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The influence of size-dependent effects on mechanical behavior of a cylindrical silicon electrode
particle within a lithium-ion battery is investigated, and it is shown that these effects sensitively
determine critical buckling behavior. The mathematical framework used for this investigation incor-
porates the bond-order-length-strength (BOLS) theory correlation in a general finite deformation
theory model that includes the two-way coupling between diffusion-induced stress and stress-influ-
enced diffusion. Additionally, the possibility of plastic flow is accounted for in the model to allow
probing situations with relatively high charging rates. Significant differences, arising due to the con-
sideration of the size-dependent effects and captured through the BOLS theory, are highlighted. In
particular, it is found that, in most cases studied, both stresses and plastic stretches are amplified in
magnitude. Tensile to compressive stress reversal also takes place faster on considering the BOLS
theory. The modeling framework is further applied to estimate critical lengths that are safe against
buckling. Thus, it is expected that the presented framework will provide an improved aid for the
design of nanowire-based lithium ion battery silicon electrodes. Published by AIP Publishing.
https://doi.org/10.1063/1.5052236

I. INTRODUCTION

The demand for a fast-charging, longer-lasting, and
higher power density battery source in a lighter package has
led to tremendous efforts in developing lithium-ion battery
technology. Such developments have established lithium-ion
batteries as the preferred energy storage medium for portable
electronic devices like laptops, mobile phones, and cameras.
They are also the power source of choice for modern hybrid
electric vehicles (HEV), plug-in HEV (PHEV), and electric
vehicles (EV). Lithium is the lightest metal and Li-ion batte-
ries have a higher energy density than conventional batte-
ries.1 However, Li-ion batteries having much higher energy
density are required so as to extend their use in large-scale
applications. This requires consideration of new materials.
One such promising new material is silicon (Si) for the
anode. The motivation for work on Si-based anodes is four-
fold. First and foremost, in the amorphous phase of Li22Si5,
each atom of Si can accommodate up to 4.4 Li atoms2 and
thus has a very high theoretical specific capacity of 4200
mAh g�1, whereas when graphite is used as the anode, LiC6

is obtained in the fully lithiated state which has a signifi-
cantly lower specific capacity of 372 mAh g�1. Secondly,
silicon is inexpensive and non-toxic. The third reason is the
safety concern associated with the risk of high-surface-area
Li decomposition encountered with graphite anode at the end
of fast recharge.1 A slightly higher (than Li0=Liþ redox
potential) onset voltage potential in case of Si anode elimi-
nates this safety issue.3 Finally, synthesis methods of Si

nanoparticles are quite advanced and Si nano-particles are
commercially available.4

Commercial use of Si in the battery industry is currently
hindered due to the large lithiation-induced volume changes in
Si which can go up to 320% for the fully lithiated state.5–9

This volume expansion is due to the ability of Si to accommo-
date high amounts of Li. This large variation in volume gives
rise to stresses within the silicon due to inhomogenous Li con-
centration and externally imposed geometric constraints. Upon
cyclic charging/discharging, these stresses may result in
mechanical failure of the Si anode particles and a drastic
change in the specific capacity10–12 and also lead to the situa-
tion in which some of the anode particles are disconnected
from the conductive carbon and from the current collector.13–15

This problem of inhomogenous swelling and resulting stresses
can be solved by the use of smaller Si particle as only nano-
structed electrodes can endure the strains due to the change of
volume and avoid cracking.11,16–19 The large surface-to-
volume ratio of nano-scale structures like nanowires and nano-
tubes allows stress relaxation and increases flaw tolerance;
hence, they are tougher than their bulk counterpart.20 The
reduction of diffusion path length of both electron and lithium
which enhances the rate of chemical reactions is another moti-
vation for the reduction of size to nanoscale.20–22

It has been established by Chan et al.11 that compared to
particles with a spherical or thin film geometry, particles
with a cylindrical geometry, such as in nanowires or nano-
pillars, are much less susceptible to cracking even though
they undergo increases in diameter and length. Cracking,
however, is just one form of mechanical failure. It is possible
that slender structures as nanowires or nanopillars on increas-
ing in length (due to lithiation) may press against the rigid
narrow confinements of a battery and may fail through
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buckling. Indeed, it was shown by Chan et al.11 that when
free axial growth is constrained by a rigid backbone in the
form of thin nickel coating, the nanowire buckled into a
helical shape. The possibility of such buckling has also been
confirmed through molecular dynamics simulations.23 At the
whole electrode level, for an anode composed of a dense
mesh of such silicon nanopillars, as fabricated by Ogata
et al.,24 the detrimental consequences of such buckling fail-
ures may be far-reaching.

Recognizing the wide-spread interest in the nanowire
electrode architecture that goes beyond just silicon,25 this
failure mode has been recently modeled mathematically by
Chakraborty et al.26 to develop a better understanding and a
framework for design. This mathematical model considered
only radial diffusion of lithium and it was later extended to
study, additionally, axial diffusion by Zhang et al.27 The pio-
neering modeling work related to buckling in the context of
lithium-ion batteries was carried out by Bhandakkar and
Johnson,28 albeit their interest was in a honeycomb architec-
ture of the electrode.

Another important facet associated with the nanowire
geometry is the significant dependence of the physical
and mechanical properties on the size of the nanowire
itself, specifically, its diameter. This behavior is in
marked contrast to what is observed at macroscale dimen-
sions. Pertinently, the canonical mechanical property of
Young’s modulus at macroscale dimensions depends only
on the material, whereas at the nanoscale, the Young’s
modulus is not only material-dependent but is also depen-
dent on the specimen size. In the particular context of
lithium-ion batteries, size dependence has been shown to
influence the surface stresses29 and fracture30,31 in nano-
structured electrode particles. The size dependence is attrib-
uted to the increasing importance of surface effects due to
increasing surface area to volume ratio with decrease in size
of the specimen. More fundamentally, a physical reason
underlying a wide-spectrum of the size-dependent trends in
a variety of contexts may be given in a unified manner based
on the bond-order-length-strength (BOLS) theory.32 This
theory is predicated on the understanding that, at the surface,
the atoms have a coordination number imperfection which
results in bond relaxation to minimize the system energy with
consequent strengthening of the bonds. An important feature
of this theory is that, while its origin is atomistic, it is never-
theless amenable to incorporation in a continuum setting via
the BOLS correlation. Indeed, in a very recent work by Ma
et al.,33 the BOLS correlation was combined with a simple
model of diffusion induced-stress in a lithium-ion battery
electrode particle to show changes in the evolution of stress
with different spherical particle diameters.

In light of these recent modeling developments into
buckling as an important mode of mechanical failure of
silicon anode particles and of size-dependent mechanical
effects in nanoparticles, it is only natural to be curious about
the question: What, if any, is the influence of size-dependent
effects on the buckling mode of failure of a silicon nanowire
electrode particle?

In this work, we investigate this question and show theo-
retically that size-dependent effects do become important for

nanowires of sufficiently small diameters and substantially
influence critical buckling behavior. Our mathematical model
incorporates the BOLS theory correlation within the generic
framework presented by Chakraborty et al.26. Here, we con-
sider a two-way coupling between stress and concentration of
Li in Si. Thus, we account for not only the effects of
diffusion-induced stress, which has been thoroughly investi-
gated over the years as well as recently,34–39 but also stress-
influenced diffusion. This two-way coupling is enshrined
within a finite deformation theory.40 Additionally, we incor-
porate the possibility of plastic flow which allows us to probe
situations with high charging rates. Furthermore, while com-
puting the stresses, we have allowed for the Young’s
modulus to be varying radially being dependent on the inho-
mogeneous concentration. Thus, expanding the initial ideas
of Ma et al.,33 we aim to provide a more complete and
refined mathematical model of the lithiation process of Si
nanoelectrode particles. We also apply this model to study
buckling behavior and provide estimates for critical lengths.
Our framework is thus expected to provide an improved aid
for the design of nanowire-based electrode architecture.

The rest of the paper is as follows. First, we present the
mathematical formulation in Sec. II considering the general
case (Sec. II A) of deformation of a cylindrical Si anode par-
ticle undergoing lithiation. In Sec. II B, we present the
BOLS effect induced modification in Young’s modulus. In
Sec. II D, we include the size effect in the formula for flex-
ural rigidity. In Sec. III, we present the result and discussion
of our study focusing on the differences in calculated stresses
in two cases—one in which BOLS effect is considered and
one in which it is not. Finally, in Sec. III C, we discuss the
differences in critical length of buckling that has been com-
puted for the two cases.

II. MATHEMATICAL FORMULATION

We consider a single cylindrical silicon nano-anode parti-
cle which undergoes deformation during intercalation and
deintercalation of lithium. We assume that both processes take
place uniformly and axisymmetrically over the curved periph-
eral surface of the cylinder. We also assume that no surface
reconstruction takes place which may give rise to dangling
bonds at the surface. Following Chakraborty et al.,26 we con-
struct a model for axisymmetric deformation and consider
two cases in which the cylinder is (i) unconstrained and (ii)
physically constrained against deformation in the axial direc-
tion. The latter case provides an opportunity to investigate
the possibility of mechanical failure of the anode through
buckling.

A. General case

1. Deformation gradient decomposition

Let X [ A be the initial position and x [ B be
the current position of a material point in the electrode particle,
where A and B are the reference and deformed configurations
of the electrode particle, respectively. The displacement field
vector is given by

u Xð Þ ¼ x� X: (1)
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Since the geometry of the electrode particle is cylindrical, we
use standard cylindrical coordinates (r, θ, z) in A. The dis-
placement field vector can be expressed as u ¼ uer þ veθ þ
wez ; [u 0 w]T , where due to our assumption of uniform
axisymetric behavior on the cylindrical surface, we take v ¼
0 to denote zero intrinsic displacement in the θ-direction.
Similarly, we preclude any variation along the z-direction
and assume that displacement, w, in the z-direction will not
vary radially. Thus, the deformation gradient, defined as F ¼
Grad u reduces to the diagonal form

F ¼ diag 1þ @u

@r
, 1þ u

r
, 1þ @w

@z

� �
: (2)

We should note that deformation is the total result of various
mechano-chemical processes that occur during lithiation or
delithiation. To take into account various processes, we
follow the usual practice of decomposing the deformation
gradient into three parts: (a) a reversible elastic part, (b) an
expansion due to volume change as a consequence of lithia-
tion, and (c) an irreversible plastic part which is volume-
preserving. We carry out the decomposition in terms of total
deformation gradient. The method of decomposing in terms
of total deformation gradient instead of strain or total stretch
was first proposed by Lee41 and is widely used in finite
deformation modeling in lithium-ion batteries.26,40 We have

F ¼ F pFeFSF, (3)

where Fe is elastic deformation gradient, FSF is stress-free
volumetric deformation gradient, and Fe is plastic deforma-
tion gradient.

In the absence of anisotropy, the order in which deforma-
tion gradient constituent appears in Eq. (3) is irrelevant. Gao
et al.42 have provided a physical interpretation of this decom-
position in the context of batteries. In this decomposition, the
deformation gradient FSF is due to the unconstrained shape
change associated with intercalation or deintercalation and so
it is denoted as “stress-free.” Assuming the volumetric change
is isotropic, the stress free deformation gradient becomes

FSF ¼ Jcð Þ1=3I, (4)

Jc ¼ 1þ 3ηxmaxc, (5)

where η is the coefficient of compositional expansion, x is
the number of moles of Li per mole of Si, xmax ¼ 4:4 (the
maximum value of x), and c ¼ x=xmax (non-dimensional
measure of Li concentration).

Simply put, x denotes the saturation of Li in LixSi. The
justification for assuming isotropic material properties has
been explained by Chakraborty et al.26 When the concentra-
tion c is uniform, FSF will not create any residual stress as
FSF is a multiple of the identity. The deformation gradient F p

is volume-preserving and hence we have det(F p) ¼ 1. We
consider F p ¼ diag λr, λθ , λzð Þ and so

det F pð Þ ¼ det diag λr, λθ, λzð Þ½ � ¼ λrλθλz ¼ 1: (6)

Therefore, the elastic part of the deformation gradient
becomes

Fe ¼ F F pð Þ�1 FSF
� ��1

¼ Jcð Þ�1=3diag
1þ @u=@r

λr
,
1þ u=r

λθ
,
1þ @w=@z

λz

� �
:

(7)

For the elastic strain, we have

Ee ¼ 1
2

Feð ÞTFe � I
� � ¼ diag Ee

r , Ee
θ , Ee

z

� �
, (8)

where the components can be written as

Ee
r ¼

1
2
[ Fe

r

� �2�1] ¼ 1
2

Jcð Þ�2=3 1þ @u=@rð Þ2
λ2r

� 1
2
, (9a)

Ee
θ ¼

1
2
[ Fe

θ

� �2�1] ¼ 1
2

Jcð Þ�2=3 1þ u=rð Þ2
λ2θ

� 1
2
, (9b)

Ee
z ¼

1
2
[ Fe

z

� �2�1] ¼ 1
2

Jcð Þ�2=3 1þ @w=@zð Þ2
λ2z

� 1
2
: (9c)

2. Elastic deformation

We will reasonably assume that during deformation the
elastic strains remain small enough so that we can use a
strain-energy density function in the reference frame of the
form26

W ¼ Jc

2
Y c, χsð Þ
1þ ν

�
ν

1� 2ν
Ee
kk

� �2þEe
jkE

e
kj

	

¼ Jc

2
Y c, χsð Þ
1þ ν

�
ν

1� 2ν
Ee
r þ Ee

θ þ Ee
z


 �2

þ Ee
r

� �2þ Ee
θ

� �2þ Ee
z

� �2	
,

(10)

where Young’s modulus, Y(c, χs), is a function of concen-
tration “c” and the BOLS effect parameter “χs, ” which is
discussed in detail in Sec. II B and ν is the Poisson’s ratio.
Note that Ee

r , E
e
θ, E

e
z are the strain components. Thus, the first

Piola-Kirchhoff stress, P ¼ diag σ0
r , σ

0
θ, σ

0
z

� �
, is given by

σ0
r ¼

1
F�
r

@W

@Fe
r

¼ Jc
Y c, χsð Þ

1þ νð Þ 1� 2νð Þ
�
1� νð ÞEe

r þ ν Ee
θ þEe

z

� �	 2Ee
r þ 1

1þ@u=@r
,

(11a)
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σ0
θ ¼

1
F�
θ

@W

@Fe
θ

¼ Jc
Y c, χsð Þ

1þ νð Þ 1� 2νð Þ
�
1� νð ÞEe

θ þ ν Ee
z þEe

r

� �	2Ee
θ þ 1

1þ u=r
,

(11b)

σ0
z ¼

1
F�
z

@W

@Fe
z

¼ Jc
Y c, χsð Þ

1þ νð Þ 1� 2νð Þ
�
1� νð ÞEe

z þ ν Ee
r þEe

θ

� �	 2Ee
z þ 1

1þ@w=@z
,

(11c)

where diag F�
r , F

�
θ , F

�
z

� � ¼ F pFSF ¼ Jcð Þ1=3diag λr, λθ , λzð Þ.
For mechanical equilibrium Div P ¼ 0, from which we
obtain

@σ0
r

@r
þ σ0

r � σ0
θ

r
¼ 0: (12)

Dependence of the Cauchy stresses σ ¼ diag σr, σθ, σzð Þ on
the Piola-Kirchhoff stress is given by σ ¼ J�1PFT so that

σr ¼ Y c, χsð Þ
1þ νð Þ 1� 2νð Þ

�
1� νð ÞEe

r þ ν Ee
θ þ Ee

z

� �	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

r þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
θ þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

z þ 1
p , (13a)

σθ ¼ Y c, χsð Þ
1þ νð Þ 1� 2νð Þ

�
1� νð ÞEe

θ þ ν Ee
z þ Ee

r

� �	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

θ þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
z þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

r þ 1
p , (13b)

σz ¼ Y c, χsð Þ
1þ νð Þ 1� 2νð Þ

�
1� νð ÞEe

z þ ν Ee
r þ Ee

θ

� �	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

z þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
r þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

θ þ 1
p : (13c)

3. Plastic flow

The rate of plastic deformation gradient D p is given by

D p ¼ _F
p
F pð Þ�1¼ diag

_λr
λ r

,
_λθ
λθ

,
_λz
λz

� �
, (14)

where a dot represents the time derivative in the reference
frame. The viscoplastic behavior of lithiated silicon can be
described by the constitutive equation

D p ¼ @G σeffð Þ
@τ

, (15)

where τ ¼ σ� 1
3 tr σð Þ I is the deviatoric part of the Cauchy

stress, the effective stress is given by

σeff ¼
ffiffiffi
3
2

r ffiffiffiffiffiffi
τ:τ

p ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr2 þ τθ2 þ τz2

p
(16)

and G is the flow potential given as

G σeffð Þ ¼ σ f
_d0

mp þ 1
σeff

σ f
� 1

� �mpþ1

H
σeff

σ f

� �
, (17)

where σ f is the initial yield stress of Si, _d0 is the characteris-
tic strain rate for plastic flow in Si, mp is the stress exponent

for plastic flow in Si, and H σeff
σ f

 �
is the unit step function

¼ 0, if σeff
σf

, 1 and 1, if σeff
σf

� 1
n

:
Hence, we obtain the three plastic stretches as solutions

of

_λr
λr

¼
ffiffiffi
3
2

r
_d0

σeff

σ f
� 1

� �m τrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr2 þ τθ2 þ τz2

p H
σeff

σ f

� �
, (18a)

_λθ
λθ

¼
ffiffiffi
3
2

r
_d0

σeff

σ f
� 1

� �m τθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr2 þ τθ2 þ τz2

p H
σeff

σ f

� �
, (18b)

_λz
λz

¼
ffiffiffi
3
2

r
_d0

σeff

σ f
� 1

� �m τzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr2 þ τθ2 þ τz2

p H
σeff

σ f

� �
: (18c)

It is to be noted that the three equations are all not indepen-
dent as λrλθλz ¼ 1 and so

_λr
λr

þ
_λθ
λθ

þ
_λz
λz

¼ 0, (19)

which is consistent with tr τð Þ ¼ 0.

4. Lithium diffusion

The conservation equation for the concentration field is
given by

1
VSi
m

@c

@t
¼ � 1

r

@ rJrð Þ
@r

, (20)

where

VSi
m ¼ molar volume of Si;

Jr ¼ the flux of Li ðnot to be confused with JcÞ

¼ � D

RgT

c

VSi
m

@μ

@r
;

D ¼ diffusivity of Li in Si;

Rg ¼ Universal gas constant;

T ¼ temperature:

(21)

The chemical potential, μ, of the lithiated silicon can be
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decomposed as

μ ¼ μ0 þ μs, (22)

where μ0 is stress independent and μs is stress dependent.
The stress-independent part is written as

μ0 ¼ μ00 þ RgT log γcð Þ, (23)

where μ00, a constant, represents the chemical potential at
a standard state and γ is the activity coefficient representing
the effects of interactions among the atoms or molecules
which leads to non-ideal behavior. Furthermore, the stress
dependent part can be expressed as

μs ¼
VSi
m

xmax

�
� 1
3
@Jc

@c
Fe
imF

e
inCmnklE

e
kl

þ 1
2

Jc
@Cijkl

@c
þ @Jc

@c
Cijkl

� �
Ee
ijE

e
kl

	

¼ VSi
m

xmax

�
� 1
3
@Jc

@c
Feð ÞTFe


 �
: σ0e

þ 1
2
Jc

@Cijkl

@c
Ee
ijE

e
kl þ

1
2
@Jc

@c
Ee: σ0e

	

¼ VSi
m

xmax

�
� 1
6
@Jc

@c
Ee: σ0e � 1

3
tr σ0e
� � @Jc

@c

þ 1
2
Jc

@Cijkl

@c
Ee
ijE

e
kl

	
,

(24)

where C is the concentration-dependent fourth-rank stiffness
tensor. Here, we have used the equality Fe

TFe ¼ 2Ee þ I.
The three terms of Eq. (24) can be simplified because

� 1
6
@Jc

@c
Ee: σ0e ¼ � 1

6
@Jc

@c

Y c, χsð Þ
1þ νð Þ 1� 2νð Þ

�
�
1� νð Þ Ee

r

� �2þ Ee
θ

� �2þ Ee
z

� �2n o

þ 2ν Ee
rE

e
θ þ Ee

θE
e
z þ Ee

zE
e
r

� �	
,

(25a)

1
3
tr σ0e
� � @Jc

@c
¼ � 1

3
@Jc

@c

Y c, χsð Þ
1þ νð Þ 1� 2νð Þ

� 1� νð Þ Ee
r þ Ee

θ þ Ee
z


 ��
þ 2ν Ee

r þ Ee
θ þ Ee

z

� �	
,

(25b)

1
2
Jc

@Cijkl

@c
Ee
ijE

e
kl ¼

1
2
Jc
�
@

@c

Y c, χsð Þ 1� νð Þ
1þ νð Þ 1� 2νð Þ

� �

� Ee
r

� �2þ Ee
θ

� �2þ Ee
z

� �2n o
þ 2

@

@c

Y c, χsð Þν
1þ νð Þ 1� 2νð Þ

� �

� Ee
rE

e
θ þ Ee

θE
e
z þ Ee

zE
e
r

� �	
:

(25c)

The activity, γ, and diffusivity, D, will be taken to have the
empirically determined forms,

γ ¼ 1
1� c

exp

�
1

RgT
2 A0 � 2B0ð Þc� 3 A0 � B0ð Þc2
 �	

,

D ¼ D0exp
αVB

mσ
0
θ

RgT

� �
,

(26)

where the parameters A0, B0, α and the
concentration-independent coefficient of the diffusivity D0

are given in Table I.

5. Initial and boundary conditions

As an initial condition, we take a pristine, stress-free,
Li-free nano-electrode particle, that is,

λr r, 0ð Þ ¼ λθ r, 0ð Þ ¼ 1, u r, 0ð Þ ¼ 0, c r, 0ð Þ ¼ 0: (27)

The curved surface of the cylinder, r ¼ R0, is assumed to be
free from physical constraints. Thus, we can impose a

TABLE I. Values of parameters and material properties.

Parameter or material property Value

A0, parameter used in γ �29 549 Jmol�1a

B0, parameter used in γ �38 618 Jmol�1a

D0, diffusivity of Si 1� 10�16 m2 s�1b

_d0, plastic flow strain rate in Si 1� 10�3 sa

Y0, modulus of elasticity of pure Si 90:13 GPaa

mp, stress exponent for plastic flow in Si 4c

Rg, universal gas constant 8:314 JK�1 mol�1

T , temperature 300 K
VSi
m , molar volume of Si 1:2052� 10�5 m3 mol�1a

xmax, maximum concentration of Li in Si 4:4
α, coefficient of diffusivity 0:18a

η, coefficient of compositional expansion 0:2356a

ηE , rate of change of modulus of elasticity with
concentration

�0:1464a

ν, Poisson’s ratio of Si 0:28a

σ f , initial yield stress of Si 0:12 GPad

aReference 40.
bReference 43.
cReference 44.
dReference 45.
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traction-free boundary condition at the surface as

σ0
r R0, tð Þ ¼ 0: (28)

Since the cylinder as a whole is immobile, we apply a no dis-
placement condition at the centre

u 0, tð Þ ¼ 0: (29)

The boundary condition at the surface for the concentration
can be expressed by relating the flux to the linearised version
of the Butler-Volmer condition as

Jr ¼ J0 1� cð Þ, (30)

while at the centre of the cylinder, we have

Jr ¼ 0: (31)

Regarding the top and the bottom faces of the cylinder, we
consider two cases. In the first case, we consider the ends to
be free from any physical constraints. We refer to this case as
the axially unconstrained case. Since, there is no net force in
the axial direction, the condition translates to

ðR0

0
σ0
z dA ¼ 2π

ðR0

0
σ0
z r dr ¼ 0: (32)

In the second case, we prevent the deformation of the ends
of the cylinder in the axial direction by imposing physical
constraints. We refer to this case as the axially constrained
case. It is assumed that such a physical constraint can be
imposed without restraining the lateral movement of the ends
of the cylinder. Thus, in this case, we impose a boundary
condition at the ends as @w=@z ¼ 0.

B. Bond-order-length-strength (BOLS) theory and
modification of Young’s modulus

According to the BOLS theory, bond breaking gives rise
to a spontaneous contraction of the bonds of under-
coordinated atoms unless the process is proceeding under
external stimuli such as heating or pressure. If the coordina-
tion number of an atom is reduced, its metallic and ionic
radius also decreases spontaneously. The coordination
number induced bond reduction is universal in the sense that
it is independent of nature of chemical bond, structural
phases, or type of element.46–48 As the bond length is
reduced, bond strength will increase and the system energy
will be lowered.49 Therefore, the BOLS induced bond relaxa-
tion can be defined as di ¼ Cidb by introducing a non-
dimensional coefficient Ci , 1 for bond contraction and
Ci . 1 for bond relaxation.32 Bond contraction and the corre-
sponding change in bond energy is expressed as32

Δdi
db

¼ Ci � 1 , 0, (33)

ΔEb(di)
Eb(db)

¼ C�m
i � 1, (34)

where Ci is coefficient of bond contraction, d is bond length,
and Eb is binding energy. The subscript b and i denote an
atom in the bulk and ith atomic layer counted from the outer-
most surface to the centre of the solid. m describes the bond
length dependence of the change in binding energy and is
determined from experiments.50 The function Ci(zi) is estab-
lished so that it fits the observations of Goldschmidt51 and
Fiebelman52 with the aim to reduce the number of freely
adjustable parameters.32 The BOLS correlation mechanism
can be formulated as a consequence of the atomic “coordina-
tion-radius” theorised by Pauling and Goldschmidt53,51 as50

Ci ¼ di
db
¼ 2

1þexp 12�zið Þ= 8zið Þ½ � BOLS-coefficientð Þ,
Eb(di) ¼ C�m

i Eb(db) Single-bond-energyð Þ,
EBi ¼ ziEi Atomic-coherencyð Þ,

8<
: (35)

where EBi is atomic cohesive energy of an atom in the ith
atomic layer and zi is effective coordination number of the
ith atom.

No coordination-number reduction is expected for i . 3
and hence i is only counted up to three from the outermost
atomic layer toward centre of the solid.49,54 The index m
indicates the nature of bond in a particular material. For
silicon, the accepted value of m is 4.88.32 zi depends on the
size and curvature of a nanostructure and is determined by

z1 ¼ 4 1� 0:7=Kð Þ Curved-surfaceð Þ,
4 Flat-surfaceð Þ,

�
z2 ¼ z1 þ 2,
z3 ¼ 12,

8>><
>>: (36)

where K ¼ R=d0 is the number of atoms along the radius of
the nanowire, R is current radius of the silicon nanowire, and
d0 is the average bond length ( ¼ 0:278 nm):

The volume or number ratio of a certain atomic layer, i,
to that of the entire solid is expressed as32

γ i ¼
Ni

N
¼ Vi

V
¼ τ[K � (i� 0:5)]τ�1

Kτ � Lτ
Ci ¼ γ i0ci ,, 1, (37)

τ is the dimensionality. For a thin plate, τ ¼ 1, for a cylindri-
cal rod, τ ¼ 2, and for a sphere, τ ¼ 3. L is the number of
atomic layers not occupied by atoms. Since the nanoparticle
under consideration is a solid, L=0 in our study. Further, i is
of the order of 1 (i � 3) and K ¼ R=d0 is at least of the order
of 10 (minimum value of K=17.98, in our study). Therefore,
γ i can be further simplified into

γ i ¼
τ[K � (i� 0:5)]2�1

K2 � 02
Ci � τK

K2
Ci ¼ τ

K
Ci: (38)

Let the mean Young’s modulus Y of a nanosolid with N
atoms having dimension D be expressed as Y(D), while
denoting the same solid without considering the BOLS effect
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as Y(1). Let y and ys correspond to the density of Y in the
bulk and the surface, respectively. Thus,

Y(1) ¼ Ny, (39)

Y(D) ¼ (N � Ns)yþ Nsys ¼ Nyþ Ns(ys � y), (40)

where Ns ¼
P

Ni is the number of atom on the surface
atomic shell. Therefore,

ΔY(D)
Y(1)

¼ Y(D)� Y(1)
Y(1)

¼ [Nyþ Ns(ys � y)]� (Ny)
Ny

¼ Ns(ys � y)
Ny

¼ Ns

N

� ys
y
� 1

� ¼ P
i�3 Ni(yi � y)

Ny

¼
X
i�3

Ni

N

� yi
y
� 1

� ¼ X
i�3

γ i
� yi
y
� 1

�
¼

X
i�3

τ

K
Ci

� yi
y
� 1

� ¼ X
i�3

τd0
R

Ci

� yi
y
� 1

�
: (41)

Surface stress connects microscopic bonding to the macro-
scopic properties and plays a crucial role in the thermody-
namics and acoustics of the surface.32,55,56 Let u(r) be the
binding energy at equilibrium atomic separation. The
Young’s modulus Y and the surface stress P at a surface can
be expressed as functions of binding energy Eb, volume
v/ d3, and atomic distance d as57

P ¼ � @u

@v

�����
r¼d

/ Eb

d3
, (42)

Y ¼ v
@P

@v
¼ �v

@2u

@v2

�����
r¼d

/ Eb

d3
: (43)

Therefore, from Eqs. (35) and (43)

yi
y
¼

Yi
d3i
Y
d3b

¼ Yid3b
Yd3i

¼ Eb(di)d3b
Eb(db)d3i

¼ C�m
i

C3
i

¼ C�(mþ3)
i : (44)

Substituting Eq. (44) in (41), we can get a relationship
between change in mean Young’s modulus Y (dropping the
dimensionality D) and Ci as

33

ΔY

Y1
¼ Y � Y1

Y1
¼ τd0

R

X
i�3

Ci C� mþ3ð Þ
i � 1

 �" #
¼ χs, (45)

where ΔY is change in Young’s modulus and τ ¼ 2 (corre-
sponding to a cylindrical rod58,59). Hence,

Y ¼ Y1 1þ χsð Þ: (46)

It is noteworthy that χs is the key dimensionless parameter
that establishes the link between the BOLS theory and the
continuum framework. The BOLS theory provides the funda-
mental understanding behind the increasing importance of
surface layers as the size of the nanoparticle goes down.

However, it is through χs that changes in the Young’s
modulus (a macroscopic parameter) due to changes in size
can be accounted for based on the BOLS theory.
Specifically, χs can be physically interpreted as the change in
Young’s modulus relative to a constant, bulk value due to
smaller size which, in turn, is fundamentally due to increas-
ing importance of the surface layers. Importantly, for suffi-
ciently large particles, χs tends to zero which means that
there is practically no change in Young’s modulus from the
bulk value for such particles; that is, even though surface
layers are present, their influence in changing the Young’s
modulus is negligible.

According to Chakraborty et al.,26 Young’s modulus is
also dependent on concentration as

Y1 ¼ Y0 1þ ηExmaxcð Þ
¼ Y0 1þ χcð Þ: (47)

Here, χc can be viewed as the non-dimensional concentration
effect factor. In terms of Eqs. (46) and (47) simultaneously,
we can write

Y ¼ Y0 1þ χcð Þ 1þ χsð Þ: (48)

We should note that the above method of deriving the
Young’s modulus due to the BOLS effect can be used to cal-
culate the BOLS dependence of any other traditional macro-
scopic quantity Q which is dependent on the binding energy
density in the relaxed region. The energy density determines
the Hamiltonian and hence contributes to properties like
bandgap, magnetization, surface stress, phonon frequency,
and the Young’s modulus.32

It is important to note that the BOLS theory has not
been fundamentally modified to account for Si-Si bond
breaking and subsequent Si-Li bond formation as Li concen-
tration increases, but we do incorporate the effect of increas-
ing Li concentration into the Young’s modulus (which is the
specific way that the BOLS theory affects our continuum
framework) through a softening parameter χc [see Eq. (48)].
Furthermore, we would like to point out that the effect of
increasing concentration on the overall BOLS factor χS is
taken into account in an indirect way through the use of the
current value of the radius instead of the original radius.
Pertinently, this increase in radius is a direct result of the
increase in concentration. These effects have been duly incor-
porated in our calculations and results shown.

C. Non-dimensionalization of the variables

The non-dimensionalization is done by setting

~r ¼ r

R0
, ~z¼ z

L0
, ~t ¼D0

R2
0

t, ~u¼ u

R0
, ~w¼ w

L0
,

~Jr,0 ¼ VB
mR0

D0
Jr,0, ~σr,θ,z,eff,f ¼ VB

m

RgT
σr,θ,z,eff,f , ~μ0,S ¼

1
RgT

μ0,S:

(49)

154302-7 S. Neogi and J. Chakraborty J. Appl. Phys. 124, 154302 (2018)



The initial radius R0 of a pristine, stress-free, Li-free elec-
trode is taken as a length scale for both the radial coordinate,
r, and the radial displacement field, u. Similarly, the initial
length, L0, of the cylindrical electrode is taken as the length
scale for both the axial coordinate, z, and the axial displace-
ment field, w. R2

0=D0, the time Li takes to diffuse a distance
equal to the undeformed radius of the cylindrical Si anode
particle has been used as a physically intuitive measure of
time scale. The justification for the scale chosen for the influx
rate is simple. The number of moles of Li diffused into the Si
may be estimated using the concentration measure of Li, c,
and the molar volume of Si, VSi

m ; therefore, in terms of number
of moles per unit length of the cylinder, the concentration
scales as R2

0=V
Si
m . The rate of influx is measured per unit time,

per unit surface area and hence, for the flux scale, we need the
surface area measure, R0 (per unit length of the cylinder), and
the already chosen time scale R2

0=D0. Therefore, we obtain
the flux scale as R2

0=V
B
m

� �
1=R0ð Þ D0=R2

0

� �
, i.e., D0= VSi

m R0
� �

.
Non-dimensionalizing the governing equations, we obtain

@c

@~t
¼�@~Jr

@r
�
~Jr
~r
, (50)

@~σ0
r

@~r
þ ~σ0

r � ~σ0
θ

~r
¼ 0, (51)

@λr
@~t

¼
ffiffiffi
3
2

r
λr _d0

R2
0

D0

~σeff

~σ f
� 1

� �mp ~τrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~τ2r þ~τ2θ þ~τ2z

q H
~σeff

~σ f

� �
,

(52)

@λθ
@~t

¼
ffiffiffi
3
2

r
λθ _d0

R2
0

D0

~σeff

~σ f
� 1

� �mp ~τθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~τ2r þ~τ2θ þ~τ2z

q H
~σeff

~σ f

� �
:

(53)

The strains are related to the displacement as

Ee
r ¼

1
2

Fe
r

� �2�1
h i

¼ 1
2

Jcð Þ�2=3 1þ @~u=@~rð Þ2
λ2r

� 1
2
, (54a)

Ee
θ ¼

1
2

Fe
θ

� �2�1
h i

¼ 1
2

Jcð Þ�2=3 1þ ~u=~rð Þ2
λ2θ

� 1
2
, (54b)

Ee
z ¼

1
2

Fe
z

� �2�1
h i

¼ 1
2

Jcð Þ�2=3 1þ @~w=@~zð Þ2
λ2z

� 1
2
: (54c)

The Piola-Kirchhoff stresses in Eq. (51) can be expressed in
terms of the strains as

~σ0
r ¼ Jc

~Y c, χsð Þ
1þ νð Þ 1� 2νð Þ 1� νð ÞEe

r þ ν Ee
θ þEe

z

� �� �
� 2Ee

r þ 1
1þ @~u=@~r

, (55a)

~σ0
θ ¼ Jc

~Y c, χsð Þ
1þ νð Þ 1� 2νð Þ 1� νð ÞEe

θ þ ν Ee
z þEe

r

� �� �
� 2Ee

θ þ 1
1þ ~u=~r

, (55b)

~σ0
z ¼ Jc

~Y c, χsð Þ
1þ νð Þ 1� 2νð Þ 1� νð ÞEe

z þ ν Ee
r þEe

θ

� �� �
� 2Ee

z þ 1

1þ @~w=@~z
: (55c)

Thus, we can express the Piola-Kirchhoff stresses in terms of
the displacement field by substituting Eq. (54) in Eq. (55).
The non-dimensional flux in Eq. (50) can be expressed as

~Jr ¼�~Dc
@~μ

@~r
, (56)

where

~μ¼ μ00
RgT

þ log γcð Þþ ~μS1 þ ~μS2 þ ~μS3 (57)

and

~μS1 ¼ � 1
6xmax

@Jc

@c

~Y

1þ νð Þ 1� 2νð Þ
� 1� νð Þ Ee

r

� �2þ Ee
θ

� �2þ Ee
z

� �2n oh
þ2ν Ee

rE
e
θ þ Ee

θE
e
z þ Ee

zE
e
r

� �i
,

, (58a)

~μS2 ¼� 1
3xmax

@Jc

@c

~Y

1þ νð Þ 1� 2νð Þ 1þ νð Þ Ee
r þEe

θ þ Ee
z

� �� �
,

~μS3 ¼
1

2xmax
Jc[

@

@c

~Y 1� νð Þ
1þ νð Þ 1� 2νð Þ

� �
Ee
r

� �2þ Ee
θ

� �2þ Ee
z

� �2n o
(58b)

þ2
@

@c

~Yν

1þ νð Þ 1� 2νð Þ
� �

Ee
rE

e
θ þ Ee

θE
e
z þ Ee

zE
e
r

� �
]: (58c)

The non-dimensionalized deviatoric parts of the Cauchy
stress tensor in Eqs. (52) and (53) can be further broken
down as

~τr,θ,z ¼ ~σr,θ,z ¼ � 1
3

~σr þ ~σθ þ ~σzð Þ, (59)

where

~σr ¼
~Y c, χsð Þ

1þ νð Þ 1� 2νð Þ [ 1� νð ÞEe
r

þ ν Ee
θ þ Ee

z

� �
]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

r þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
θ þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

z þ 1
p , (60a)

~σθ ¼
~Y c, χsð Þ

1þ νð Þ 1� 2νð Þ [ 1� νð ÞEe
θ

þ ν Ee
z þ Ee

r

� �
]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

θ þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
z þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

r þ 1
p , (60b)
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~σz ¼
~Y c, χsð Þ

1þ νð Þ 1� 2νð Þ [ 1� νð ÞEe
z

þ ν Ee
r þ Ee

θ

� �
]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

z þ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
r þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

θ þ 1
p : (60c)

Therefore, the non-dimensional effective stress in Eqs. (52)
and (53) can be expresses as

~σeff ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~τ2r þ ~τ2θ þ ~τ2z

q
: (61)

After non-dimensionalization, the initial and boundary condi-
tions corresponding to Eq. (50) can be written as

c ~r, 0ð Þ ¼ 0, ~Jr 0, ~tð Þ ¼ 0, ~Jr 1, ~tð Þ ¼ ~j0 1� cð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Charging

or �~j0c|ffl{zffl}
Discharging

:
(62)

The boundary conditions applicable to Eq. (51) are

~u 0, ~tð Þ ¼ 0, ~σ0
r 1, ~tð Þ ¼ 0: (63)

The initial conditions applicable to Eqs. (52) and (53) are

λr ~r, 0ð Þ ¼ 1 and λθ ~r, 0ð Þ ¼ 1: (64)

When the cylinder is axially constrained, we have no axial
strain, @w=@z ¼ 0, whereas when the cylinder is axially
unconstrained, there is no axial force,

2π
ð1
0
~σ0
z r dr ¼ 0: (65)

Since, @u=@r ¼ @~u=@~r,

χs ¼
τd0

R0 1þ @~u
@~r

� � X
i�3

Ci C� mþ3ð Þ
i � 1

 �" #
: (66)

Here, χs is dimensionless.

D. Criteria of buckling

The possibility of buckling arises only for the axially
constrained case. When the ends are fixed, the tendency of
the cylinder to expand in the axial direction during lithiation
gives rise to a compressive axial force. However, if this com-
pressive axial force is larger than a certain critical load, it
may lead to buckling of the cylinder. In order to study this,
Euler’s buckling criteria is chosen which was shown to be
valid asymptotically for thin cylinders.60 Thus, we have

Fcrit ¼ π2YI

KLð Þ2 , (67)

where Fcrit is the critical buckling load. Here YI is the flex-
ural rigidity (where Y is the modulus of elasticity and I is the
second moment of area), L is the length of beam column and
K is a factor which accounts for boundary conditions. We
assume here for simplicity that K ¼ 1 that corresponds to the
physical situation of the column constrained between two
frictionless parallel plates.

We consider two modifications of the classical Euler
buckling theory following Chakraborty et al.;26 additionally,
we incorporate another modification due to the incorporation
of the BOLS effect. For the first modification, since the
radius used for the calculation of the second moment of area
is changing with time, we have

R ¼ R0 1þ @u

@r

� �
: (68)

This modifies the classical Euler buckling criterion because
the second moment of area, I, which is a function of radius,
changes with time. The second moment of area is given by

I ¼ πR4

4
: (69)

This will be referred to as the first refinement of the Euler
Buckling criterion in our further discussions. Now, the
Young’s modulus of elasticity, Y , is a function of Li concen-
tration and size effect χs. Hence, we have a flexural rigidity
which varies with position since it is dependent on the
modulus of elasticity which varies spacially. We know that
the root of flexural rigidity is an integration of the bending
stresses over the column cross-section. Here, σz is the
bending stress. We note that σz ¼ κYr, where κ is the local
curvature of the column.61 Thus, the moment can be calcu-
lated as

M ¼
ðR
�R

�rσz dA, (70)

where �r is the radial coordinate in the current frame of refer-
ence, the elemental area, dA ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � �r2

p
d�r, and the integra-

tion is done throughout the cross-section of the cylindrical
anode. Thus, we have the time-dependent flexural rigidity as

YI c, tð Þ ¼ 4
ðR
0
�rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � �r2

p
d�r (71)

¼ 4R4
ð1
0
~r2Y0 1þ χsð Þ 1þ ηExmaxcð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2

p
d~r: (72)

We will refer to the modifications related to incorporating the
changing Li concentration and the size effect as the second
and third refinements of the Euler’s buckling criterion,
respectively.

It is important to note that accounting for the presence of
constraints around the curved surface of the cylindrical elec-
trode particle will entail major changes. The buckling crite-
rion itself would have to be changed because the Euler
buckling criterion (even with the aforementioned modifica-
tions) will no longer be appropriate. It may be surmised from
physical considerations that the presence of such constraints
would make the cylinder safer against buckling because
these constraints would impart an effective stiffening influ-
ence. However, the additional influence of the BOLS effect
can only be properly understood through a separate, dedi-
cated study.
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III. RESULTS AND DISCUSSIONS

A. Axially unconstrained

Figure 1 shows the variation of Cauchy stresses σ ¼
diag σr, σθ, σzð Þ corresponding to three different non-
dimensional times ~tð Þ for an initial cylinder radius R0 ¼ 5 nm
and lithiation rate ~j0 ¼ 0:1 for two cases: (i) with the BOLS
effect χsð Þ and (ii) without the BOLS effect χs ¼ 0ð Þ. The
domain of interest is the radius of the unconstrained cylinder.
In the work by Chakraborty et al.,26 the initial radius of the
silicon cylindrical nano-electrode particle was considered to
be R0 ¼ 200 nm. However, in our present study, we have
focused on the range 5 nm � R0 , 30 nm in order to

highlight the BOLS effect. The reason is that for a particle of
nanometre length scale, the surface curvature and the percent-
age of the surface atoms decrease with increasing particle size,
reducing the effect of coordination number imperfection.32

Accordingly, it is found that as we go beyond an initial radius
of R0 ¼ 30 nm, the BOLS effect on the stresses is nullified,
rendering both the curves (with χs vs. without χs) for
σr, σθ, σzf g indistinguishable from each other.

At a relatively high influx rate of ~j0 ¼ 0:1, when interca-
lation begins, there is a thin region near the periphery where
the lithium concentration quickly increases. Due to the
higher volumetric expansion at the surface compared to the
bulk, the regions away from the surface experience tensile

FIG. 1. σr , σθ , σz for ~j0 ¼ 0:1 for R0 ¼ 5 nm when the cylinder is axially unconstrained.
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stresses in the circumferential as well as radial directions as
shown in Figs. 1(a) and 1(d). Since there is no traction at the
surface, there is no restriction on volumetric expansion in the
radial direction and a tensile radial stress is generated just
under the surface [see Fig. 1(a)] which is the result of the
outward pull of the material points on the material in the
bulk and this effect is transferred along the radial direction
up to the centre.

In a pristine unlithiated state, due to coordination
number imperfection, the bonds of the surface atoms (up to
three atomic layer beneath the surface) are shorter and stron-
ger than the bonds of atoms in the bulk initially.32 As we can

see from Fig. 1(a), there is a huge difference in radial stresses
at ~t ¼ 0:001 between the two cases (with χs vs. without χs).
The tensile radial stress is significantly more for the case in
which we take into account the BOLS effect. When lithiation
occurs at the relative high rate of ~j0 ¼ 0:1, a high number of
Si-Si bonds get broken at the surface. The BOLS effect pre-
dicts that this bond-breakage gives rise to bond-contraction
in the atomic layers close to the surface and thus compensat-
ing adjustments to other layer spacing takes place which
extends several layers into the solid. Thus, contraction in the
surface atomic layers causes a stronger outward pull which
gives rise to a higher positive value of σr during initial times

FIG. 2. The plastic stretches for ~j0 ¼
0:1 for R0 ¼ 5 nm when the cylinder is
axially unconstrained.
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for the case with non-zero χs. In the axial and azimuthal
directions, adjacent material points present a constraint to
free movement under lithiation and hence compressive
stresses at initial times are induced in those directions, as is
clear from Figs. 1(d) and 1(g). However, the compressive
stress at the surface is more negative when we consider the
size effect. Surface atoms have a shorter bond length due to
the BOLS effect and when we try to insert lithium, the com-
pressive stress build-up is more.

At later times, further lithiation leads to an increase in the
concentration of Li atoms and more breaking of Si-Si bonds
in the bulk. Also, according to the BOLS effect, breaking of
one bond leads to neighbouring ones becoming shorter and
stiffer. Thus, further insertion of lithium atoms leads to more
compressive stress build-up. It can be observed from Fig. 1(b)
that at time ~t ¼ 0:5, for the curve in which the BOLS effect is
considered, σr is less (more negative at points where the
stress is compressive and less positive where the stress is
tensile) than the curve in which the BOLS effect is not con-
sidered. We can also observe that the reversal of radial stress
from tensile to compressive occurs at an earlier time if we
consider the BOLS effect. At later times also, the compressive
stress is more for the case in which the BOLS effect is con-
sidered due to further insertion of lithium atoms.

So, as time progresses, lithium atoms diffuse further into
the cylinder, and the nature of stresses changes significantly.

We notice that incorporating the BOLS effect predicts
a faster transition from tensile to compressive stress because
the Young’s modulus (Y) is higher due to the (1þ χs)
factor [as shown in Fig. 6(b) inset later]. For a given defor-
mation, for higher E, there will be higher σr, σθ, σzf g for
both tensile and compressive stresses. We notice from
Figs. 1(d)–1(i) that the BOLS effect induces significant
changes in the magnitude of the stress at the surface.

Additionally, by studying the Cauchy stresses for
~j0 ¼ 0:001, we found that σr is always tensile and evolution
of stress is much slower than that for ~j0 ¼ 0:1. Even after
~t ¼ 300 (which is approximately equal to a time of 33 h), the
radial stress is still tensile in nature throughout the domain
(except at the surface, where σr ¼ 0). Initially, there is signif-
icant difference in the magnitude of stresses for the two cases
(with χs vs. without χs). However, with time, the BOLS
effect is reduced to a proportion such that it is practically
negligible for ~t . 300. We also noticed that the effect of
BOLS on radial stress is significantly less for ~j0 ¼ 0:001
than for ~j0 ¼ 0:1 and in the axial and azimuthal direction,
the BOLS effect for ~j0 ¼ 0:001 is practically negligible for
later times. Due to these negligible differences, we do not
show the plots. The relatively higher difference between the
two cases (with χs vs. without χs) for a higher influx rate is
because a higher rate ensure more bond relaxation per unit
time as the BOLS effect is instantaneous.62

Figure 2 depicts the change in plastic stretches at
the centre (~r ¼ 0) and at the periphery (~r ¼ 1) of the nano-
electrode particle for an initial radius of R0 ¼ 5 nm and a
lithiation rate of ~j0 ¼ 0:1 as the lithium concentration
increases in the axially unconstrained case. This concentra-
tion is represented dimensionally in terms of capacity =
(
Ð R0

0 c 2πrdr)=(
Ð R0

0 2πrdr) having units of mAhg�1. That

plastic stretches deviate from 1, even at ~r ¼ 0 for a high lith-
iation rate of ~j0 ¼ 0:1 was discussed by Chakraborty et al.26

We observe that in each case of Fig. 2, for the same capacity
level (meaning, effectively, the same level of lithiation), the
magnitude of the plastic stretches considering the BOLS
effect is higher than that without the BOLS effect. In order
to interpret the differences in the plastic stretches correspond-
ing to same values of capacity, we need to discuss stretches,
elastic stresses, and lithiation levels together. When silicon is
lithiated, the concentration of lithium varies along the radial
direction. This heterogeneity of lithium concentration leads
to different levels of volume expansion at different radial
points. The elastic deformations are induced to maintain the
kinematic compatibility despite the tendency of radial points
to deform to different extents.40 The elastic stresses that
accompany these elastic deformations are directly related to
the Young’s modulus. When the BOLS effect is considered,
the value of the Young’s modulus is higher. Therefore, for
the same level of lithiation, when the BOLS effect is consid-
ered, the stresses are higher compared to the case when the
BOLS effect is not considered. As a result of the higher
stresses, the yield stress value is crossed at slightly lower
values of capacity when the BOLS effect is considered. Once
the yield stress value is crossed, plastic stretches are mani-
fested (meaning that their values show deviation from 1).
The onset of plastic stretches at slightly lower values of
capacity with the BOLS effect results in perceptibly higher
magnitudes of plastic stretch values for higher values of
capacity as seen in Fig. 2.

B. Axially constrained

Figure 3 shows the variation of Cauchy stresses over the
radius of the cylinder when the cylinder is axially constrained
for different times (~t). There is a major difference in stress
development between the axially constrained case and
unconstrained one. As shown in Fig. 3(b), we can observe
that at the axis, radial compressive stresses show up earlier
(at ~t ¼ 0:5) than it occurs for the axially unconstrained case
(between 1 , ~t , 2) as shown in Figs. 1(b) and 1(c). This is
due to the constraint in the axial direction which forces all
the volumetric expansion (due to lithiation) to occur in the
radial and azimuthal direction. This is also the cause of
higher increase of stress along both these directions [comparing
Figs. 1(a), 1(b), and 1(c) with Figs. 3(a), 3(b), and 3(c) and
also comparing Figs. 1(d), 1(e), and 1(f) with Figs. 3(d), 3(e),
and 3(f)]. Furthermore, we observe from Fig. 3(a) to 3(c) that
the significance of the BOLS effect can only be observed
during initial times. Unlike its unconstrained counterpart,
the BOLS effect on radial stress for an axially constrained
cylinder is negligible at later times. From Figs. 3(d)–3(i),
we observe that the BOLS effect has no significant effect
on either axial or azimuthal stress. The curves for the two
cases (with χs vs. without χs) practically overlap on each
other after time ~t ¼ 1 for both the stresses.

However, from Fig. 3, we note that for the axially con-
strained case, the BOLS effect is more for ~j0 ¼ 0:1 than for
~j0 ¼ 0:001 (plots for ~j0 ¼ 0:001 are not shown). As dis-
cussed earlier in Sec. III A, since the BOLS effect is
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instantaneous,62 a higher lithiation rate ensures more bond
relaxation per unit time and hence the BOLS effect is more
for a higher lithiation rate.

Figure 4 shows the variation of plastic stretches at the
surface (~r ¼ 1) and at the axis (~r ¼ 0) for an initial radius of
R0 ¼ 5nm and lithiation rate of ~j0 ¼ 0:1 as the lithium con-
centration increases in the axially constrained electrode. We
observe that the plastic stretches deviate from a value of 1 at
the centre for ~j0 ¼ 0:1 [see Figs. 4(a)–4(f )] and in our
studies, we have found that it does so for ~j0 ¼ 0:001 also
(for the axially constrained case). This observation is in clear
contrast to that for the unconstrained case, where for
~j0 ¼ 0:001, the plastic stretches do not deviate from a value

of 1 even after a time of ~t ¼ 300. As previously mentioned
plots for ~j0 ¼ 0:001 are not shown.

For ~j0 ¼ 0:001, the plots for the two cases (with χs vs.
without χs) practically overlap for both axially constrained
and unconstrained situations. So we note that for a relatively
low influx rate of ~j0 ¼ 0:001 which is comparable to the
relaxation time of lithium diffusion, the BOLS effect is negli-
gible on the plastic stretches although it has significant effect
on the Cauchy stress at those low rates. We note that the
BOLS effect for axially constrained case is far less than that
for the axially unconstrained case and so the trends observed
are quite similar for the two cases (with χs vs. without χs)
with minute differences in magnitude. For ~j0 ¼ 0:1, at the

FIG. 3. σr , σθ , σz for ~j0 ¼ 0:1 for R0 ¼ 5 nm when the cylinder is axially constrained.
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surface, the BOLS effect causes the radial plastic stretch to
deviate more from the value of 1 at a capacity of 0.01
mAh g�1 for R0 ¼ 5 nm and also for R0 ¼ 10 nm (plots for
R0 ¼ 10 nm not shown).

As shown in Fig. 4(d), the azimuthal plastic stretch at
the surface at a high influx rate of ~j0 ¼ 0:1 for R0 ¼ 5 nm
decreases to a value less than 1, and then as the concentration
increases, the plastic stretch increases to a value greater than
1. Therefore, for a high influx rate, the surface first undergoes
a compressive plastic yielding in the azimuthal direction and
then a reversal to tensile plastic yielding. This trend of rever-
sal of azimuthal plastic stretch is also observed for R0 ¼ 10
nm and in the works of Chakraborty et al.26 for a radius of
R0 ¼ 200 nm.

We have studied the development of σr , σθ, σzf g with
time over the radius of the cylinder for an initial radius
R0 ¼ 5 nm, 10 nm, 20 nm, 30 nm. We observe that the differ-
ence between the curves for the two cases (with χs vs.
without χs) reduces as we increase the radius of the cylinder.
In fact, for R0 . 10 nm, in the azimuthal and axial directions,
the curves overlap to a great extent. This is expected because
the BOLS effect reduces as the specimen size increases.

C. Buckling

We discuss the role of the axial force, the BOLS effect,
and the changing concentration on the buckling of the cylin-
der. In Fig. 5(a), we show the time-variant critical axial load

FIG. 4. The plastic stretches for ~j0 ¼
0:1 for R0 ¼ 5 nm when the cylinder is
axially constrained.
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for buckling Fcrit for different cylinder lengths L for
R0 ¼ 5 nm and influx rate ~j0 ¼ 0:1 taking into account the
BOLS effect. We also show the axial force Fz as a function
of time for both the cases (with χs vs without χs). For a par-
ticular length of the cylinder, the intersection of the corre-
sponding critical axial load line and the axial force curve
provides the time at which the buckling will occur under the
mentioned conditions. We notice that there exists a particular
load line corresponding to critical length Lcrit which just
touches the axial force curve. If we further decrease the
length of the cylinder even by an infinitesimal amount, the
cylinder will never buckle. This special condition occurs due
to the influence of the time-variant radius and will never
occur for the case of the classical Euler buckling criterion. If
radius were constant, the critical axial load line for a particu-
lar cylinder length and the axial force would be two horizon-
tal lines and hence no critical value of length could be found
in that case unless the two lines were coincident.

It is important to note from Fig. 5(a) that the axial forces
Fz for the two cases (with χs and without χs) for ~j0 con-
verges approximately at ~t ¼ 0:1 (before the critical load lines
touches the corresponding Fz curves). The value of Fcrit is
also approximately same for the two cases but still the critical
length of buckling is different for the two cases. This can be
explained by the fact that the BOLS effect increases the
Young’s modulus making the cylinder stiffer; hence, a
higher critical length Lcrit is needed to reach a load line that
will be tangential to the axial force load line.

In Fig. 5(b), we show the critical buckling length (Lcrit)
vs lithiation rate ~j0 for a radius of R0 ¼ 5nm. We observe
that both the curves in Fig. 5(b) has much higher Lcrit for a
very low rate of lithiation ~j0 ¼ 0:001 and for a very high lith-
iation rate of ~j0 ¼ 1 as compared to the Lcrit for a moderate
lithiation rate of ~j0 ¼ 0:1. The same has been observed by
Chakraborty et al.26 (of course, they considered a cylindrical
radius of R0 ¼ 200 nm and hence did not include the BOLS
effect). We also note that the curve for the case in which the
BOLS effect is considered lies above the curve in which the
BOLS effect is not considered. However, the curve in which
the BOLS effect is considered qualitatively looks like a
scaled up version of the other curve up to a moderate value
of ~j0 ¼ 0:2. After ~j0 ¼ 0:2, the gap between the two curves
starts reducing. This is to be expected because of the fact that
as lithiation rate ~j0 increases, the radius also increases signifi-
cantly within a very short period of time and hence, the
BOLS effect is reduced. We also observe that for a lithiation
rate of ~j0 ¼ 1 or above, the slope of both curves in Fig. 5(b)
reduces drastically. This reduction in slope is not observed if
we take a constant Young’s modulus Y , a trend that was
observed in Fig. 6(b) of the paper by Chakraborty et al.26

In Fig. 6(a), we show the variation of the percentage
increase in Lcrit (%ΔLcrit) due to the BOLS effect with
increasing initial radius of the cylinder (R0) for an influx rate
of ~j0 ¼ 0:1 and 0.001. We observe that as we increase R0,
the percentage increase in Lcrit reduces drastically which is
expected since the BOLS effect is prominent at lower values
of R0. For an influx rate of ~j0 ¼ 0:1, for R0 ¼ 2:5 nm,
%ΔLcrit ¼ 27 and for R0 ¼ 100 nm, %ΔLcrit ¼ 0:6. In fact,
the value of %ΔLcrit decreases to a value less than 2 at
R0 ¼ 30 nm. As we already discussed in Subsection III A,
the BOLS effect has significant influence on the stresses
when we consider an initial radius R0 less than 30 nm. We
can observe that the curves for ~j0 ¼ 0:1 and 0:001 practically
overlap and that they approximately follow the equation

%ΔLcrit ¼ 100(e
1

1:72R0 � 1): (73)

In Fig. 6(b), we show percentage increase of the Young’s
modulus (ΔY) between the two cases (with χs and without
χs) vs the initial radius R0 of the cylinder for an influx rate,
~j0 ¼ 0:1 at the surface of the cylinder for three instants of
non-dimensional time, ~t. We observe that the effect of BOLS
on ΔY is highest at lower values of radius. We can also
observe from the inset of Fig. 6(b) that the difference is
larger at initial times than at later times due to increase in
radius and consequent decrease in the BOLS effect. It is to
be noted that the variation of ΔY as well as Y with time is

FIG. 5. Panel (a) shows the time variant load lines for different lengths of
the cylinder for R0 ¼ 5 nm and influx rate ~j0 ¼ 0:1 along with the critical
load lines for both the cases (with χs vs without χs) along with the plot of
the corresponding axial forces for both with χs and without χs conditions .
Panel (b) shows the critical length of buckling for various ~j0.
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significantly higher for lower values of initial radius, R0. We
have observed that the variation of ΔY with R0 is almost
independent of location, i.e., the curves are almost same
whether we consider the Young’s modulus at the centre or at
the surface. We have also observed that the curves are same
for both axially constrained and unconstrained cases.

IV. CONCLUSIONS

We have performed a detailed analysis of the changes
induced by the BOLS effect in a silicon cylindrical nano-
electrode particle. We have noticed that there are certain
differences in stress distribution as well as plastic stretch
distribution when the BOLS effect is considered. In almost
all the cases studied, stresses and plastic stretches are ampli-
fied in magnitude. We have also observed that the reversal
from tensile to compressive stresses occurs earlier when we
consider the BOLS effect. It has also been observed that the
BOLS effect reduces as we increase the radius of the cylin-
der. We have found that a smaller electrode radius to small
values gives a higher critical length of buckling than usual
(as found from the Euler buckling criteria). Although the crit-
ical length ΔLcrit increases steadily with increasing R0, the
percentage increase in Lcrit due to the BOLS effect reduces
significantly with increasing R0.

The focus of our current investigation has been on the
effects of the BOLS theory on buckling of a specimen that
is geometrically a canonical instance of the classical Euler
buckling case. However, the importance of this investiga-
tion must be understood by placing it in the more general
context of mechanical instability. Within this broader
context, phenomena involving delamination (peeling, blis-
tering) of two layers of materials are particularly relevant
in studies of lithium-ion batteries because of the presence
of layered structures within these batteries; for instance,
delamination of an active material like Si from a current
collector like Cu. Since mechanical instability of such
structures is intrinsically dependent on interfacial proper-
ties, considerations of the BOLS theory become tremen-
dously pertinent. Important progress was recently made
toward the fundamental understanding of such interfacial
properties with particular relevance to delamination using

the BOLS theory.63 It is to be expected that an exciting
direction of future investigations will be toward incorporat-
ing the BOLS theory within mathematical frameworks for
studying a broader category of mechanical instability issues
in lithium-ion batteries, and thus contribute to the advance-
ment of this technology in a fundamental way.
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