
Deep neural architecture and
applications (part II)
Week 12: Lectures 56-57

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: K. Sairam

Convolutional Neural Network

Convolution Layer

32

32

3

5x5x3 filter (kernel)

32x32x3 image
Filters always extend the full
depth of the input volume

Convolve the filter
with the image
i.e. “slide over the
image spatially,
computing dot
products”.

Convolution Layer

32

32

3

32x32x3 image x

1 number:
the result of taking a dot product
between the filter and a small
5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot
product + bias)

5x5x3 filter

Locality!

Objects tend to have a local
spatial support.

Convolution Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation
map

Translation Invariance! 1

28

28

Weight sharing!

object appearance is
independent of location

Convolution Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

1

28

28

Consider a second, green filter.

activation
map

Convolution Layer (CONV)

32

32

3

Convolution Layer

activation maps

6

28

28

We stack these up to get a “new image” of size 28x28x6!

For example, if we had 6 5x5x3 filters, we’ll get 6 separate activation maps:

6 # CONV

Features of CONV
n Locality:

n objects tend to have a local spatial support
n Translation invariance:

n object appearance is independent of location
n Weight sharing

n units connected to different locations have the same
weights

n equivalently, each unit is applied to all locations
n weights of filters are invariant.

n Each unit output of filter is connected to a local
rectangular area in the input.
n – Receptive Field

Non-Linear Layer

n Increase the nonlinearity of the entire
architecture without affecting the
receptive fields of the convolution layer.
n Commonly used in CNN is ReLU.

Convolutional Neural Networks (CNN)

32

32

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

10
24

24

A CNN is a sequence of convolution layers and
nonlinearities.

….

3

Parameters involved in
convolution layer

n Input Volume size W1 x H1 x D1
n No. of filters K with size Fw x Fh x D1 convolved

with stride (Sw,Sh).
n Input zero padded by (Pw, Ph) on both sides.
n Output volume size W2 x H2 x D2?

n W2 = (W1 – Fw + 2Pw)/Sw + 1
n H2 = (H1 – Fh + 2Ph)/Sh + 1
n D2 = D1

n Parameters ?
n (Fw * Fh * D1) * K weights + K biases

n d-th depth slice of output is the result of
convolution of d-th filter over the padded input
volume with a stride, then offset by d-th bias

Pooling Layer (POOL)
n To progressively reduce the spatial size of the

representation.
n to reduce the amount of parameters and computation in the

network.
n to control overfitting.

n Pooling partitions the input image into a set of non-
overlapping rectangles.

n For each such sub-region, outputs an aggregated value of
the features in that region.
n Maximum value (Max pooling)
n Average value (Average pooling)

n Operates over each activation map independently

Pooling Layer (POOL)

Parameters involved in pooling
n Input Volume size W1 x H1 x D1
n Pool size Fw x Fh with stride (Sw,Sh).
n Output volume size W2 x H2 x D2?

n W2 = (W1 – Fw)/S + 1
n H2 = (H1 – Fh)/S + 1
n D2 = D1

n Parameters ?
n 0!

n Uncommon to use zero-padding in
Pooling layers.

Fully Connected Layer (FC)
n Contains neurons that connect to the

entire input volume
n as in ordinary Neural Networks.

n Input volume to FC layer can also be
treated as Deep Features.

n If the FC layer is a classifier, the input to
FC can also be treated as feature vector
representation for the sample.

Batch Normalization
n Normalizes input activation map to a layer by

considering its distribution over a batch of
training samples.

n To make Gaussian activation maps.
n Improves gradient flow through the network.
n Allows higher learning rates.
n Reduces the strong dependence on initialization.
n Acts as a form of regularization.
n Usually inserted after FC / CONV layers, and

before non-linearity.

Batch Normalization (BN)
n Normalizes activation responses of a channel of

previous layer
n by subtracting mean of a responses of batch and

dividing it by their standard deviation.
n Transforms the resultant output operation by

scaling and translation by parameters a and b.
n learnt by the gradient descent algorithm.

n During test time running averages and s.d.’s of
activation maps used along with learnt
parameter a and b for each channel at a layer.

Drop out
n Randomly dropping out nodes of network (at

hidden / visible layers) during training.
n Temporarily removing it from the network, along with

all its incoming and outgoing connections.
n To regulate overfitting, more effective for smaller

dataset.
n Simulates learning sparse representation in hidden

layers.
n Implementation

n Retain output of a node with a probability p.
n Typically within [0.5,1] at hidden layers and [0.8,1] in visible

layers.

Learning weights with drop out
n Weights become larger due to drop out.

n Needs to be scaled at the end training.
n A simple heuristic.

n Outgoing weights of a unit retained with
probability p during training, multiplied by p at test
time.

n Scaling may be carried out during training
time at each weight update.

n No need to rescale weight for the test network.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A Simple Way to Prevent
Neural Networks from Overfitting ,JMLR, 15(Jun):1929−1958, 2014.

CNN Architectures

LeNet

n Gradient-based learning applied to document
recognition.

n Architecture:
Input→CONV→POOL→CONV→POOL→FC→FC
→Output

n Number of parameters: 60k
n Number of floating point operations per inference:

341k
n Sigmoid used for non-linearity.

*Y. Lecun et al, Proceedings of the IEEE, 1998

LeNet

*Y. Lecun et al, Proceedings of the IEEE, 1998

Six 5*5 filters,
Stride 1

Six 5*5 filters,
Stride 1

2*2 average
pooling,
Stride 2

2*2 average
pooling,
Stride 2

AlexNet
n Uses Local Response Normalization (LRN)

Architecture:
Input→CONV1→MAXPOOL1→NORM1→CO
NV2→MAXPOOL2→NORM2
→CONV3→CONV4→CONV5→MAXPOOL3
→FC6→FC7→FC8→Output

n # of Weights: 61M
n # of floating point oeprations: 724M
n ReLU used for non-linearity

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012

AlexNet

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012

Parameters Count: AlexNet
n Input: 227x227x3 images
n First layer (CONV1): 96 11x11 filters applied at stride 4
n Q: what is the output volume size?

n Along length and breadth: (227-11)/4+1 = 55
n Output volume [55x55x96]

n Q: What is the total number of parameters in this layer?
n Parameters: (11*11*3)*96 = 35K (Without bias)
n Parameters: (11*11*3)*96 + 96 (With bias)

n Second layer (POOL1): 3x3 filters applied at stride 2
n Q: what is the output volume size?

n Along length and breadth: (55-3)/2+1 = 27
n Output volume: 27x27x96 (Input to POOL1 is output of CONV1)

n Q: what is the number of parameters in this layer?
n Parameters: 0

ZFNet
n AlexNet but:
n CONV1: changed from (11x11 stride 4) to (7x7 stride 2)
n CONV3,4,5: instead of 384, 384, 256 filters use 512,

1024, 512
n ImageNet top 5 error: 16.4% → 11.7%

* Zeiler and Fergus, 2013Smaller filter size, More filters in layer

VGG
n Smaller filters, deeper layers
n 8 layers (AlexNet) → 13 layers

(VGG13) / 16 layers (VGG16Net) / 19
layers (VGG19Net)

n Only 3x3 CONV stride 1, pad 1 and 2x2
MAX POOL stride 2

n 7.3% top 5 error in ILSVRC’14
n Weights: 138M & FLOPS: 15.5G

*Simonyan et al., arXiv 2014, ICLR 2015

Deeper the layer, better accuracy.

VGG

*Simonyan et al., arXiv 2014, ICLR 2015

Deeper the layer, better accuracy.

VGG

n Stack of three 3x3 conv (stride 1) layers
has same effective field as one 7x7 conv
layer
n deeper with more non-linearities
n Fewer parameters: How?

n 3*(32 C2) vs. (72 C2) for C channels per layer

GoogleNet
n CONV Layers: 21 (depth), 57 (total)
n Introduces inception modules.

n Concatenates output of filters of different sizes.
n Fully Connected Layers: 1
n Weights: 7.0M & FLOPS: 1.43G
n Architecture: (9 Inception Modules)

INPUT→CONV1→POOL1→CONV2→CONV3→POOL2→INCEPTION1
→INCEPTION2→POOL3→INCEPTION3→INCEPTION4→INCEPTION5
→INCEPTION6→INCEPTION7→POOL4→INCEPTION8→INCEPTION9
→POOL5→FC1→OUTPUT

n ILSVRC’14 classification winner (6.7% top 5 error)
*Szegedy et al., arXiv 2014, CVPR 2015

GoogleNet

*Szegedy et al., arXiv 2014, CVPR 2015

Naïve Inception Module

28x28x(128+192+96+256) = 28x28x672

ResNet
n Problems with deeper model

n causes overfitting
n harder to optimize, because of vanishing gradients.

n gradients die as we go deeper.

*He et al., ResNet arxiv 2015

ResNet

nUse network layers to fit a residual mapping instead of
directly trying to fit a desired underlying mapping.

ResNet

*https://www.slideshare.net/SomnathBanerjee17/lenet-to-resnet

Total depths of 34, 50, 101, or 152 layers architectures are also
available

Other Networks
n Network in Network (NIN)
n Wide Residual Networks
n Aggregated Residual Transformations for Deep Neural

Networks (ResNeXt)
n DenseNets
n SqueezeNet: AlexNet-level Accuracy With 50x Fewer

Parameters and <0.5Mb Model Size
n MobileNet (Depthwise Separable Convolutions)
n ShuffleNet (Grouped Convolutions)
n FractalNet: Ultra-Deep Neural Networks without Residuals

Training steps:
• Preprocessing of training dataset.

n Normalize data.
n Decorrelate data (Diagonal Covariance

Matrix).
n Whitening of data (Identity Covariance

Matrix).
n Subtract Mean.

Training steps:
• Data augmentation.

n Horizontal Flips
n Random Crops on scaled input
n Color jitter
n Distortions
n Transformations

• Weight initialization
• Train the network by update of the weight

parameters.

Few Training Tips
n Start with small regularization and find learning rate that

makes the loss go down.
n Can overfit very small portion of the training data.
n Train first few epochs with few samples to initiate the

hyper-parameters.
n If big gap between training accuracy and validation

accuracy, then it is overfitting.
n Try increase regularization.

n If no gap, then may increase model capacity.

Transfer Learning

n No need of a lot of a data to train a CNN.
n Pre-trained models can be initialized for

CNNs at the early stage of training.

*Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning

1.
Train
on
Imag
eNet

2. Small
Dataset
(C
classes)

Reinitiali
ze this
layer and
train

Freeze
these

3. Bigger
dataset

Train these
layers

Freeze
these

Lower learning
rate
when fine-
tuning;
1/10 of original
LR
is good starting
Point.

With bigger
dataset, train
more layers

