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The force between two approaching solids in a liquid medium becomes increasingly large with decreasing separation
- a phenomenon that prevents contact between the two solids. This growth in force occurs because of the intervening
liquid, and, studies of such physical systems constitute, the classical discipline of lubrication. Furthermore, when
the solid(s) are soft, there are quantitative as well as qualitative alterations in the force interaction due to the solids’
deformation. The underlying physics as well as resultant system behaviour are even more complex when forces of
non-hydrodynamic origin come into play. Two major classes of such forces are the DLVO (Derjaguin-Landau-Verwey-
Overbeek) forces and the non-DLVO molecular forces. Studies assessing the coupling of these physical phenomenon
are avenues of contemporary research. With this view, we perform an analytical study of oscillatory motion of a
rigid sphere over an ultra-thin soft coating with an electrolytic solution filling the gap between them. We delineate
the distinctive effects of solvation force as well as substrate compliance. Our key finding is the major augmentation
in the force and substrate-deformation characteristics of the system due to solvation force when the confinement
reduces to a few nanometers. Consideration of solvation force leads to upto four orders of magnitude and upto three
orders of magnitude increment in force and substrate-deformation, respectively. While higher softness leads to higher
deformation (as expected), its effect on force and substrate-deformation characteristics exhibits a tendency towards
amelioration of the increment due to solvation force.
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I. INTRODUCTION

Understanding the interaction between a fluid and its confin-
ing solid boundaries is immensely important in a wide variety
of applications ranging from modelling of human physiology
to industrial and scientific tribological applications1. The mo-
tion of an object close to a wall with intervening fluid is one of
the cornerstones of lubrication studies. An established finding
of these studies is the growth in lift generated on the object
upon approach, enabling the design of robust and effective
bearing setups2–4. Furthermore, there is rich literature on ‘soft
lubrication’ too, where either the approaching object or the
wall or both are deformable5–15. Soft-lubrication finds appli-
cations in topics ranging from biotransport modelling16–19 to
tool design and analysis20–22. Such soft-lubrication setups are
wide-spread in both natural and man-made world, examples
being scanning probe microscope (SPM) and surface force ap-
paratus (SFA)23–29 and motion of biological entities like red
blood corpuscles (RBCs) in fluidic environments30–32.
With classical purely-hydrodynamic studies in hard- and soft-
lubrication33–37 serving as a solid foundation, a number of
later studies considered the additional effects of electrokinet-
ics and van der Waals forces38–45. An insightful finding of
these works is that the presence of an electrical double layer
(EDL) leads to increase in the lift on the object. On the other
hand, effects of van der Waals force are not as straightfor-
ward and exhibit dependence on the interplay of substrate
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softness and Hamaker’s constant. Overall, these studies have
expanded the scope of soft-lubrication through the incorpora-
tion of forces of non-hydrodynamic origin. More specifically,
the force interactions studied in these works include EDL dis-
joining and van der Waals forces, which together are termed as
DLVO (Derjaguin-Landau-Verwey-Overbeek) forces. DLVO
forces fall under the purview of continuum description of the
intervening fluid in regards to their theoretical modelling.
Consideration of DLVO forces assists in satisfactory mod-
elling of ‘object-near-a-wall’ setups with object-wall separa-
tion in the range of 10-100 nm. However, for similar se-
tups with smaller object-wall separations, considering only
the hydrodynamic and DLVO force interactions becomes in-
adequate in explaining observed phenomena46–48. For such
systems, non-continuum forces of molecular interactions be-
tween various materials present, i.e., non-DLVO molecular
forces, become increasingly important47,49. Factoring in these
forces apart from hydrodynamic and DLVO forces is cru-
cial for understanding soft-lubrication at nanometric separa-
tions. Their importance is supported by the fact that at such
separations, these forces heavily dominate the force interac-
tions between the object and the wall. While the experi-
mental and statistical mechanics studies of non-DLVO forces
span a few decades48–62, there is an evident drift of the aca-
demic community to their inclusion in detailed theoretical
soft-lubrication63–67.
Hence, with the intent of contributing to the growing research
literature on incorporating these force interactions for nano-
scale tribological studies, an analytical treatment of oscilla-
tory motion of a rigid sphere over a soft ultra-thin substrate
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FIG. 1. Schematic of an oscillating rigid sphere near a ultra-thin soft
coating, h0 and ω are sphere oscillation amplitude and frequency,
respectively, i.e. the sphere undergoes oscillations of ho cos(ωt)

coated on a rigid platform with intervening electrolytic solu-
tion is presented in this article. The emphasis is on study-
ing the role of solvation force, i.e. the force between sur-
faces due to confinement-induced structuring of intervening
solvent61,68, which has been incorporated as a closed-form
expression. For the setups studied, hydrodynamic pressure
is found to be much smaller than DLVO and solvation forces,
and thus, the latter dominate the system behaviour through-
out. Furthermore, EDL disjoining pressure dominates for
relatively larger separations while van der Waals and solva-
tion forces dominate for smaller separations. Solvation force
emerges as the dominant force at extremely small separations,
rendering hydrodynamic and DLVO forces negligible. The
consideration of solvation force along with hydrodynamic and
DLVO forces accounts for amplification of upto four orders
of magnitude in force between the surfaces, and upto three
orders of magnitude in substrate deformation. This study es-
sentially assimilates the non-continuum solvation force into
the continuum-description based mathematical framework for
a specific soft-lubrication setup, viz., rigid sphere oscillating
above soft ultra-thin coating. Therefore, it serves as an ex-
tended pseudo-continuum model capable of accounting for
the effects of high-proximity-induced non-hydrodynamic con-
tinuum and molecular force interactions in determining the
behaviour of similar physical systems. Our model contributes
to a growing family of such models constituting a maturing
framework capable of complementing computationally ex-
pensive molecular dynamic simulations for related problems,
where an in-depth analysis of underlying molecular physics is
not required.

II. PROBLEM DESCRIPTION

Sinusoidal oscillations of a rigid sphere close to a soft thin
substrate layer coated on a rigid platform with intervening
fluid along an axis perpendicular to the undeformed fluid-
substrate interface is considered (as presented in figure 1).
The major system characteristics of concern are the total force
between the surfaces and the fluid-substrate interface deflec-
tion (henceforth referred to as ‘force’ and ‘deflection’, respec-
tively).

A. Model Setup

The substrate material is modelled as a linear-elastic and
isotropic solid, with a flat horizontal profile for the unde-
formed fluid-substrate interface. The intervening fluid is
a dilute aqueous monovalent binary electrolytic solution.
The average height of sphere from origin (D) as well as the
undeformed substrate thickness (L) are small compared to the
sphere radius throughout the cases studied. The co-ordinate
system used and the pertinent length scales of the setup are
presented in figure 1, with r-z notation used for all variables
pertaining to fluid flow and r-y notation for all variables
pertaining to substrate deformation (y is positive in the
upward direction).
The substrate deformation components are denoted by u,
with the appropriate subscripts representing the direction
of the component. Total pressure is denoted by p, which is
the sum of hydrodynamic and non-hydrodynamic pressure
components, and hydrodynamic (hd) pressure is denoted by
p?. The oscillation amplitude and frequency of the sphere
are h0 and ω , respectively, and D is the mean separation of
the sphere from the origin. The substrate is stuck to a rigid
platform at the bottom. The deflection l is positive when
opposite to the direction of y-axis, hence the gap height is
H + l. In the lubrication region, the expression for H follows
the parabolic approximation26,

H = D+
r2

2R
+h0 cos(ωt). (1)

The deflection profile l is part of the solution (given by
l(r, t) =−uy(r,y, t) at y = 0).
The characteristic length, velocity, pressure, time and defor-
mation scales are presented on the right side of table I, where
the length, velocity and pressure scales are in tandem with
classical hydrodynamic studies of lubrication setups. The
time scale is taken as inverse of the sphere oscillation fre-
quency. The characteristic scale of substrate deformation (λ )
is obtained from the substrate-fluid traction balance condition
and is specified in subsection III B. The pertinent length scale
ratios for the mathematical formulation are presented in the
left side of table I. A crucial facet of the setup being studied
is that the oscillation amplitude of the sphere is so close to
the average height of sphere from origin (D) that the length-
scale along z-axis varies substantially throughout the oscil-
lation and is therefore dependent on time. As a result, the
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z-axis length scale has to be considered separately for each
time instant and hence, all the associated non-dimensional pa-
rameters and governing equation co-efficients become time-
dependent as well. Although this approach deviates from
scaling conventions, it is anticipated that such time-dependent
scaling would not yield incorrect results so long as the simpli-
fications to the pertinent governing equations and boundary
conditions remain consistent for all time-instants in the dura-
tion of the study. Hence, the characteristic length-scale for
z-axis, d(t), is,

d(t) = D+h0 cos(ωt) = D(1+α cos(ωt)). (2)

B. Mathematical Formulation

The setup studied is mathematically represented by the con-
tinuity and momentum conservation equations for the fluid
flow and mechanical equilibrium equation for the substrate
deformation. No-slip and no-penetration boundary conditions
at fluid-substrate and fluid-sphere interfaces close the fluid
flow problem. No-deformation at substrate-platform interface
and traction-balance condition at fluid-substrate interface
close the substrate deformation problem. The equations
and boundary conditions are non-dimensionalized with the
characteristic scales as presented in table I, and expressions
presented henceforth are non-dimensionalized. The system is
evidently axisymmetric and non-rotating. The complete set
of non-dimensionalized equations and boundary conditions
are presented in Appendix A.
Following traditional simplifications and subsequent analysis
of soft lubrication studies10,44,45,69,70, we obtain the Reynolds
equation26,45,

ε

ε0

η

α

[
∂ l
∂ t
−
{

l
η

dη

dt
+

(
l +

r
2

∂ l
∂ r

)
1
ε

dε

dt

}]
− sin(t) =

1
12r

∂

∂ r

[
r(H +η l)3 ∂ p?

∂ r

]
, (3)

which is subject to the boundary conditions,

p? = 0 as r→ ∞, (4)

∂ p?

∂ r
= 0 at r = 0, (5)

and expression for substrate deformation,

uy =−
µωαε0

ε2κEy

(1+ν)(1−2ν)

(1−ν)
(1+ y)p, (6)

leading to the expression for l (which simply equals −uy at
y = 0) as8,10,

l =
µωαε0

ε2κEy

(1+ν)(1−2ν)

(1−ν)
p, (7)

where Ey is the substrate Young’s modulus and ν is its Pois-
son’s ratio. It should be noted that as the substrate mate-
rial behaviour approaches incompressibility, the formulation

TABLE I. Assigned Notations of Length Scale Ratios and Character-
istic Values of System Variables (time dependent ratios and charac-
teristic values demarcated by attaching ‘(t)’); µ is the fluid viscosity

Length Scale Assigned System Characteristic
Ratio Notation Variable Value

D
R

ε0 r ε(t)
1
2 R

d(t)
R

ε(t) z,H d(t)

h0

D
α y L

L
R

δ vr
ωh0

ε(t)
1
2

λ (t)
L

κ(t) vz ωh0

κ(t)δ
ε(t)

η(t) t
1
ω

δ

ε(t)
1
2

γ(t) p
µωαε0

ε(t)2

u, l λ (t)

and scales vary significantly from the one that has been em-
ployed to derive equation (7). Therefore, this expression is
valid only for compressible substrates and doesn’t stand ap-
plicable for incompressible substrates. A brief discussion and
scaling analysis for incompressible substrates is presented in
Appendix B.
The pressure in expression (7) comprises not only the hydro-
dynamic pressure but also the EDL disjoining, van der Waals
and solvation pressure components. Thus, p is the total pres-
sure,

p = p?+ΠEDL +ΠvdW +Πsol. (8)

In equation (8), the second to fourth term on RHS are non-
hydrodynamic pressure components, each denoted by Π, and
with the subscripts EDL, vdW and sol signifying EDL disjoin-
ing pressure, van der Waals pressure and solvation pressure,
respectively. The comparison between sphere-origin separa-
tion and sphere-substrate interface deflection depends on both
the elastic properties of the substrate material as well as non-
hydrodynamic pressure characteristics. This could lead to
‘one-sided’ dependence of substrate deformation on the flow
dynamics (when deflection is negligible compared to sphere-
origin separation) or ‘two-sided’ coupling (when deflection is
comparable to sphere-origin separation).

C. Non-Hydrodynamic Pressure Components

While hydrodynamic pressure directly affects the flow dy-
namics, the non-hydrodynamic pressure components indi-
rectly affect the flow dynamics by altering deflection, which
appears in the Reynolds equation. Furthermore, the impli-
cations of non-hydrodynamic pressure components on defor-
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mation and force characteristics of the system are crucial and
exclusive.
Of the pressure components in expression (8), EDL disjoining
and van der Waals pressure components constitute the DLVO
forces. The EDL disjoining pressure is the osmotic pressure
generated by the non-uniform distribution of ionic species
(occurring from the interplay between entropic and electro-
static effects) when the intervening fluid is an electrolytic so-
lution. This osmotic pressure becomes significant as the EDL
overlap increases and it is approximately represented by the
exponentally decaying expression45,61,71,

ΠEDL =
64n0kBT ζ̃ 2ε2

µωαε0
exp(−εKR(H +η l)) , (9)

where ζ̃ is tanh
(

qζ

4kBT

)
, K =

√
2q2n0

ε̄ ε̄0kBT
is the inverse De-

bye length, ζ is the zeta-potential, ε̄ is the relative permittivity
of the fluid, ε̄0 is the permittivity of vacuum, kB is Boltzmann
constant, q is elementary charge, and n0 is the salt’s elec-
troneutral number density. On the other hand, van der Waals
force is a force between surfaces arising out of the aggregate
electrostatic interactions between the induced dipoles on the
surfaces, their respective bulks and the intervening fluid. The
van der Waals pressure between two large surfaces (in com-
parison to the separation between them), subject to certain
conditions regarding the distance between the surfaces61,72,73,
varies inversely with the cube of the separation between the
surfaces and grows to significant magnitude at small separa-
tions. Its expression is61,

ΠvdW =− Asfw

6πεε0αµωR3
1

(H +η l)3 , (10)

where, Asfw is the Hamaker’s constant which is typically of
the order of 10−20 Joules. It should be noted that the DLVO
forces are often expressed in the form of interaction energy
between two bodies, with the force between bodies being the
derivative of the interaction energy with separation. Further-
more, both the DLVO force expressions for a sphere-surface
pair transform into the DLVO force (per unit area) expres-
sions for surface-surface pair for separations much smaller
than the sphere radius, yielding the pressure expressions (9)
and (10)61.
The force between surfaces at separations smaller than ∼ 5
nm include non-trivial components arising out of the molec-
ular nature of the intervening liquid. These forces become
significant and much larger in comparison to DLVO forces at
length scales where DLVO theory becomes inapplicable74–76.
For any system consisting of a fluid-solid interface, fluid
molecules close to the interface structure themselves in or-
dered layers with the ordering dampening out into the fluid
bulk in about five to ten times the fluid particle size77,78. Thus,
confinement of the fluid molecules by surfaces separated by
lower than five to ten times the fluid particle size causes the
structuring of the fluid molecules to oscillate between opti-
mal and pessimal as the separation between the surfaces is
varied. The energy variation associated with this variation of

packing with separation manifests itself as a force between
the two surfaces called the solvation force61,68,79. This force
has a damped oscillatory variation with the surface separa-
tion for perfectly smooth surfaces that do not interact with
the fluid molecules. It should be noted that force between
surfaces in real-world scenarios comprises other effects as
well, like fluid-surface energy-interactions (solvophobicity),
hydration effects, surface roughness, polymeric steric effects,
etc.55,56,58,61,62,80,81 . The applicable short-range force law for
any real-world system will involve an assimilation of all force
interactions specific to that system. However, in the current
study, we focus on assessing the effects of the resultant sol-
vation force due to short-range fluid structuring for the sys-
tem being studied and assimilation of other short-range en-
ergy interactions will be done in future studies. Focusing on
the mathematical expression for solvation pressure, while a
theoretically rigorous and reliable closed-form expression for
simple water-like fluids is a topic of active research, studies of
solvation pressure in available literature indicate that it has a
damped-oscillatory profile with exponential damping and si-
nusoidal oscillations. The decay as well as oscillation length
for simple spherical fluids is approximately the fluid particle
size. Therefore, we consider the expression for solvation pres-
sure as61,68,

Πsol =
Λε2

µωαε0
exp
(
−εR(H +η l)

s

)
cos
(

2πεR(H +η l)
s

+φ

)
(11)

where, Λ is the solvation pressure amplitude, s is the fluid
particle size, and φ is the solvation pressure phase. A brief
summarization of our literature survey on solvation forces is
presented in Appendix D.

III. SOLUTION

Since the system behaviour is quasi-steady for flow dynamics
and quasi-static for substrate deformation, the solution for one
complete oscillation is representative of the complete solution
for any particular set of parameters. Hence, solution method-
ology for one complete oscillation has been formulated.
From the mathematical modelling and associates simplifi-
cation of the governing equations and boundary conditions,
equations (3) and (7) emerge as the coupled governing equa-
tions, subjected to boundary conditions (4) and (5) and con-
jugated by expressions (9), (10) and (11). A straightforward
analytical solution of the problem is evidently not plausible,
and therefore asymptotic and semi-analytical methodologies
are posited, as presented ahead.

A. Classic Asymptotic Approach

Proceeding with the typical classical asymptotic solution
approach to such soft lubrication problems that is being
studied45,70, η is taken as the small parameter for the per-
turbation expansion. Although the value of η is unknown,
the asymptotic solution methodology is presented here and
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discussion on the expression for η is presented in subsection
III B, along with discussion on conditions where classical ap-
proach doesn’t hold good. Hence, continuing with η as the
small parameter, the perturbation expansions of relavent vari-
ables are,

pi = pi(0)+η pi(1)+O(η2), (12)

l = l(0)+η l(1)+O(η2). (13)

The leading order solution for hydrodynamic pressure is ob-
tained as,

p?(0) =
3sin(t)

H2 , (14)

and the leading order solutions of the non-hydrodynamic pres-
sure components are simply their expressions (i.e. expressions
(9), (10), (11)) without the deflection term. The first order so-
lution of hydrodynamic pressure is obtained by numerically
solving the first order split of the Reynolds equation. The
leading and first order solutions of deflection are simply the
split of expression (7) for each order.

B. Semi-analytical Approach

We first obtain an expression for η , so as to facilitate the uti-
lization of the method in subsection III A as well as ascertain
its limitations. Focussing on the expression for deflection (7),
it can be interpreted that deflection is the effect and the total
pressure is the cause. Therefore, in keeping with the conven-
tions of scaling analysis, the non-dimensionalized deflection
and total pressure terms should scale equal, and hence, the fac-
tor multiplied to total pressure should scale as 1, which gives
the expression for κ . With κ being the only unknown term in

the expression for η (which is
κδ

ε
), the expression for η is

obtained as,

η =
µωαε0δ

ε3Ey

(1+ν)(1−2ν)

(1−ν)
. (15)

The expression for η indicates that it depends on the fluid and
substrate material properties (µ , Ey and ν) as well as the sys-
tem dimensions and imposed dynamics (ω , α , ε0, δ and ε).
Furthermore, the magnitude of η varies with time due to its
dependence of ε . Therefore, η is an imposed time-dependent
parameter of the system. Furthermore, getting the expres-
sion for η is tantamount to getting the expression for λ since
λ = κL =

εη

δ
L.

Two conditions need to be considered when the asymptotic
method presented in subsection III A would be rendered inap-
plicable. The first condition emerges from the fact that hydro-
dynamic pressure and all non-hydrodynamic pressure compo-
nents are non-dimensionalized with the classical lubrication
hydrodynamic pressure scale. However, at very small sphere-
substrate separations, the non-hydrodynamic pressure compo-
nents exceed this scale. Therefore, the non-dimensionalized

total pressure and resultantly the deflection will exceed unity
by approximately a magnification factor M,

M = 1+
ε2

µωαε0

[
64n0kBT ζ̃

2 exp(−εKR)+

Asfw

6πε3R3 +Λexp
(
−εR

s

)]
. (16)

For the asymptotic method presented in subsection III A to
hold good, it is required that the leading order deflection term
(i.e. η l(0)) scale at least an order smaller than H, which scales
as 1. Therefore, if ηM > 0.1, the asymptotic method ceases
to be applicable. The second condition comes from the re-
striction that the first order expressions for non-hydrodynamic
pressure components as per the perturbation split of subsec-
tion III A do not exceed the leading order solution, the viola-
tion of which would be tantamount to divergence of the per-
turbation scheme. From the first order expressions of all three
non-hydrodynamic pressure components, a divergence factor
N is obtained as,

N = max [ηεKRM,3ηM,

ηεRM
s

(
1+2π tan

(
2πεR

s
(1+ηM)+φ1

))]
. (17)

If N > 1, the asymptotic method ceases to be applicable.
However, this check needs to be applied only when the non-
hydrodynamic pressure components come into significance in
comparison to hydrodynamic pressure, a reasonable condition
for which can be taken as M > 0.01. Therefore, when ηM ex-
ceeds 0.1 or N exceeds 0.1 given ηM is higher than 0.01 or
both, then the asymptotic method has to be replaced by an it-
erative numerical approach which is discussed ahead.
The deflection is given by expression (7), with the non-
hydrodynamic pressure component expressions being (9),
(10) and (11) and hydrodynamic pressure being the solution
of equation (3), subject to boundary conditions (4) and (5).
This leads to expression (7) becoming an implicit equation in
l,

l =
µωαε0

ε2κEy

(1+ν)(1−2ν)

(1−ν)
p(l) = p(l) = F (l) , (18)

which is solved numerically at any time-instant and any point
on the r-axis using the iterative bisection root-finding method
where the solution of the last time step is used as the guess.
While the expressions for non-hydrodynamic pressure com-
ponents are available as closed-form functions of l, same
is not true for hydrodynamic pressure. However, since hy-
drodynamic pressure becomes small in comparison to non-
hydrodynamic pressure components when the semi-analytical
method is employed, the hydrodynamic pressure is numeri-
cally solved for with iterations of the finite-difference solution
of Reynolds equation enveloped over all the node-wise solu-
tions of l.
From the solution methodology, η , M and N emerge cru-
cial in determining the solution method as well as in pro-
viding insights on the system behaviour. The first parame-
ter, η , that compares deflection to sphere-origin separation
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TABLE II. Property/Parameter values used for obtaining representa-
tive solution

Parameter Value Parameter Value
Geometry Substrate
R 1 mm ‘Hard’
D 50 nm Ey 90 GPa
L 50 nm ν 0.20

h0 10 - 49.5 nm kflex 5x10−4 nm/MPa

ω 1 Hz κmax 10−6

α ≤ 0.99 ηmax 10−4

ε0, δ 5x10-5 ‘Stiff’
γmax 0.08 Ey 700 MPa
T 298.15 K ν 0.43
Fluid kflex 0.025 nm/MPa

ρ 1000 kg m−3 κmax 10−4

µ 0.001 Pa·s ηmax 10−2

ΠEDL ‘Pliant’
n0 1 mM Ey 4.25 MPa
ζ 100 mV ν 0.46
ε̄ 80 kflex 2.545 nm/MPa

ΠvdW κmax 10−6

Asfw
a 5 x 10−21 J ηmax 10−4

Πsol ‘Soft’
Λ 1.25 GPa Ey 9.5 kPa
s 270 pm ν 0.492
φ 0 kflex 247.33 nm/MPa

κmax 10−6

ηmax 10−4

d(t), represents the effect of deflection on the flow dynam-
ics (by altering the flow bounds). It is dependent on fluid and
solid properties and the imposed system geometry and dynam-
ics. The second parameter, M, highlights the growth of non-
hydrodynamic pressure components to dominate over hydro-
dynamic pressure. It is dependent on all the system properties
on which η is dependent as well as parameters corresponding
to non-hydrodynamic pressure components, i.e. fluid particle
size, solvation pressure amplitude and phase, Hamaker’s con-
stant, surface zeta-potential, fluid dielectric constant and elec-
trolyte concentration. The third parameter, N keeps a check
on the divergence of the non-hydrodynamic pressure compo-
nents pertaining to the asymptotic method. It depends on the
same system properties that M is dependent upon, is primarily
a mathematical parameter and doesn’t provide any major in-
sights about the system behavior that can’t already be drawn
from η and M.

IV. RESULTS

The parameters corresponding to system geometry, imposed
dynamics, fluid and solid properties, and DLVO and solva-

tion pressure components are presented in table II. The sol-
vation pressure parameters, i.e., amplitude (Λ) and phase (φ ),
are taken from the data for the theoretically-obtained solva-
tion pressure profile between smooth surfaces in a solvent of
volume fraction 0.366568.
Results corresponding to four substrates are obtained. Rang-
ing from hardest to softest, these substrates are labelled ‘hard’,
‘stiff’, ‘pliant’, and ‘soft’. For each substrate, three solutions
are obtained - first considering all pressure components and
labelled ‘full’, second considering only hydrodynamic and
DLVO (i.e. van der Waals and EDL disjoining) pressure com-
ponents and labelled ‘DLVO’, and third considering only hy-
drodynamic pressure and labelled ‘hd’. In some of the plots,
the difference between the full and DLVO solution are also
presented to delineate the contribution of solvation pressure;
these plots are labelled ‘sol. contrib.’.
For each substrate−solution combination, cases correspond-
ing to amplitudes ranging for 10 nm up to 49.5 nm are stud-
ied. The nomenclature of ‘substrate’ to represent softness,
‘solution’ to represent nature of force interactions and ‘case’
to represent amplitude, with the respective definitions and la-
bels, is used consistently throughout the discussion in subsec-
tions IV A and IV B and appendix C. Furthermore, the term
‘deflection’ used in these subsections and appendices refers
to the fluid-substrate interface deflection at the origin and the
term ‘force’ refers to the total force between the sphere and
substrate. Lastly, the plot-line colours grey, magenta, blue
and green are used to depict hard, stiff, pliant and soft sub-
strate, respectively, and the linestyles unbroken, dashed-dot,
and dotted are used to depict full, DLVO and hd solution, re-
spectively, in Figures 2 to 7.
The maximum amplitude case studied for the hard and stiff
substrates is 49.5 nm. The maximum amplitude case studied
for the pliant substrate is 48 nm, because for higher amplitude
cases, the system response exhibits adhesive characteristics.
The behaviour of non-DLVO forces close to adhesion being
complex, we have refrained from going higher than 48 nm.
The maximum amplitude case studied for the soft substrate is
40 nm, because for higher amplitude cases, the fluid-substrate
interface deflection goes higher than 5 nm, which becomes
comparable to the substrate thickness (50 nm) and thus re-
quires treatment with a finite-strain constitutive formulation.
Considering the expression for deflection, equation (7), the
expression relating dimensional deflection and total pressure
is,

l′ =
L
Ey

(1+ν)(1−2ν)

(1−ν)
p′ = kflex p′ (19)

where, kflex represents the substrate flexibility and has the di-
mension of length divided by pressure, and the superscript ′

signifies that the terms are dimensional. Value of kflex for the
four substrates considered is presented in table II.

A. In�uence of Oscillation Amplitude

We investigate the three cases of 40 nm amplitude, 48 nm am-
plitude and 49.5 nm amplitude. These amplitudes cases are
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(a) (b)

FIG. 2. Evolution of (a) force between sphere and substrate, and, (b) fluid-substrate interface deflection at the origin, for the 40 nm amplitude
case

distinct based on which pressure component(s) are significant
at and around the origin near mid-oscillation. For the 40 nm
amplitude case, it is the EDL disjoining pressure, with the
other pressure components negligible. For the 48 nm ampli-
tude case, it is all the three non-hydrodynamic pressure com-
ponents, with the hydrodynamic pressure negligible. For the
49.5 nm amplitude case, it is the solvation pressure, with the
other pressure components negligible. The 40 nm, 48 nm, and
49.5 nm amplitude cases are represented by figures 2, 3, and 4,
respectively. Each figure has force evolution presented in the
left panel and deflection evolution presented in the right panel.
All plots are logarithm-scaled on the vertical axis and linear-
scaled on the horizontal axis. Absolute values are plotted to
accommodate the plots on the log scale. For plots that have
negative values, one positive maxima is marked with a ‘+’ sign
and every alternate maxima from it is positive. Deflection evo-
lution is shown for only a duration around the mid-oscillation
when deflection magnitude is significant. Deflection evolution
for substrate−solution pairs that have magnitude lesser than 1
pm throughout the oscillation are not presented. A short dis-
cussion on evolution of individual pressure components and
total pressure at the origin for these three amplitude cases for
the full solution of hard substrate is presented in Appendix C.
We now discuss these amplitude cases one by one.

1. EDL Pressure Dominated Amplitude Case

This case has h0 = 40 nm, and is represented by figure 2.
The dominant pressure component near mid-oscillation is the
repulsive EDL disjoining pressure, with the other pressure
components being negligible in comparison. The full solution
and DLVO solution are identical for each of the substrates.
We discuss the force evolution first, presented in figure 2a.

Considering the full solution, the force evolution for the
hard, stiff and pliant substrates are identical. However, there
is contrast between the force evolution for these three and
for the soft substrate, particularly near the mid-oscillation.
Force evolution for the soft substrate grows to a smaller
maxima compared to the other three. This occurs because
the fluid-substrate interface for the soft substrate deflects
further into the substrate bulk (because of higher flexibility)
and hence yields a larger gap-height. This leads to smaller
magnitude of the EDL disjoining pressure, and this effect
extends along the radial span as well and is pronounced near
mid-oscillation.
Considering the DLVO solution, the force evolution is identi-
cal to that for the full solution for each of the four substrates.
This is because the substrate-sphere separation doesn’t get
small enough for solvation pressure to become significant at
any instance during the oscillation.
Considering the hd solution, the force evolution for all
four substrates are identical. The maximum force for hd
solution is about two orders smaller than full solution,
indicating the importance of considering non-hydrodynamic
force components at such separations. Furthermore, there is
significant qualitative contrast between force evolution for
the full solution and for the hd solution. While the former
is positive for most part of the oscillation and exhibits a
significantly higher repulsive maximum than attractive, the
latter is anti-symmetric, with the first half-oscillation being
repulsive and the second half-oscillation being attractive with
equal magnitude.
We discuss the deflection evolution next, presented in figure
2b.
Considering the full solution, the deflection for hard and
stiff substrates is negligible throughout the oscillation. The
deflection evolution of pliant and soft substrates shows
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(a) (b)

FIG. 3. Evolution of (a) force between sphere and substrate, and, (b) fluid-substrate interface deflection at the origin, for the 48 nm amplitude
case; solutions for only hard, stiff and pliant substrates are obtained for this amplitude case

identical qualitative trends. The maxima for the pliant
and soft substrates are ∼ 80 pm and ∼ 5 nm, whose ratio
is significantly smaller than the ratio of their kflex. This
contrast between the ratio of maxima and the ratio of kflex
is attributable to the larger ‘push-in’ of the soft substrate,
the same phenomenon that explained the contrast in force
maxima of the first three and the soft substrate.
Considering the DLVO solution, as expected, the deflection
evolution is identical to that for the full solution for each of
the four substrates.
Considering the hd solution, the deflection for hard, stiff and
pliant substrates is negligible throughout the oscillation. The
deflection evolution of soft substrate is qualitatively similar
to its force evolution, with maxima being ∼ 80 pm.

2. Intermediate Amplitude Case

This case has h0 = 48 nm, and is represented by figure 3. Only
the hard, stiff and pliant substrates are studied with this ampli-
tude. Near mid-oscillation, all three non-hydrodynamic pres-
sure components are significant and much larger than hydro-
dynamic pressure, with solvation pressure being the dominant
pressure component at and around the origin.
We discuss the force evolution first, presented in figure 3a.
Considering the full solution, the force evolution for the hard
and stiff substrates are identical. The force evolution for the
pliant substrate is also identical for most part of the oscilla-
tion, but near the mid-oscillation, the pliant substrate exhibits
lesser fluctuations than the other two. Comparing with the
40 nm amplitude case, while the trends are qualitatively sim-
ilar, there are two key differences - (i) short-lived but distinct
fluctuations appear near mid-oscillation, an indication of sol-

vation pressure becoming significant, and, (ii) the magnitude
of maxima is about half an order of magnitude higher.
Considering the DLVO solution, the force evolution is identi-
cal to that for the full solution for each of the three substrates,
except for the lack of fluctuations as can be seen in the left
inset of figure 3a.
In the right inset of figure 3a, we present the difference be-
tween force evolution for full solution and DLVO solution.
This difference signifies the explicit contribution of solvation
pressure. Near mid-oscillation, the difference is small (∼ 100
nN) in contrast to the actual force for either of full and DLVO
solutions (∼ 104 nN).
Considering the hd solution, the force evolution for all three
substrates are identical. Comparing with the 40 nm ampli-
tude case, while the trends are qualitatively similar, there
are two key differences - (i) the maxima are sharper and
closer to mid-oscillation, and, (ii) the magnitude of max-
ima is about half an order higher. These differences are ex-
pected, because hydrodynamic pressure follows the expres-

sion
3sin(t)

H2 · µωαε0

ε2 , which for a given oscillation amplitude
(i.e. for a given α) evolves with time according to the expres-
sion sin(t) · (1+α cos(t))−2 and has the pressure-amplitude
∼ 3µωαε0. For a higher α , the time-evolution gets sharper
and closer to t = π s and the pressure-amplitude increases.
We discuss the deflection evolution next, presented in fig-
ure 3b.
Considering the full solution, the deflection for the hard sub-
strate is negligible throughout the oscillation. The deflection
evolution of stiff and pliant substrates show identical qualita-
tive trends, with maxima being∼15 pm and∼0.4 nm, respec-
tively. The ratio of these maxima is significantly smaller than
the ratio of the substrates’ kflex, an outcome of the softness-
induced ‘push-in’ of the pliant substrate (this observation is in
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(a) (b)

FIG. 4. Evolution of (a) force between sphere and substrate, and (b) fluid-substrate interface deflection at the origin, for the 49.5 nm amplitude
case; solutions for only hard and stiff substrates are obtained for this amplitude case

tandem with the deflection evolution contrast of the pliant and
soft substrates for the 40 nm amplitude case). Furthermore, as
expected, both substrates exhibit fluctuations caused by sol-
vation pressure. There is an interesting qualitative contrast
though. The pliant substrate exhibits fluctuation-free smooth
deflection evolution for a significant duration near the mid-
oscillation, with rapid fluctuations occurring before and after.
This observation indicates that the pliant substrate exhibits a
‘lock-in’ with the sphere, meaning that for the said duration
near the mid-oscillation, its deflection evolves in such a man-
ner that the sphere-substrate separation remains almost con-
stant. A similar observation is absent for the stiff substrate.
Considering the DLVO solution, the deflection evolution is
identical to that for the full solution for each of the three sub-
strates, except for the lack of fluctuations.
In the inset of figure 3b, we present the difference between de-
flection evolution for full solution and DLVO solution. Near
mid-oscillation, this difference is very close to the deflection
for the full solution, and is much higher than that for the
DLVO solution. This is in contrast to force evolution, where
the difference was much smaller.
Considering the hd solution, the deflection evolution shows
trends similar to force evolution, and is significant only for the
pliant substrate and for a small duration near mid-oscillation.
Its maximum magnitude is ∼ 8 pm.
When comparing full solution to DLVO solution, a crucial dis-
tinction can be observed between force evolution and deflec-
tion evolution. While both are characterized by fluctuations
caused due to solvation pressure, the magnitude (in compar-
ison to the full solution) is much smaller for force evolution
than deflection evolution. Such a distinction occurs because
deflection responds to dominant pressure at the origin but
force evolution is significantly sensitive to interplay of pres-
sure components along the radial span. Solvation pressure,

while dominant at origin, dies down fast over the radial span
and hands over dominance to EDL disjoining pressure for a
substantial radial length. This effect can be observed in the
inset of subfigure (ii) of figure 5b (presented ahead), which
shows the radial variation of pressure components at t =

π

2
for the full solution for 48 nm amplitude case for stiff sub-
strate. We emphasize that the plot is log-scaled on the hori-
zontal axis, and therefore, solvation pressure is dominant for
a much smaller portion of the radial span than EDL disjoining
pressure. As a result, the force (which is total pressure inte-
grated over radial span) for full solution and DLVO solution
are close to identical.

3. Solvation Pressure Dominated Amplitude Case

This case has h0 = 49.5 nm, and is represented by figure
4. Only the hard and stiff substrates are studied with this
amplitude. Near mid-oscillation, and at and around the origin,
solvation pressure is much higher than all the other pressure
components and is practically equal to the total pressure.
We discuss the force evolution first, presented in figure 4a.
Considering the full solution, the force evolution for the
hard and stiff substrates are identical for most part of the
oscillation. However, near mid-oscillation, the stiff substrate
exhibits smaller fluctuations than the hard substrate. This
‘hard-stiff’ contrast is analogous to ‘stiff-pliant’ contrast for
the 48 nm amplitude case. Further comparing with the 48
nm amplitude case, there are two key differences - (i) the
flutuations in force response near mid-oscillation have much
higher magnitude, and (ii) the magnitude of force maxima
for full solution is higher by almost two orders of magnitude.
Both these differences are attributable to the pronounced
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(a)

(b)

FIG. 5. (a) Contour plot of stream function Ψ′ (equation (A18)) representing flow in the lubrication region, and, (b) radial variation of pressure

components and total pressure, at the time instances t =
π

2
,π,

3π

2
, for full solution for 49.5 nm amplitude case for stiff substrate; In panel

(a) - solid green line is the sphere’s profile, dotted brown line is the undeformed fluid-substrate interface, solid brown line is the deformed
fluid-substrate interface, direction of flow is depicted with the arrows; In panel (b) - the plots for vdW and sol pressure are superimposed
in subfigures (i) and (iii), the plots for hd, DL, and vdW pressure are superimposed in subfigure (ii), the plots for hd and vdW pressure are
superimposed in inset of subfigure (ii); In subfigure (ii) in Panel (b) - the inset presents radial variation of pressure components and total
pressure at the three time instances for full solution for 48 nm amplitude case for stiff substrate.

effect of solvation pressure, which persists for a higher
duration as well as extends farther along the radial span for
the 49.5 nm amplitude case in comparison to the 48 nm
amplitude case. This effect can be observed in subfigure (ii)
of figure 5b, where the main plots show the radial variation
of pressure components and total pressure for full solution
for 49.5 nm amplitude case for stiff substrate, and inset plots
show the same for 48 nm amplitude case. The total pressure
is approximately equal to solvation pressure for practically
the entire radial span for 49.5 amplitude case. In contrast, for
48 nm amplitude case, total pressure for radial distances after
∼ 1 µm is approximately equal to EDL disjoining pressure.
We again emphasize that the horizontal axes (main as well as
inset) are log-scaled.

Considering the DLVO solution, the force evolution is identi-
cal to that for the full solution for each of the two substrates,
except for the lack of fluctuations as can be seen in the left
inset of figure 4a.
In the right inset of figure 4a, we present the difference
between force evolution for full solution and DLVO solution.
Near mid-oscillation, the difference is significant and close
to the actual force for full solution, indicating that for
this amplitude case, solvation pressure leads to significant
deviation in force response from DLVO solution.
Considering the hd solution, the force evolution for the
hard and stiff substrates is identical. Comparing with the
48 nm amplitude case, while the trends are qualitatively
similar, the maxima is significantly sharper and closer to
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the mid-oscillation. This is an expected observation and is
explained based on the expression for hydrodynamic pressure
(as discussed in section IV A 2 above). The magnitude of
maxima is about half an order of magnitude higher than that
for the 48 nm amplitude case.
We discuss the deflection evolution next, presented in figure
4b.
Considering the full solution, the deflection evolution of hard
and stiff substrates shows identical qualitative trends, with
maxima being ∼60 pm and ∼0.6 nm, respectively. The ratio
of the maxima is smaller than the ratio of the substrate kflex,
an effect that has been observed for the smaller amplitude
cases as well and occurs due to higher push-in of the softer
substrate. As expected, both substrates exhibit fluctuations
near the mid-oscillation that are caused by solvation pres-
sure. Furthermore, similar to pliant substrate for the 48 nm
amplitude case, the stiff substrate exhibits fluctuation-free
smooth deflection evolution for a significant duration near the
mid-oscillation, with rapid fluctuations before and after.
Considering the DLVO solution, the deflection for the stiff
substrate has positive values (i.e. into the substrate) of the

order of 1 pm for times closer to t =
5π

6
s and t =

7π

6
s. How-

ever, there is a large negative maxima at the mid-oscillation,
where the ‘adhesive’ deflection grows upto almost 0.1 nm.
Deflection for the hard substrate is negligible throughout the
oscillation.
In the inset of figure 4b, we present the difference between
deflection evolution for full solution and DLVO solution.
Near mid-oscillation, this difference is practically equal to
the deflection for the full solution, in keeping with the strong
dominance of solvation pressure. Furthermore, the observed
‘dimple’ at mid-oscillation for stiff substrate is an outcome of
the aforementioned ‘adhesive’ deflection maxima for DLVO
solution.
Considering the hd solution, the deflection for either substrate
is negligible throughout the oscillation.
Lastly, in figures 5a and 5b, we present the streamlines (panel
(a)) and the radial variation of pressure components and total
pressure (panel (b)), respectively, for full solution for 49.5
nm amplitude case for stiff substrate, at the three instances
of quarter of an oscillation (t =

π

2
), mid-oscillation (t = π)

and three quarters of an oscillation (t =
3π

2
). The plots in

figure 5a are presented for a magnified part of the fluid-filled
gap near the origin, and the axes are linear-scaled. The
streamlines in subfigures (i) and (iii) are expectedly identical,
with the directions opposite. This is because subfigure (i)
corresponds to the highest sphere speed when approaching
and (iii) to the highest sphere speed when receding. For
both time instances, the dotted and dashed brown lines are
co-incidental, indicating negligible substrate deflection. In
subfigure (ii), while we obtain streamlines, we emphasize that
the flow is much more subsided in comparison to subfigures
(i) and (iii). This is because subfigure (ii) corresponds to
the time instance at which the sphere has slowed to a stop
at the instance of least separation. Furthermore, significant
substrate deflection can be observed in subfigure (ii), indi-

cating the strong influence of the non-hydrodyamic pressure
components at small separation. The plots in figure 5b have
the horizontal axes log-scaled and vertical axis linear-scaled.
The dominant pressure component in subfigures (i) and (iii) is
EDL disjoining pressure, with hydrodynamic pressure being
second and having equal magnitude and opposite signs in the
two subfigures. Van der Waals and solvation pressure are
negligible. In subfigure (ii), solvation pressure can be seen to
be practically equal to the total pressure for the entire radial
span, with the other pressure components being negligible.
This is in contrast to what is observed for full solution of 48
nm amplitude case (inset of subfigure (ii) of figure 5b), where
solvation pressure is dominant only near the origin, and EDL
pressure is dominant for the rest. The flow-field and radial
pressure distribution for full solution for other solids as well
as other amplitude cases is similar at the time instances of

t =
π

2
and t =

3π

2
. However, these variations at the time

instance t = π are significantly different depending upon
the sphere oscillation amplitude and the substrate softness.
The particular solid and amplitude case presented in figure
5 is chosen to highlight the effects of solvation pressure and
substrate softness.

4. Aggregate Inferences

While the individual discussion for each amplitude case
gives insights into the system behaviour for the respective
amplitude, there are a few key aggregate inferences we obtain
from examining these evolution trends, discussed below.
First, the presence of non-hydrodynamic forces lead to
significant magnification in force and deflection response
of the system. As can be inferred from figure 4, upto three
orders of magnitude amplification occurs in both. Also,
for amplitude cases where solvation force is significant, it
strongly affects the system behaviour near mid-oscillations,
and brings about rapid fluctuations in the force and deflection
response. Furthermore, presence of solvation force can be
seen to induce deflection in substrates that are effectively
rigid otherwise, as can be inferred from deflection evolution
for the full solution for hard substrate in figure 4b.
Second, for amplitude cases where solvation pressure is
significant, the fluctuations in deflection are much higher in
magnitude than those in force (compare figure 3a with figure
3b and figure 4a with figure 4b). This is attributed to the fact
that while the deflection evolution is affected by the pressure
at origin, force is affected by the trend of pressure not only at
the origin but over the radial span as well. Since the solvation
pressure is strong near the origin and reduces to zero with
increasing radial distance from the origin (due to increasing
sphere-substrate separation), the net effect of considering the
radial span is amelioration of the fluctuations.
Third, softer substrate exhibit smaller fluctuations in force.
They are also prone to a ‘lock-in’ duration near the mid-
oscillation (where sphere approach is compensated by
substrate deflection and the gap-height remains almost
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constant with time), which is characterized by smooth
fluctuation-free deflection evolution for a significant duration
near mid-oscillation. These effects can be observed in the
pliant substrate for the 48 nm amplitude case (in figure 3b)
and the stiff substrate for the 49.5 nm amplitude case (in
figure 4b).
Fourth, considering any two substrates, the ratio of deflection

for the harder substrate to that for the softer substrate tends
to be smaller than the ratio of their kflex values. This effect
is attributed to the fact that the softer substrate exhibits
the aforementioned ‘push-in’ effect to a larger extent than
the harder substrate. We summarize this ‘push-in’ effect as
follows. Approach of the sphere towards the substrate directly
contributes to decrease in gap-height. However, this leads to
increase in pressure on the substrate, which leads to increase
in deflection of the fluid-substrate interface, which contributes
to increase in gap-height. In other words, approach of the
sphere towards the substrate indirectly contributes to increase
in gap-height as well. The aggregate system behaviour
is thus a balance between the two opposing effects of the
approaching sphere, and the latter effect is stronger for softer
substrates.
Overall, as one considers increasingly large amplitudes,
there are two underlying effects that come into play and
whose derivatives are observed in the system behaviour -
substrate softness, and, solvation pressure. The effect of
substrate softness is summarized as follows. Softness leads
to a ‘push-in’ effect (as discussed in third point above), a
‘lock-in’ effect (as discussed in the second point above),
and acts to reduce solvation-pressure-induced fluctuations
in force response (as discussed in the second point above).
Now, the effect of solvation pressure is explained as follows.
For the amplitude case of 48 nm, i.e. figure 3, it is evident
that when solvation pressure becomes significant, it brings
about fluctuations in force as well as deflection response near
the mid-oscillation. While these fluctuations are appreciably
rapid, their magnitude is not very high, and thus, solvation
pressure doesn’t lead to any significant amplification in
force and deflection response. However, for the higher
amplitude case of 49.5 nm, i.e. figure 4, solvation pressure
is dominant over other pressure components for a longer
duration and over a larger radial span for this amplitude.
This leads to fluctuations of higher magnitude as well as
substantial amplifications in the force and deflection response.

B. Force and De�ection Characteristics

To highlight the effects of non-hydrodynamic pressure
components, particularly solvation pressure, we examine
the variation of maximum repulsive and maximum attrac-
tive force and deflection characteristics with oscillation
amplitude. These characteristics, for the soft and pliant
substrates are presented in figure 6, and for the stiff and hard
substrates in figure 7. For either figure, the panel on the left
depicts force characteristics and that on the right depicts
deflection characteristics. For all the panels, the horizontal

axis presents the ‘reference least gap’, the least separation
of the sphere from the origin, i.e. D− h0, which effectively
represents the amplitudes. Both the horizontal and vertical
axes in all the panels are logarithm-scaled. In the legends,
the label ‘rep’ represents maximum repulsive and the label
‘att’ represents maximum attractive. For hd solution, we
emphasize that the maximum repulsive characteristics are
exactly equal to the maximum attractive characteristics.
Thus hd solution is presented using one plot-line without
a ‘rep’ or ‘att’ label. If the deflection characteristics for a
substrate−solution combination is smaller than 1 pm for
all reference least gaps studied, it is not depicted in the figures.

1. Soft and Pliant Substrates

We first discuss the force and deflection characteristics for the
soft and pliant substrates, presented in figure 6.
We consider the soft substrate first. For this substrate, the
solvation pressure does not become significant for any refer-
ence least gap, as we are restricted to study only amplitudes
upto 40 nm (higher amplitude cases require a non-linear
constitutive formulation, as formerly specified). Thus, its full
solution and DLVO solution are identical.
Examining the force characteristics first (plots 1 to 3 in
figure 6a), both full and hd solutions can be seen to increase
monotonically and almost linearly with decreasing reference
least gap. Furthermore, the maximum repulsive force for the
full solution remains almost two orders of magnitude higher
than that for the hd solution. On the other hand, the maximum
attractive force for the full solution remains smaller than that
for the hd solution, albeit by a lower factor. This is expected
because the force over an oscillation is largely influenced by
EDL disjoining pressure, and thus predominantly repulsive.
There is only a small duration towards the end of the oscilla-
tion where the attractive hydrodynamic pressure grows strong
enough to counteract the repulsive EDL disjoining pressure
and result in a small-magnitude attractive force response (see
the the small attractive maxima near t = 2π s in figure 2a).
Examining the deflection characteristics next (plots 1 and 3
in figure 6b), they exhibit a monotonic, almost-linear growth
with decreasing reference least gap, similar to force. The
maximum repulsive deflection for the full solution is almost
two orders higher than that for the hd solution.
We now consider the pliant substrate. For this substrate,
we are able to examine upto 48 nm amplitude case (higher
amplitude cases exhibit adhesion-like phenomenon, which is
outside the scope of current model, as formerly specified).
Thus, solvation pressure becomes significant for ∼ 2 to 3
nm reference least gap, and the effects are visible in the
deflection characteristics. The trends of force and deflection
characteristics, and thus the inferences, are similar to those
for the soft substrate.
Examining the force characteristics first (plots 4 to 7 in
figure 6a), the repulsive force for full solution for the pliant
substrate are higher in magnitude than those for soft substrate,
particularly for reference least gaps closer to 10 nm (compare
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(a) (b)

FIG. 6. Variation with reference least gap (the minimum separation of sphere from origin in one complete oscillation, equal to D− h0) of
maximum repulsive (labelled with ‘rep’) and maximum attractive (labelled with ‘att’) characteristics over an oscillation of (a) force, and (b)
deflection at origin, for soft and pliant substrates. The legend for the figure is as follows: 1 - soft − full − rep, 2 - soft − full − att, 3 - soft −
hd, 4 - pliant − full − rep, 5 - pliant − full − att, 6 - pliant − DLVO − rep, 7 - pliant − DLVO − att, 8 - pliant − hd

‘pliant− full− rep’ and ‘soft− full− rep’ in figure 6b). This
contrast is attributed to the ‘pushing-in’ of the soft substrate,
an effect already discussed in subsection IV A.
Examining the deflection characteristics next (plots 5, 6, and
8 in figure 6b), while the qualitative trends for pliant substrate
are similar to those for soft substrate, there is an almost two
orders of magnitude contrast, an expected observation. For
lower than 10 nm amplitude cases, deflection of the pliant
substrate retains its monotonic increase. However, maximum
repulsive deflection for the full solution exhibits sharp growth
between 3 nm and 2 nm reference least gap. This obser-
vation is accompanied by the emergence of non-negligible
maximum attractive deflection for the full solution. These
observations are attributed to the effect of solvation pressure,
which becomes significant for reference least gaps smaller
than 3 nm. Furthermore, the absence of such trends in force
characteristics occurs because deflection responds to any
changes in the interplay of pressure components at the origin
itself, while force requires these alterations to spread further
into the radial span, which would require lower reference
least gaps.

2. Sti� and Hard Substrates

We now discuss the force and deflection characteristics for
the stiff and hard substrates, presented in figure 7. For both
the substrates, we study amplitudes upto 49.5 nm. Hence,

we observe the effects of solvation pressure for ∼0.5-3 nm
reference least gaps, and these effects are visible in both the
force and deflection characteristics of each substrate.
We consider the stiff substrate first.

Examining the force characteristics first (plots 1 to 5 in
figure 7a), we observe that both maximum repulsive and
maximum attractive force for the full solution show sharp
growth in magnitude at low values of reference least gap. The
highest values of the maximum repulsive and attractive forces
are between 10 µN and 100 µN. Two key features of these
force characteristics are discussed next. First, comparing
DLVO solution with hd solution, it can be clearly seen that
the maximum repulsive force for the former stays upto two
order of magnitude larger than those for the latter, while
the maximum attractive force for the former stays about an
order of magnitude smaller than those for the latter. Similar
contrast was seen for pliant and soft susbtrates as well, and
hence the reasoning presented in the section IV B 1 applies.
The persistence of this contrast even for smaller reference
least gaps is attributed to the fact that upon approach, while
van der Waals pressure does grow higher than EDL disjoining
pressure at the origin, the effect does not extend over the
radial span strongly enough. The aggregate effect is that
force is strongly dominated by EDL disjoining pressure, and
hence predominantly repulsive, for all reference least gaps.
And second, as we approach smaller reference least gaps
(smaller than ∼ 1.5 to 2 nm), the amplification in force due to
consideration of solvation force (i.e. the contrast between full
solution and DLVO solution) is about an order of magnitude
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FIG. 7. Variation with reference least gap (the minimum separation of sphere from origin in one complete oscillation, equal to D− h0) of
maximum repulsive (labelled with ‘rep’) and maximum attractive (labelled with ‘att’) characteristics over an oscillation of (a) force, and (b)
deflection at origin, for stiff and hard substrates. The legend for the figure is as follows: 1 - stiff − full − rep, 2 - stiff − full − att, 3 - stiff −
DLVO − rep, 4 - stiff − DLVO − att, 5 - stiff − hd, 6 - hard − full − rep, 7 - hard − full − att, 8 - hard − DLVO − rep, 9 - hard − DLVO −
att, 10 - hard − hd, 11 - stiff − sol. contrib. − rep, 12 - hard − sol. contrib. − rep

for the maximum repulsive and three to four orders of
magnitude for the maximum attractive. Furthermore, at 0.5
nm reference least gap, the maximum attractive force and
maximum repulsive force are of the same order. This occurs
because in contrast to larger reference least gaps that exhibit
EDL pressure dominance (implying primarily repulsive force
response), reference least gaps approaching 0.5 nm exhibit
solvation pressure dominance (implying rapidly oscillating
but equal-magnitude repulsive and attractive force response).
To elucidate the effect of solvation pressure, the difference
between maximum repulsive force characteristics for full
solution and DLVO solution is presented by the dotted line
labelled 11 in figure 7a. This plot gets closer to the maximum
repulsive force characteristics at small reference least gaps,
indicating the growing dominance of solvation pressure. On
the other hand, the maximum attractive force characeristics,
when it attains significant magnitude, is almost entirely due
to solvation pressure. So the attractive counterpart of the plot
labelled 11 is not presented.
Examining the deflection characteristics next (plots 1 to 4
in figure 7b), the trends are qualitatively similar to those for
force. However, there are a couple of crucial differences.
First, the deviation of deflection for the full solution from
those for the DLVO solution starts at a higher reference least
gap of 3 to 4 nm, compared to deviation for the force which
starts at reference least gap of ∼ 1.5 to 2 nm. Second, the
maximum attractive deflection for DLVO solution grows
quite rapidly at reference least gaps smaller than ∼ 2 nm,
an effect that is absent in force. Both these differences are

attributed to the fact that deflection is dependent on the
pressure at origin, while force is dependent on the interplay
of pressure components along the radial span as well.
We now consider the hard substrate.
Examining the force characteristics first (plots 6 to 10 in
figure 7a), the trends for the hard substrate are qualitatively
similar to those for stiff substrate. Similar features are
observed and the same explanations hold. The contrast in the
force for the full solution for the hard and stiff substrates is
attributable to the higher deformability of the latter, which
acts to significantly alter the gap-height (particularly for
smaller reference least gaps in the range of ∼ 0.5 to 1.5
nm) and thus the force response. The difference between
maximum repulsive force characteristics for full solution and
DLVO solution is presented by the dotted line labelled 12
in figure 7a. This plot is similar to its counterpart for stiff
substrate, and the same explanation holds.
Examining the deflection characteristics next (plots 6 and 7
in figure 7b), we observe deflection only for the full solution
and for reference least gaps lower than 2 nm. Both maximum
repulsive and maximum attractive deflection are very similar,
and of the same order of magnitude. The trends are similar to
that for the stiff substrate, but with a quantitative difference
of about an order of magnitude.
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V. CONCLUSION

In the current study, the force and deformation characteristics
of an ultra-thin soft coating on a rigid platform due to
the motion an oscillating rigid sphere and mediated by an
intervening electrolytic solution have been assessed. There
are numerous natural and artificial setups having similar ge-
ometry and imposed dynamics at different length scales, and
the effects of short-range DLVO and non-DLVO molecular
forces become non-negligible for such setups of nanometric
length scales. Therefore, a pseudo-continum mathematical
model conforming to the traditional soft-lubrication paradigm
whilst incorporating the effects of non-hydrodynamic and
fluid-structuring forces has been prepared. The solution
has been obtained using fundamentals of scaling analysis,
and asymptotic and semi-analytical methodologies. Non-
hydrodynamic forces are quantified by semi-empirical closed
form expressions that appear as additional pressure compo-
nents in the traction-balance condition at the fluid-substrate
interface.
Solutions for four substrate materials (hard to soft) are
obtained, which are chosen to emphasize the effects of
non-hydrodynamic forces as well as substrate softness.
Amplitudes ranging from 10 nm to 49.5 nm are studied, i.e.
undeformed separations as small as 0.5 nm are studied. The
results show that EDL disjoining pressure is dominant at
the larger separations and solvation pressure is dominant at
the smaller separations. Van der Waals pressure becomes
significant at smaller separations but not dominant and
hydrodynamic pressure remaining negligible throughout. At
very small separations, solvation pressure strongly dominates
the system behaviour and appears as virtually the only
contributors to the force and deformation characteristics.
Solvation pressure is observed to account for about one to
two orders of magnitude amplification in repulsive force
and about three to four orders of magnitude amplification
in attractive force between the surfaces, and, about two to
three orders of magnitude amplification in repulsive substrate
deformation and about an order of magnitude amplification
in attractive substrate deformation, at the point of least
separation (i.e. at the intersection of sphere axis with the
substrate). We thus bring out giant nonlinear amplifications
in the interaction forces between dynamically interacting
sphere-and-soft-coating pair separated by a fluid layer
spanning over nanometer scales, attributed to a combined
consequence of electrostatic, van der Waals and solvation
forces predominant over such length scales.
A few of the future prospects of our study include poroe-
lastic modelling for the soft-coating, consideration of
non-Newtonian intervening fluid, and consideration of steric
nature of electrolytic species. In closing, it is expected
that the current work would get assimilated in a developing
framework aimed at enabling macroscale modelling paradigm
towards incorporation of exclusive nanoscale phenomenon
like steric effects, hydrophobicity, etc.82–86 in a physically
sound yet operationally tractable manner. Taking cues
from other studies addressing multiscale phenomenon using
tools like correction terms and factors87, order-parameter

models88–91, coupled mesoscale modelling84,92 and non-
classical material models93,94, our study can get integrated
into developing frameworks addressing transport phenomena
in several emerging applications ranging from nature and
materials processing to microfluidics and beyond95–104.

Appendix A: Governing Equations

The non-dimensionalized governing equations and fluid-
substrate interface traction-balance condition are listed below.

• Continuity Equation105

1
r

∂ (rvr)

∂ r
+

∂vz

∂ z
= 0 (A1)

• r-Momentum Conservation Equation105
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• z-Momentum Conservation Equation105
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• Mechanical Equilibrium Equation (r-component)106
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• Mechanical Equilibrium Equation (y-component)106
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• Fluid-Substrate Interface Traction-Balance Condition
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(r-component)
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• Fluid-Substrate Interface Traction-Balance Condition
(y-component)
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(A7)

The other boundary conditions are,

• no-slip and no-penetration conditions at fluid-sphere in-
terface and fluid-substrate interface

• zeta-potential at fluid-sphere interface and fluid-
substrate interface

• electroneutral number-density for each electrolytic
species at the radial far-end

• zero-displacement condition at the substrate-platform
interface

• deformation and velocity fields and hydrodynamic pres-
sure reduced to zero at radial far-end

• zero r-deformation and r-velocity and zero radial-
derivative of y-deformation and z-velocity at centerline
(r=0)

The equations for these boundary-conditions are straightfor-
ward and hence not presented here. The deformation gov-
erning equations, equations (A4) and (A5), are the non-
dimensionalized version of the two components of the me-
chanical equilibrium equation, ∇′ ·σ ′ = 0. Similarly, equa-
tions (A6) and (A7) are the components of σ

′ · n̂′ = σ
′
F
· n̂′ that

are subsequently subjected to non-dimensionalization, where
the substript F signifies the fluid-domain counterpart, and

n̂′ = −êz +
∂u′y
∂ r′

êr is the normal vector to the fluid-substrate

interface. The stress σ ′ in terms of displacement field ~u′ for a
linear-elastic substrate is given as106,

σ
′ =

νEy

(1+ν)(1−2ν)
∇
′ ·~u′I +

Ey

2(1+ν)

(
∇
′~u′+(∇′~u′)T ) ,

(A8)

TABLE III. Perturbation split of Reynolds equation, its boundary
conditions, non-hydrodynamic pressure components, and expression
for deflection, about the small parameter η

Order Split

η
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= 0 at r = 0, p?(1) = 0 at r = 1.

πDL(1) =−εKRl(0)πDL(0)

πvdW(1) =−
3l(0)

H
πvdW(0)
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µωαε0
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(1−ν)
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where, Ey is Young’s modulus and ν is Poisson’s ratio. The
primes denote that the terms are in their dimensional form.
Keeping only terms that are unity-ordered, equations (A1) to
(A7) get simplified to,

• Continuity Equation (simplified)

1
r

∂ (rur)

∂ r
+

∂uz

∂ z
= 0 (A9)

• r-Momentum Conservation Equation (simplified)

0 =−∂ p?

∂ r
+

∂ 2vr

∂ z2 (A10)
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• z-Momentum Conservation Equation (simplified)

0 =
∂ p?

∂ z
(A11)

• Mechanical Equilibrium Equation (r-component, sim-
plified)

∂ 2ur

∂y2 = 0 (A12)

• Mechanical Equilibrium Equation (y-component, sim-
plified)

∂ 2uy

∂y2 = 0 (A13)

• Fluid-Substrate Interface Traction-Balance Condition
(r-component, simplified)

∂ur

∂y
= 0 (A14)

• Fluid-Substrate Interface Traction-Balance Condition
(y-component, simplified)

∂uy

∂y
=−µωαε0

ε2κEy

(1+ν)(1−2ν)

(1−ν)
p (A15)

From these simplified equations, the Reynolds equation and
its boundary conditions, equations (3), (4) and (5) emerge as
the representative of the flow dynamics in the problem. The
total pressure, given in equation (8), is the combination of
hydrodynamic pressure and three non-hydrodynamic pressure
components, with the three non-hydrodynamic pressure com-
ponents given by expressions (9), (10), and (11). The solution
for ur is obtained as zero, and the solution for uy (and resul-
tantly the deflection l) is obtained as given in equation (6)
(and equation (7)). The expressions for pi’s (total pressure,
hydrodynamic pressure and non-hydrodynamic pressure com-
ponents) and l are subjected to a perturbation approximation
in the parameter η (as shown in equations (12) and (13)) for
the methodology presented in subsection III A. The pertur-
bation splits of Reynolds equation, its boundary conditions,
non-hydrodynamic pressure components, and expression for
deflection are presented in table III.
Equations (A9) to (A11) are subject to the flow-domain
boundary conditions as specified earlier in this appendix
section. The solution is obtained as per the classical lu-
brication formalism to give the velocity field. Upon re-
dimensionalizing, we get the expressions for v′r and v′z as,

v′r =
1

2µ

d p?′

dr′
[
z′2− (H ′− l′)z′−H ′l′

]
, (A16)

v′z =−ωh0 sin(ωt ′)− 1
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. (A17)

Following the classical formalism for stream function, we de-

fine the stream function Ψ′ as
∂Ψ′

∂ r′
= −r′v′z and

∂Ψ′

∂ z′
= r′v′r,

such that equation (A1) gets trivially satisfied when writ-
ten in terms of Ψ′. Subsequently integrating the identity
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dz′, with the derivatives substituted us-

ing equations (A16) and (A17) and putting the datum for Ψ′

at r′ = 0, we obtain the expression,

Ψ
′ =

1
2

ωh0r′2 sin(ωt ′)+
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In equations

Appendix B: Incompressible Substrate

A caveat in the set of equations in appendix A, and thus in
the mathematical formuation of this article, is that the sub-
strate deformation equations and boundary conditions (i.e.
equations (A4) to (A7)) are simplified (to equations (A12)
to (A15)) assuming (a) equal scale for r-deformation and
y-deformation during non-dimensionalization, and (b) (1−
2ν) 6� 1. While the former is a characteristic of the system
response, the latter is a material property and therefore a given
parameter.
We focus on assumption (a), and to probe it further, we as-
sume that O(ur) = Γ O(uy). With this operation, and without
commenting on the magnitude of Γ, equation (A12) to (A15)
get transformed to,

• Mechanical Equilibrium Equation (r-component, sim-
plified)

(1−2ν)Γ
∂ 2ur

∂y2 + γ
∂ 2uy

∂ r∂y
= 0 (B1)

• y-Deformation Equation (y-component, simplified)
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• Fluid-Substrate Interface Traction-Balance Condition
(r-component, simplified)
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• Fluid-Substrate Interface Traction-Balance Condition
(y-component, simplified)
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Focussing on the deflection, i.e. the y-displacement at the in-
terface, we see that the simplified y-components of mechani-
cal equilibrium equation and fluid-substrate interface traction-
balance condition (equations (B2) and (B4)) stay de-coupled

from the solution for r-displacement field so long as Γ� 1
γ

.

Thus, the solution for deflection in section III and the re-

sults in IV continue to be valid so long as Γ� 1
γ

. In con-

trast, when Γ ∼ 1
γ

, equations (B1) to (B4) are strongly cou-

pled and not reducible to a de-coupled form. Such a cou-
pled set of equations for the axisymmetric system consid-
ered here can be solved employing a Hankel-transformation
approach26,29,107,108, which is a scope for further generaliza-
tion of current study.
However, we attempt a scaling analysis for such a system,
with the intent of drawing insights regarding applicability of
current formulation. Keeping in view that Γ represents the
scale for r-displacement, its scale should come out of the gov-
erning equation for the same. Thus, examining equation (B1),
it is posited that r-displacement comes out of the interaction of
the two terms therein, and hence scaling the two terms equally
gives,

Γ =
γ

(1−2ν)
. (B5)

However, as one considers a substrate that is sufficiently close
to incompressible, the governing equation for r-displacement
becomes the condition for incompressibility (primes signify-
ing that the terms are dimensional),

∂u′r
∂ r′

+
u′r
r′

+
∂u′y
∂y′

= 0, (B6)

the scale for Γ comes from equal scaling of its two terms upon
non-dimensionalization, giving,

Γ =
1
γ
, (B7)

and the terms in equation (B1) would be left to play out ‘spon-
taneously’. In summary, as one considers values of ν ap-
proaching 0.5 (i.e. substrate behaviour approaching incom-
pressibility), Γ, following the equation (B5), is initially� 1,
then∼ 1, and then� 1 until

γ

(1−2ν)
(RHS of equation (B5))

has grown to be equal to
1
γ

. As one continues to takes ν even

closer to 0.5, Γ is given by equation (B7) and is evidently
independent of the substrate material properties, substrate de-
formation characteristics now exhibiting an ‘incompressible
substrate limit’. Furthermore, considering equation (B5), it

can be deduced that Γ < 0.1 · 1
γ

(which has been shown to be

the condition for the formulation and solution methodology
employed in current study to hold applicable) is equivalent to,

ν <
1−10γ2

2
. (B8)

It is emphasized that since we are employing a time-dependent
scaling, the restriction in equation (B8) needs to be applied as
per the largest value of γ in an oscillation. For the values of
substrate thickness, sphere radius and mean sphere-origin sep-
aration taken in table II, the maximum allowed value of ν is
0.468, 0.493, and 0.499 for 49.50 nm, 48.25 nm, and 37.5 nm
amplitude oscillations, respectively.
To assess the behaviour of a perfectly incompressible sub-
strate for our physical setup, we present a scaling analysis em-
ploying an alternate constitutive formulation comprising an
arbitrary solid pressure that is applicable for incompressible
substrates , given as8,12,109–113,

σ
′ =−p′SI +

Ey

3
(
∇
′~u′+(∇′~u′)T ) , (B9)

where p′S is the solid pressure. This solid pressure becomes
an additional unknown that has be solved for, and the incom-
pressiblity condition, equation (B6) becomes the additional
equation required. Equation (B6) will give the scale of Γ

as presented in equation (B7). We next non-dimensionalize
the components of mechanical equilibrium equation and fluid-
substrate interface traction-balance condition similar to ap-
pendix A. However, we employ the constitutive relation (B9),
consider Γλ (t) as the scale for ur rather than λ (t), and con-
sidering pc as the scale for the solid pressure pS. The obtained
equations are,

• Mechanical Equilibrium Equation (r-component)
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• Mechanical Equilibrium Equation (y-component)
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• Fluid-Substrate Interface Traction-Balance Condition
(r-component)
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(B12)

• Fluid-Substrate Interface Traction-Balance Condition
(y-component)
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(B13)
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An additional equation appears, i.e. the non-
dimensionalized form of equation (B6), that is appli-
cable for the substrate domain.

• Incompressibility Condition

∂ur

∂ r
+

ur

r
+

∂uy

∂y
= 0 (B14)

The set of equations (B10) to (B14) are reminiscent of the
non-dimensionalized continuity and Stokes equation for lubri-
cation flows. Therefore, taking cue from the same, we have,

3γ2 pc

κEy
= 1 =⇒ pc =

κEy

3γ2 . (B15)

Furthermore, employing approach similar to simplification
of equations (A6) and (A7) to (A14) and (A15), respec-
tively, i.e. scaling the LHS and RHS of the y-component
of fluid-substrate interface traction-balance condition equally,
we have,

3µωαε0γ2

ε2κEy
= 1 =⇒ κ =

3µωαε0γ2

ε2Ey
. (B16)

It is interesting to note that substituting the expression for κ

in the expression for pc gives,

pc =
µωαε0

ε2 , (B17)

implying that the solid pressure physically scales, and indeed
acts to balance, the applied load at the fluid-substrate inter-
face. Furthermore, the scale for uy, and hence l, is obtained
as,

uy ∼ l ∼ κL =
3µωαε0γ3R

ε
3
2 Ey

. (B18)

Contrasting this with the scale for l for an compressible sub-
strate,

l ∼ κL =
µωαε0γ(1+ν)(1−2ν)R

(1−ν)ε
3
2 Ey

, (B19)

it can be seen that deflection scales smaller by a factor of γ2

for an incompressible substrate in comparison to a compress-
ible substrate for the same magnitude of Young’s modulus and
imposed load, indicating the ‘stiffening’ effect of incompress-
ibility of the substrate for a thin-coating geometry. The scal-
ing analysis presented here is similar to that in another soft-
lubrication study113.
To get more insight into the deformation characteristics for
incompressible substrates, a dedicated rigorous analysis of in-
compressible substrates is required, where a major goal would
be the reconciliation of solution obtained using constitute rela-
tion as given in equation (B9) with the solution obtained using
constitute relation as given in equation (A8) under the limiting
case of ν → 0.5. Such an endevour isn’t attempted here.

(a)

(b)

(c)

FIG. 8. Evolution of individual pressure components and total pres-
sure between sphere and substrate at origin with time for full solution
for hard substrate for (a) 40 nm amplitude case, (b) 48.0 m amplitude
case, and (c) 49.5 nm amplitude case; both the vertical and horizontal
axes are linear-scaled.
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Appendix C: Pressure Components

The evolution of individual pressure components as well as
total pressure at origin for full solution of hard substrate for
the 40 nm, 48 nm and 49.5 nm amplitude cases are presented
in Figure 8. For the 40 nm amplitude case (figure 8a), the EDL
disjoining pressure is seen to be dominant and the other pres-
sure components negligible. Furthermore, there is an expected
rise in the EDL disjoining (and thus total) pressure near mid-
oscillation, which dies down towards t = 0 as well as t = 2π .
The inset shows the van der Waals pressure and hydrodynamic
pressure, with their expected trends as per equation (14) and
(10). Solvation pressure is practically zero and therefore not
depicted. For the 48 nm amplitude case (figure 8b), while sol-
vation pressure strongly influences total pressure and leads to
rapid and strong fluctuations near mid-oscillation, EDL dis-
joining pressure can be seen to have a finite value and thus
cause a distinct offset of total pressure from solvation pres-
sure. The van der Waals pressure also attains a significant
value close to mid-oscillation. Hydrodynamic pressure is neg-
ligible throughout. For the 49.5 nm amplitude case (figure 8c),
solvation pressure becomes practically the only pressure com-
ponent and equal to the total pressure.

Appendix D: Solvation Pressure

For the parameter values corresponding to solvation force
for our study, we considered the study by Trokhymchuk et
al, 200168, who executed a theoretical study with the aim
of obtaining the depletion force associated with structur-
ing of hard-sphere solvents between rigid planar surfaces.
Employing Percy-Yevick theory for hard-sphere-like fluid
to solve (both asymptotically and computationally) the
Orstein-Zernike relations for direct and total correlation
functions for two large hard spheres dispersed in a fluid of
smaller hard-sphere solvent, they obtained the expressions
for depletion force and interaction energy, and the validated
the results with multiple MD and theoretical studies. They
observed that the decay length and oscillation frequency
of the obtained disjoining pressure and interaction energy
contributions depended exclusively on fluid’s bulk properties
i.e. volume fraction and hard-core diameter. Although the
term used for the solvent-mediated force in their study is
‘Depletion Force’, it is same as the ‘Solvation Force’ that we
consider in our study. We have taken the solvation pressure
parameters for our study based on the depletion pressure
profile for a solvent of volume fraction 0.3665 (which is close
to water’s volume fraction, 0.38) obtained by them.
While the study by Trokhymchuk et al, 200168 is a contem-
porary detailed exposition into solvation force, experimental
and theoretical investigations on force at short-range (i.e. ∼
0.5-2 nm) between surfaces with intervening fluid has been
an active area of research for about four decades. From the
currently available literature, force between surfaces at small
separation can broadly be classified into three components
- solvation force (or solvent-structuration force), hydration
force, and surface-structuration force61. Solvation force is the

excess pressure generated due to oscillations in the packing of
solvent molecules in the confinement between surfaces from
optimal to pessimal61. This force is typically damped oscilla-
tory in nature and exists for separations upto five to ten times
the solvent particle hard-core diameter52. Hydration force is
another force due to the interactions of water molecules, but
is different from solvation force in the sense that the former
is because of hydration effects, i.e. orientational packing and
steric hindrance of water molecules hydrated to cations on
the surface (in contrast to the latter, which is due to packing
efficiency). Hydration force typically appears as an additive
to solvation force when computing force at short-range46.
Lastly, for surfaces that are not inert and molecularly smooth,
surface features and energy interactions with the fluid lead
to alterations to the solvation force (which is typically in
the nature of smoothening out of oscillations in the force
variation58,62) as well as to a force due to direct interaction of
the surface features. The latter is referred to as structuration
force. The exact combination of all such short-range forces
for a particular system requires an in-depth analysis of the
material properties of media involved and associated energy
interactions as well as the structural configuration. However,
for molecularly smooth surfaces with intervening fluid as
dilute electrolytic solution, the force at short-range retains a
damped-oscillatory variation with separation46.
The fundamental groundwork of solvation forces can be
traced back to the f study by Asakura and Oosawa, 1954114,
who studied the osmotic pressure generated between two
surfaces in a solution of macromolecules due to depletion of
the macromolecules from the intervening region. While the
depletion leads to depletion force for such small separations,
structuring of molecules between surfaces at somewhat
larger separations lead to osmotic forces as well115. Similar
to the structuring of macromolecules in a solvent leading
to small-confinement osmotic force, structuring of solvent
in vacuum leads to analogous small-confinement osmotic
force. Some of the very first theoretical studies on solvation
forces were undertaken in the 1970s50,51,116,117, which were
soon well-supported by other experimental studies46,118.
Pashley, 1981-198253–55 conducted experimental studies
of the force between molecularly smooth mica surfaces in
electrolytic solutions, where short-range repulsive hydration
forces beyond a critical bulk concentration were observed.
Extending on these studies, Pashley and Israelachvili, 198446

meausured the force between mica surface in 1 mM aqueous
KCl solution focussing on separations below 2 nm, where
the observed short-range force profile indicated superposi-
tion of a damped-oscillatory force (attributed to solvation
effects) and a monotonic exponentially decaying repulsive
force (attributed to hydration effects), with the latter being
stronger for higher concentrations of KCl. Christenson,
1984118 measured the force between molecularly smooth
mica surfaces immersed in methanol and acetone (H-bonding
polar liquids), establishing that oscillatory solvation forces
replace continuum van der Waals forces at small separations,
much like non-polar fluids. With these studies constituting
a groundwork on short-range surface forces, Israelachvili
and McGuiggan, 198848 presented a summary article where
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they categorized the force between surfaces or particles in
liquids into four components - van der Waals force (mono-
tonically attractive), EDL disjoining force (monotonically
repulsive), solvation, structural, and hydration forces (mono-
tonic/oscillatory), and repulsive entropic forces (because of
thermal motions of protruding surface groups or fluidlike
interfaces). Subsequently from the 1990s till now, there
have been numerous molecular dynamics, Monte-Carlo and
statistical mechanics studies on solvation forces52,57,60,62,119.
Frink and van Swol, 199880 conducted extensive GCMC
simulations of LJ fluids between rough walls where they
characterized the effects of wall roughness on solvation force.
Qin and Fichthorn, 200358 performed molecular dynamics
simulations of solvation and van der Waals forces between
nanoparticles in LJ liquid, where damped oscillatory force-
separation profile was recovered for solvophilic particles.
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