . Then, we have

�U ′ = ūiNi�F
= ūF �F ,
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where ūF is the component of the displacement vector in the direction of the “point force” Fi .

Furthermore, we have

�U ′ =
)U ′

)F
�F .

Therefore, we must have

ūF =
)U ′

)F
.

For Hookean materials, i.e. linear, elastic solid materials, the complementary energy is idential to the strain energy,
i.e. U ′ = U , so that for these materials

ūF =
)U
)F

(True only for Hookean materials)

This special case was what was derived by Castigliano himself.
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