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1 Traction across a plane at a point

Consider an area A in a given plane and containing a point P within a body as shown in Fig. 1. Suppose the
plane divides the body into two regions, Region I and Region II. Consider Region I. Draw a normal n̂ to the
plane at P and pointing from Region I towards Region II. Over the area A, Region II exerts forces on Region
I. Suppose this system of forces is statically equivalent to a force F acting at P in a definite direction and a
couple C about a definite axis. Let us make the area A small, ensuring that the point P is always inside it.
Then the force F and the couple C tend to zero limits and the direction of F tends to a limiting direction.
We assume that as A tends to zero, the number |F|/A tends to a non-zero limit while |C|/A tends to 0
(which is sensible because smaller the area, the smaller will be the distance from the definite axis referred
to earlier leading to a couple that vanishes).

Figure 1: Traction

We define a vector

T = lim
A→0

F

A
(1)

called the stress vector or the traction vector.1

1The way in which most modern mechanicians present the concepts of traction and stress can be traced back to the way it
was presented in the classic, “A Treatise on the Mathematical Theory of Elasticity” by A. E. H. Love. My way is no exception.
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Note that the traction vector depends on the location of P as well as the choice of the plane on which A is
located. Since the orientation of this plane is given by n̂, so T depends the position vector of P and n̂. If n̂
is different, T will be different.

Note also that just as Region II exerts forces on Region I, so also Region I exerts forces on Region II over
the area; these forces must necessarily be equal in magnitude and opposite in direction from Newton’s third
law (important: it is not necessary for the whole body to be in equilibrium for these forces to be equal and
opposite). Thus, in a fashion identical to what was discussed previously, a stress vector or traction vector
can be defined on the plane and considering the unit vector, −n̂. We then have

T (x, n̂) = −T (x,−n̂) , (2)

where it is important to note that the position vector x is the same for both traction vectors because we are
considering the same point P just from two different sides.

2 Surface tractions

The nature of the action between two bodies in contact is assumed to be of the same nature as the action
between two portions of the same body separated by an imaginary surface. If the point P in the previous
discussion is moved to a point P ′ on the bounding surface of the body with the position vector x changing
to x′ and n̂ changing to n̂′ that coincides with the unit outward normal at P ′, the resulting traction vector
T′ (x′, n̂′) is referred to as the surface traction.

Very important: Whether it is the traction across an imaginary plane inside a body or the surface traction
which acts at the actual bounding surface of a body, the direction of the traction vector does not, in general,
coincide with that of n̂.

The traction vector can be decomposed into a component normal to the plane (defined by n̂) and a component
parallel to the plane.

3 Law of equilibrium of tractions on small volumes

Consider the linear momentum equation applied to a material volume element in integral form2

D

Dt

∫
Vm(t)

ρv dV =

∫
Vm(t)

ρb dV +

∫
Sm(t)

T dS, (3)

where Vm(t) is the domain contained in the material volume element, Sm is the bounding surface, ρ is the
density of the material, v is the velocity, b is the body force per unit mass acting at a generic point within
the volume element, and T is the traction acting at a generic point on the bounding surface.

Using the Reynolds’ transport theorem3 on the l.h.s. we can take the material time derivative inside the

2Refer to your notes in Fluid Mechanics - it’s the same thing.
3Refer again to your Fluid Mechanics notes
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integration to obtain

D

Dt

∫
Vm(t)

ρv dV =

∫
Vm(t)

∂(ρv)

∂t
dV +

∫
Sm(t)

(ρv)v · n̂ dS,

=

∫
Vm(t)

[
∂(ρv)

∂t
+∇ · {(ρv)⊗ v}

]
dV (Using Gauss’ divergence theorem)

=

∫
Vm(t)

[
v

{
∂ρ

∂t
+∇ · (ρv)

}
+ ρ

{
∂v

∂t
+ v · ∇v

}]
dV

=

∫
Vm(t)

[
v

Dρ

Dt
+ ρ

Dv

Dt

]
dV

(
Using

D()

Dt
≡ ∂()

∂t
+ v · ∇()

)
=

∫
Vm(t)

ρ
Dv

Dt
dV

(
Mass conservation implies

Dρ

Dt
= 0

)

So, from Eq. (3), we have ∫
Vm(t)

ρ
Dv

Dt
dV =

∫
Vm(t)

ρb dV +

∫
Sm(t)

T dS. (4)

If the characteristic dimension of the volume element is l, the volume integral terms can be viewed as the
average value of the integrands multiplied by l3; thus from the above equation we have

〈integrand 1〉l3 = 〈integrand 2〉l3 +

∫
Sm(t)

T dS. (5)

Now, let the volume be shrunk to a very small size by letting l tend to 0. Then, dividing throughbout by l2

and taking the limit l→ 0, we have

lim
l→0

1

l2

∫
Sm(t)

TdS = 0. (6)

The above equation says that the tractions on the area elements of the surface of an infinitesimal body are,
approximately, a system in equilibrium.

The most important thing to note here is that this equilibrium of tractions holds even if the infinitesimal
body is itself not in static equilibrium, i.e. even if it is accelerating.

4 The state of stress at a point

An infinite number of planes can be drawn through the point P , and corresponding to each such plane,
we have a n̂ and a T. The complete specification of the state of stress at P involves the knowledge of the
traction at P across all these planes.

We use the law of equilibrium of surface tractions to express the traction at P across any plane in terms of
the components of the tractions across planes that are parallel to the coordinate planes.

Consider the equilibrium of a tetrahedral portion of the body having one vertex at P and the three edges
that meet at this vertex to be parallel to the coordinate axes.

Referring to Fig. 2, for the force equilibrium along direction-1, we have:
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Figure 2: Stress equilibrium

T(n)1∆A− T(1)1∆A1 − T(2)1∆A2 − T(3)1∆A3 = 0. (7)

Now,

∆A1 = n1∆A, ∆A2 = n2∆A, ∆A3 = n3∆A. (8)

Therefore,

T(n)1 − T(1)1n1 − T(2)1n2 − T(3)1n3 = 0 (9)

So, writing generally for any direction-i, we have

T(n)i = T(1)in1 + T(2)in2 + T(3)in3,

or, T(n)i = T(j)inj (using indical notation) (10)

Here, T(j)i represents the component of the traction vector Tj along the i-th direction, and is denoted,
alternatively, as σji. Thus,

T(n)i = σjinj , (11)

which we identify as a dot product (because one of the indices is repeated) and so rewrite in vector (or,
compact notation) as

T(n) = σ · n̂, (12)

or, equivalently in matrix representation as

[T(n)] = [σ]T[n̂], (13)
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where the ‘T’ in the superscript refers to transpose. To understand why the transpose comes, refer to the
“Mathematical Preliminaries” document.

VERY IMPORTANT: We state (without proving) that conservation of angular momentum in the absence
of body couples leads to the conclusion that the stress tensor is symmetric, i.e. σ = σT.

In expanded form, we have from Eq. (13)

T(n)1 = σ11n1 + σ12n2 + σ13n3, (14a)

T(n)2 = σ12n1 + σ22n2 + σ23n3, (14b)

T(n)3 = σ13n1 + σ23n2 + σ33n3. (14c)

Eqs (11), (12), (13), and (14) are different forms of what are referred to as the Cauchy’s formula (sometimes
Cauchy’s stress theorem or Cauchy’s law).

5 Cauchy’s equation of motion and mechanical equilibrium equa-
tions

Going back to Eq. (4), we have

∫
Vm

ρ
Dv

Dt
dV =

∫
Vm

ρb dV +

∫
Sm

T dS

=

∫
Vm

ρb dV +

∫
Sm

σ · n̂ dS

=

∫
Vm

ρb dV +

∫
Vm

∇ · σ dV (Using divergence theorem) (15)

Thus we can write ∫
Vm

(
ρ

Dv

Dt
− ρb−∇ · σ

)
dV = 0,

(16)

or, using the arbitrariness of the material volume we have

ρ
Dv

Dt
− ρb−∇ · σ = 0. (17)

If the body is in equilibrium, we have

ρb +∇ · σ = 0. (18)

Referring to a rectangular Cartesian coordinate system, Eq. (18) can be expressed in component form as

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+ ρb1 = 0,

∂σ12
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

+ ρb2 = 0,

∂σ13
∂x1

+
∂σ23
∂x2

+
∂σ33
∂x3

+ ρb3 = 0.

(19a)

(19b)

(19c)
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VERY IMPORTANT: Eq. (18) or, equivalently, the three equations collectively in in Eqs (19) is known
as the mechanical equilibrium equations.

6 Normal and shear components of traction

It has already been pointed out that, in general, the traction vector T(n) acting at a point in a plane with unit
normal n̂ is not parallel to n̂. So, it is possible to resolve T(n) into components parallel and perpendicular
to n̂.

We denote the component parallel to n̂ as TN and call it the normal component. We have

TN = T(n) · n̂ = (σ · n̂) · n̂, (20)

or, in indical notation TN = T(n)ini = σjinjni, (21)

or, in matrix representation TN =
(
[σ]T[n̂]

)T
[n̂] ≡ [n̂]T[σ][n̂] (22)

or, in expanded form TN = σ11n
2
1 + σ22n

2
2 + σ33n

2
3 + 2σ12n1n2 + 2σ23n2n3 + 2σ13n1n3. (23)

Note that since TN is the component of the traction T(n) along n̂, TN may be equivalently denoted by σnn,
i.e. TN ≡ σnn.

Note also that the expressions for TN (or, σnn) are exactly like the ones we had found, in the previous
chapter, for the engineering strain along a particular direction.

Likewise, we denote the component of T(n) perpendicular to n̂ and lying in the same plane as T(n) and n̂
as TS and call it the shear component. We have(

TS
)2

=
∣∣T(n)

∣∣2 − (TN
)2

(24)

or,
(
TS
)2

=
{

(T(n)1)2 + (T(n)2)2 + (T(n)3)2
}
−
(
TN
)2
. (25)

Substituting the expressions for T(n)1, T(n)2, and T(n)3 from Eqs (14) and the expression for TN from Eq. (23),
we can obtain TS .

When we use Eq. (24), we are implicitly saying that TN and TS are in the same plane contained by T(n)

and n̂. So another way of finding TS would be by taking the dot product T(n) · ês, where ês is perpendicular
to n̂ and is contained in the plane formed by T(n) and n̂.

Let us now try to find an expression for ês. We first note that the unit vector along T(n) is
T(n)

|T(n)|
. The

unit vector that is perpendicular to both T(n) and n̂ is
T(n)

|T(n)|
× n̂. Now, ês is the unit vector that should

be perpendicular to both this newly found unit vector and n̂, so that ês = n̂×
(

T(n)

|T(n)|
× n̂

)
.

In terms of unit vectors, therefore, we have the following:

T(n) = TN n̂ + TS ês. (26)

Just as we had used σnn to denote the component of T(n) along n̂, we can use σns to denote the component
of T(n) along ês.

Now, consider another unit vector, say, êt that is lying in the plane perpendicular to n̂, has a common origin
as n̂ and T(n) but, unlike ês, is not coplanar with T(n) and n̂. If we take the dot product T(n) · êt, then the
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resulting component would also lie on the plane perpendicular to n̂. It is important to note that while ês is
unique, we can have infinite such êt. In fact, ês is a special case of êt distinguished by its requirement to be
coplanar with T(n) and n̂.

The component of T(n) given by the dot product T(n) · ês is also a shearing component of T(n). However,
TS = T(n) · ês is a special shearing component distinguished by its requirement to be coplanar with T(n)

and n̂.

Just as we had used σnn and σns to denote the components of T(n) along n̂ and ês, respectively, we use σnt
to denote the component of T(n) along êt.

VERY IMPORTANT: In the previous chapter on Kinematics, the shear component of strain tensor was
physically interpreted by referring to elemental line segments along two perpendicular directions. Similarly,
here, the shearing components of T(n) can be related to two perpendicular directions. We can say that
σnt = T(n) · êt is related n̂ and êt while σns ≡ TS = T(n) · ês is related to n̂ and ês. We have the following:

σnt =
[
T(n) · êt

]
,

=
[
T(n)

]T
[êt] ,

= [σ · n̂]
T

[êt] ,

=
(

[σ]
T

[n̂]
)T

[êt] ,

= [n̂]
T

[σ] [êt] .

Similarly, we have σns ≡ TS = [n̂]
T

[σ] [ês].

7 Principal stress

In the previous chapter on Kinematics, after we had found an expression for the normal or engineering strain
along a given direction (or, unit vector) in terms of a given strain tensor, we had set about the problem of
finding the directions along which the normal strain was maximum - these strains being referred to as the
principal strains. We are at a corresponding point in this chapter. We have in our hands the expression for
the normal stress σnn ≡ TN , and we set about the following problem:

Given a state of stress σ referred to coordinate axes along the directions ê1, ê2, and ê3, which n̂ maximizes
σnn ≡ TN?

We could proceed exactly as in the previous chapter by using the method of Lagrange multiplier but we take
up another method as follows:

We first note that for TN to be maximum, T(n) must be parallel to n̂.

Now, referred to ê1, ê2, and ê3, we have:

n̂ = ê1n1 + ê2n2 + ê3n3.

Therefore, T(n) ‖ n̂ with its magnitude entirely contributed by TN must be

T(n) = TN n̂,

or, T(n) = ê1(TNn1) + ê2(TNn2) + ê3(TNn3). (27)

The plane defined by n̂ is the principal plane and TN is the principal stress. Henceforth, we will denote TN

by σ. Using this new notation, Eq. (27) can be written in component form as
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T(n)1 = σn1, (28a)

T(n)2 = σn2, (28b)

T(n)3 = σn3. (28c)

Furthermore, using from Cauchy’s formula (see Eq. (14)),

T(n)1 = σ11n1 + σ21n2 + σ31n3, (29a)

T(n)2 = σ12n1 + σ22n2 + σ32n3, (29b)

T(n)3 = σ13n1 + σ23n2 + σ33n3. (29c)

Now, (29a) - (28a), (29b) - (28b), and (29c) - (28c) gives us

(σ11 − σ)n1 + σ21n2 + σ31n3 = 0, (30a)

σ12n1 + (σ22 − σ)n2 + σ32n3 = 0, (30b)

σ13n1 + σ23n2 + (σ33 − σ)n3 = 0. (30c)

For non-trivial solutions of n1, n2, and n3, we must have

∣∣∣∣∣∣
σ11 − σ σ21 σ31
σ12 σ22 − σ σ23
σ13 σ23 σ33 − σ

∣∣∣∣∣∣ = 0. (31)

On expanding,

σ3 − (σ11 + σ22 + σ33)σ2 +
(
σ11σ22 + σ22σ33 + σ33σ11 − σ2

12 − σ2
23 − σ2

31

)
σ

−
(
σ11σ22σ33 + 2σ12σ23σ31 − σ11σ2

23 − σ22σ2
31 − σ33σ2

12

)
= 0,

or, σ3 − I1σ2 + I2σ − I3 = 0, (32)

where

I1 = σ11 + σ22 + σ33, (33a)

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

23 − σ2
31

=

∣∣∣∣σ11 σ12
σ12 σ22

∣∣∣∣+

∣∣∣∣σ22 σ23
σ23 σ33

∣∣∣∣+

∣∣∣∣σ33 σ31
σ31 σ11

∣∣∣∣ , (33b)

I3 = σ11σ22σ33 + 2σ12σ23σ31 − σ11σ2
23 − σ22σ2

31 − σ33σ2
12,

=

∣∣∣∣∣∣
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

∣∣∣∣∣∣ . (33c)

Here, I1, I2, and I3 are stress invariants. These are not the only stress invariants. Other invariants can be
formed from them. For instance, 2I21 − 6I2 is another stress invariant.

There are a couple of important facts associated with principal stresses and principal directions that follow
from general theory of eigenvalues (covered in Mathematics II in First Year):

(i) Eigenvalues of a real, symmetric matrix are real. The stress matrix is real and symmetric. So the
principal stresses are always real (as one would, of course, expect!)

(ii) The eigenvectors corresponding to distinct eigenvalues are orthogonal to each other. So if the principal
stress values are all different, then the principal directions are mutually perpendicular to each other.
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8 State of stress referred to principal directions

We can choose to orient the coordinate axes along three mutually perpendicular principal directions. In that
case, the state of stress shapes up (in matrix representation) as

[σ] =

σ(1) 0 0
0 σ(2) 0
0 0 σ(3)

 , (34)

where σ(1), σ(2), σ(3) are the three principal stresses. The fact that the stress matrix referred to axes that are
directed along the principal directions must be diagonal is embedded in the definition of the principal stress
itself. The principal stresses are defined to be the normal components of the traction vectors on those planes
where the traction vector is parallel to the unit normal to the plane itself. In other words, a component along
a direction perpendicular to this unit normal (i.e. along the plane itself) must be necessarily zero. So, if
the principal directions themselves are chosen as the coordinate axes, then the traction vector corresponding
to each principal plane will be entirely along the axis perpendicular to the plane and along the plane there
will be no component - meaning that along the other two coordinate axes which necessarily must lie on the
plane, there can be no component of the traction. Thus, stress components along these two directions (the
shear directions) must be zero.

9 Octahedral stress

Consider the coordinate axes aligned along the principal directions. A plane that is equally aligned to
these axes is called an octahedral plane. For such a plane, |n1| = |n2| = |n3|. Now, since we must have
n21 + n22 + n23 = 1, therefore

|n1| = |n2| = |n3| =
1√
3
. (35)

Note that there can be eight such planes and together they form an octahedron.

Normal and shear stress on each of these planes are referred to as octahedral normal stress and octahedral
shear stress

σoct = σ11n
2
1 + σ22n

2
2 + σ33n

2
3

=
1

3
(σ11 + σ22 + σ33) =

1

3
I1. (36)

τ2oct = (σ11 − σ22)
2
n21n

2
2 + (σ22 − σ33)

2
n22n

2
3 + (σ33 − σ11)

2
n23n

2
1

=
1

9

[
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
]

=
1

9

[
2 (σ11 + σ22 + σ33)

2 − 6 (σ11σ22 + σ22σ33 + σ33σ11)
]

=
1

9

(
2I21 − 6I2

)
(37)

From the last equation we have

|τoct| =
√

2

3

(
I21 − 3I2

)1/2
(38)
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10 Decomposition into mean and deviatoric parts

A general state of stress matrix can be decomposed as follows:

[σ] ≡

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 =

σm 0 0
0 σm 0
0 0 σm


︸ ︷︷ ︸

[σM]

+

σ11 − σm σ12 σ13
σ12 σ22 − σm σ23
σ13 σ23 σ33 − σm


︸ ︷︷ ︸

[σD]

, (39)

where σm is taken as σm =
1

3
(σ11 + σ22 + σ33) ≡ 1

3
I1 with I1 being the first stress invariant of σ. Equiva-

lently, σm = 1
3 tr(σ) where tr is the trace. In the above, σM is the mean stress tensor and σD is the deviatoric

stress tensor. Note also that the first stress invariant of the deviatoric stress tensor, σD, is 0 while the first
invariant of the mean stress tensor, σM is I1 itself.
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