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Classification
Classification:
Task of assigning a known category or class to an object.
o detection of pedestrian in an image patch.
o recognition of an alphabet given a 2-D pattern.
o assigning a pixel of an image to its  foreground or 

background.

Non-human

Human

Classify ?



Clustering: the task of organizing 
objects into groups whose 
members are similar in some way.

Clustering

Cluster: a collection of objects
similar to each other, but
dissimilar to the objects belonging
to other clusters .

o Regions of homogeneity in an 
image. 
o Segments.

o Grouping of similar components.



Class and cluster

A class: well studied group of objects identified 
by their common properties or characteristics.

A cluster: a group with ‘loosely’ defined 
similarity among the objects. 

o Potential to form a class.



o finding representatives for homogeneous 
groups
o to reduce data.

o discovering natural groups or categories.
o to describe by their unknown properties.

o finding relevant groups.
o major groups  in the given context.

o segments of an image.
o detecting unusual data objects

o outliers.

https://www2.cs.duke.edu/courses/fall03/cps260/notes/lecture18.pdf

Clustering: Motivation



Processing pipeline

Preprocessing

Feature 
extraction

Classification 
/ clustering

Input 
image



Supervised and 
unsupervised learning

Unsupervised learning: learns in the absence of
almost any prior knowledge of groups.

o Sometimes the number of groups provided.
o clustering

Supervised learning: exploits knowledge about the
classification problem, such as example instances of
classes.

o Training samples with class labels.
o Finds features suitable for predicting classes.
o Classification

Clustering and  classification: learning problems.
o Learning about groups or categories in data.



Other variations in learning 
frame work

Semi-supervised learning: 
learns by making use of unlabeled data for training in 
conjunction with a small amount of labeled data.

o Usually sizes of unlabeled data large, and labeled data 
small.

o falls between unsupervised learning and supervised 
learning.

Reinforcement learning: 
learning by feedback from a teacher or a critique, in 
the form of reward / punishment, yes / no, true / 
false, etc.



Clustering: Three major 
components

A. The similarity 
(distance) measure 
between two data 
samples.

o L1, L2, Lp norms.

C. The clustering algorithms.
o K-means
o K-medoids
o Mixture of Gaussians

B. Criterion function to 
evaluate clusters.

o Intra-cluster cohesion
o Sum of Squares 

Error (SSE)
o Inter cluster separation

Other approaches
o Hierarchical clustering
o Graph based approaches, etc.



Homogeneity and 
Separation Principles

n Homogeneity: Elements within a cluster are close 
to each other.

n e.g. compute the average distance of these elements 
from the cluster center.

n Should be small.
n Separation: Elements in different clusters are 

further apart from each other.
n e.g. compute average distance of pairs of cluster centers.

n Should be large.



Several choices …

A bad clustering 
example

A good clustering 
example



n Given n data points, compute k partitions 
(clusters) in them so that it  minimizes the sum 
of square of distances between a data point and 
the center of its respective partition (cluster).

K-means clustering

where

An NP-complete problem (K>1).

Optimization problem
Minimization of 



The Lloyd algorithm
n Given k initial centers, assign a point to the cluster 

represented by its center, if it is the closest among 
them.

n Update the centers.
n Iterate above two steps, till the centers do not 

change their positions.
n Trying to minimize the energy function defined by the 

sum of divergences of each cluster from its center.
n Convergence not guaranteed, but works well in 

practice.
n May get stuck at local minima.



K-means: example (k=2)

Choose initial centers.

Compute partitions.



K-means: example (k=2)

Compute partitions.

Update centers.



K-means: example (k=2)

Compute new partitions with 
updated centers.



K-means: example (k=2)

Update centers.



K-means: example (k=2)



K-means: example (k=2)

Compute new partitions with 
updated centers.



K-means: example (k=2)

Update centers.



K-means: example (k=2)

Stop at no change 
(or a very little 
change in cluster 
centers).



A more conservative 
approach

n Lloyd algorithm fast but not necessarily 
causing better convergence. 

n A more conservative approach to move one 
data point at a time provided overall cost
gets reduced.

n A greedy approach by choosing the transfer 
of a data point from a class (say, i) to 
another class (say, j), which causes the best 
(maximal) cost reduction at that step.



Greedy K-Means Algorithm
Select an arbitrary partition P into k clusters.
Repeat the steps below till convergence of cost.

maxReduction=0;
for every cluster C do
for every element i not in C do

reduction=cost(P) - cost(PiàC)
if (reduction>0) 

if (reduction> maxReduction)
maxReduction=reduction
Update C and the cluster containing i.

endif
endif

endfor
endfor



k-Medoids clustering
n A medoid: the representative element of a set 

of data point with minimal average 
dissimilarity with other data points in the set.
n always restricted to be a member of the data set.

Given a set X={xi|i=1,2,..,n}, its medoid is given by 

Cost to be minimized in k-Medoids clustering:

Medoid of Ck.



k-medoids clustering
n Given k initial centers, assign a point to the 

cluster represented by its center, if it is the 
closest among them.

n Update the medoids.
n Very expensive!!

n Iterate above two steps, till the medoids do 
not change their positions.

o Randomly choose an element of a 
different cluster, swap with the medoid 
element and update the medoids. 

o If the cost decreases, accept the swap.
o Continue till it converges. 

Also known as Partitioning 
around medoids (PAM).



Mixture of Gaussians
n Each cluster center is augmented by a 

covariance matrix, whose values are re-
estimated from corresponding samples.
n Mahalanobis distance function:

Cluster center Covariance matrix

Parametric PDF:

Mixing coefficients

Technique could be refined by computing 
probabilities of belongingness to a cluster.



Expectation 
Maximization 
(EM) Algorithm Normalizing 

factor

Optional step.
Decision to be 
taken at the end.

n



Parameter re-estimation

Normalizing factor
Expected number of 
pixels in class k.



Classification approaches

n Probabilistic
n Bayesian classification

n Distance based
n K-Nearest neighbor

Classification:
Task of assigning a known category or class to 
an object.

n Discriminant analysis
n Linear discriminant 

analysis (LDA)
n Artificial neural network 

(ANN)
n Feed-forward neural 

network.



Classification problem
n Given a labelled data sets:

{(yi,xi)}, i=1,2,…,n such that  xi in Rn and yi
is the class of xi, an element of the finite set 
of classes.

n yi could be +1 or -1 for a two class problem.
Design a classifier C which assigns class yi
(output) to xi (input).



Risk of Classification
n Given a labelled data sets:

{(yi,xi)}, i=1,2,…,n such that  xi in Rn and yi
is the class of xi, an element of the finite set 
of classes.

n yi could be categorical or {+1 , -1} for a two 
class problem.

Design a classifier C which assigns class yi
(output) to xi (input).

Bayesian classification minimizes the risk.
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Bayesian Classification
n Based on Bayes’ Theorem. 
n Probabilistic prediction of belongingness to  a class.
n A simple Bayesian classifier:  Naïve Bayesian 

classifier.
n Each training example can increase/decrease the 

probability of the predicted class.
n Prior knowledge can be combined with observed 

data

Courtesy: hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt



Bayesian Inference

P(H|X) = P(H) P(X|H)

P(X) 

2. Bayes’ Theorem 
(Thomas Bayes (1763))

Posterior probability, the 
probability of the 
hypoth. (assigning a 
class) given the data.

Prior probability, the probability 
of the hypothesis on previous 
knowledge

Likelihood function, 
probability of the data 
given the hypothesis

Unconditional probability of the 
data, a normalizing constant 
ensuring the posterior 
probabilities sum to 1.00

P(A and B) = P(A) P(B|A) = P(B) P(A|B) 
1. Conditional probability
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Bayes’ classification rule

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt

P(H|X) = P(H) P(X|H)

P(X) 

Given training data X, posteriori probability of a 
hypothesis H, P(H|X), follows the Bayes’ theorem

Bayes’ classification rule:
Assign Ci to X iff the 
probability P(Ci|X) is the 
highest among all the P(Ck|X) 
for all the k classes.

Challenges:  
requires prior knowledge 
of probabilities of classes 
and their distributions in 
multidimensional feature 
spaces.
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Problem statement

P(Ci|X) = P(Ci) P(X|Ci)

P(X) 

o Input: a training set of tuples and their 
associated class labels. 
o each tuple is represented by an n-D attribute 

vector X = (x1, x2, …, xn).
o Let there be m classes C1, C2, …, Cm.

o To derive the maximum posteriori, i.e., the 
maximal P(Ci|X).

o Since P(X) is constant for all classes, only P(Ci) P(X|Ci)
needs to be maximized.
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Naïve Bayes Classifier 
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Works on a simplified assumption: 
attributes are conditionally independent (i.e., no dependence 
relation between attributes).

Significant reduction of the computation cost
o requires only the class distributions.

Convenient to estimate P(xi|Ck)
For a categorical or discrete variable: 

o fraction of times the value occurred in a class.
For a continuous variable: 

o may use parametric modeling of Gaussian distribution.
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Likelihood estimation in 
Naïve Bayes Classifier 
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For categorical or discrete variable: 
o fraction of times the value occurred in a class.

For continuous variable: 
o may use parametric modeling of Gaussian distribution.

Likelihood:

To estimate P(xi|Ck)
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An Example: Training Dataset

Class:
C1:buys_computer	=	
‘yes’
C2:buys_computer	=	
‘no’

Data	to	be	classified:	
X	=	(age	<=30,	
Income	=	medium,
Student	=	yes
Credit_rating	=	Fair)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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Computation of class prior

n P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

age income student credit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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Likelihood estimation: 
age =“<=30”

n P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222
P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

age income student credit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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n P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

age income student credit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Likelihood estimation: 
income =“medium”

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt



42

Likelihood estimation: 
student =“yes”

n P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

age income student credit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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n P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

age income student credit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Likelihood estimation: 
credit_rating =“fair”

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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n X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) :
P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Likelihood estimation: P(X|Ci)

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt



45

n X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Estimation of posterior: P(Ci|X) 
and class assignment

P(Ci|X)=	P(X|Ci)*P(Ci)	:	
P(X|buys_computer	=	“yes”)	*	P(buys_computer	=	“yes”)	=	0.028
P(X|buys_computer	=	“no”)	*	P(buys_computer	=	“no”)	=	0.007

Therefore,		X	belongs	to	class	
(“buys_computer	=	yes”)

hanj.cs.illinois.edu/bk3/bk3_slides/08ClassBasic.ppt
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Avoiding Zero-Probability
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All the conditional probabilities should be 
non-zero, else likelihood becomes zero.

Suppose	a	dataset	with	1000	tuples,	income=low	(0),	
income=	medium	(990),	and	income	=	high	(10).

Prob(income	=	low)	=	1/1003
Prob(income	=	medium)	=	991/1003
Prob(income	=	high)	=	11/1003

Use Laplacian correction (or Laplacian estimator)
Adding 1 to each case
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Naïve Bayes Classifier: Pros and 
Cons.

q Disadvantages
n Assumption:	class	conditional	independence	

n loss	of	accuracy
n In	real	life,	dependencies	exist	among	variables	

n E.g.,		hospitals:	patients:	Profile:	age,	family	history,	etc.	
Symptoms:	fever,	cough	etc.,	Disease:	lung	cancer,	
diabetes,	etc.	

n Dependencies	among	these	cannot	be	modeled	by	Naïve	
Bayes	Classifier.

q Advantages	
o Easy	to	implement	
o Good	results	obtained	in	

most	of	the	cases



Nearest neighbor classification

n Learning Algorithm:
n Store training examples

n Prediction Algorithm:
n – To classify a new example by finding the 

training example (yi,xi) that is nearest to x. 
n – Guess the class y = yi

http://people.csail.mit.edu/dsontag/courses/ml12/slides 
lecture10.pdf



K-Nearest Neighbor (K-NN) 
Method

n To classify a new input vector x,
n Examine the K closest training data points 

to x. 
n Assign the object to the most frequently 

occurring class.

http://people.csail.mit.edu/dsontag/courses/ml12/slides 
lecture10.pdf



K-NN: example (K=3)

Query pattern for 
classification.



K-NN: example (K=3)
Compute distances with all 
the training samples.



K-NN: example (K=3)

Find K=3 nearest 
neighbors



K-NN: example (K=3)
Assign the class 
which has 
maximum 
number of NNs.



K-NN: Probabilistic 
interpretation

n Non-parametric estimation of probability 
density at x given K neighbors.

n Number of training samples: N
n Assume the volume (hyper-volume) containing 

K neighbors: V
n Let prob. of a data point in the volume be P.

Estimates of the Prob. that the volume V 
around x contains a data point, P= K/N

Following binomial distribution:
E(no. of data points in the volume)=N.P=K



K-NN: Probabilistic 
interpretation

Estimates of the Prob. that the volume V 
around x contains a data point, P= K/N

Probability density at x, p(x) = P/V
Consider a class w1 contains n1 number of 
neighbors out of K neighbors.

p(x, w1) = (n1/N)/V

p(w1|x)=p(x,w1)/p(x)=n1/K
Posterior prob. of the class w1 given x.

Assign the class 
which has maximum 
posterior prob.



K-NN: Probabilistic 
interpretation

Estimates of the Prob. that the volume V 
around x contains a data point, P= K/N

Probability density at x, p(x) = P/V
Consider a class w1 contains n1 number of 
neighbors our of K neighbors.

p(x, w1) = (n1/N)/V

p(w1|x)=p(x,w1)/p(x)=n1/K
Posterior prob. of the class w1 given x.

Assign the class 
which has maximum 
posterior prob.

Bayesian 
inferencing



Nearest neighbor
n When to consider

n Instance map to points in Rn

n Less than 20 attributes per  instance.
n Lots of training data.

n Advantages
n Fast training.
n Learn complex target functions.
n Do not lose information

n Disadvantages
n Slow at query time.
n Easily fooled by irrelevant attributes.

http://people.csail.mit.edu/dsontag/courses/ml12/slides 
lecture10.pdf



Issues
n Distance measure

n Most common Euclidean
n Choosing K

n Increasing k reduces variance, increases bias 
(class prior dominates!).

n For high dimensional space, the nearest neighbor 
may not be close at all!

n Memory based technique. 
n Must make a pass through data points for each 

classification. 
n prohibitive for a large data set.



Classification by discriminant 
function

n Consider two class problems.
n Input: Labelled data sets: {(yi,xi)}, i=1,2,…,n

n xi in Rn and yi= +1 or -1.
n Design a discriminant function g(x) for class 

assignment as yi=sign(g(xi)).
n Decision boundary: g(x)=0
n Linear Discriminat Analysis (LDA): g in linear form.

n Polynomial of x of  degree 1.
n Quadratic Disciminant Analysis (QDA): g being  

quadratic.
n Polynomial of x of degree 2.



Linear discriminant analysis 
(LDA) from Bayes’ classifier

n Bayes’ classification steps:
n Given an input x 

n Estimate P(yi|x), for all i.
n Assign yk to x if it is maximum. 

n Difficult to estimate P(yi|x) directly.
n Compute the class likelihood (P(x|yi)) and 

class prior P(yi) from the data. 
n P(yi|X)=(P(x|yi).P(yi) / P(x))
n Not required to compute P(x), as it is the same 

for all classes.



Linear discriminant analysis 
(LDA) from Bayes’ classifier

n Assume likelihood distributions are 
normal.
n N(x; mk, Sk), k=1,2
n Assume covariance matrices are the same

n Sk=S, for all k.
n log(Prob. of class k):

C (a constant): 
Independent of class.

Ignore while 
comparing.

Assign class k having 
maximum value of log(.).



Linear form of function
Maximize 

Independent of class.

As S is symmetric.

gk(x)
g(x)=g1(x)-g2(x)

Linear discriminant 
function:



LDA as Bayesian 
Classification

n Estimate class priors pk.
n Given training data estimate the 

means (mk’s) of classes and the 
covariance matrix (S) of the data.

Mean of data.
Obtain the discriminant function g(x) and use 
it for classification.



Perceptron classifier
n A linear classifier with a different perspective. 

x1

x2

xn

w1
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f (z) y

y=f (z)=sign(z)



Augmented input and linear 
form

x1

x2

xn

w1

w2

wn

w0
1

f (z) o

o=f (z)=sign(z)z=WTX

Given {yi,Xi}, compute optimum W minimizing 
classification error.



Interpretation of WTX
Consider the hyperplane WTX=0 separating two 
samples X and X’ of classes 1 and 2.

WTX=0W

X

X.w

d=WTX/||W||
Distance of X from the hyperplane. 

w= unit vector 
along W.

WTX>0

X’
-W
WTX<0



Linearly separable classes

WTX=0W

X

d=WTX/||W||
Distance of X from the hyperplane. 

WTX>0

X’
-W
WTX<0

To find  a hyperplane separating 
data points of two classes.

If a solution 
exists, the classes 
are called linearly 
separable.



An error function

WTY=0W

Y

d=WTY/||W||

Data Normalization:
Y=X, if X in class 1 (o=1).
=-X, if X in class 2 (o=-1)

For correct 
classification,
WTY > 0, for all Y.

Error function 
(Perceptron Criterion):

Always +ve

Y’

Obtain W which minimizes J(W).



Gradient descent method for 
iterative optimization
n To obtain W which minimizes J(W).
n Start with an initial vector W(0).

n Compute the gradient vector 
n Move closer to minimum by updating 

W.

Positive scale factor 
(learning rate)



Iterative gradient descent 
Optimization

Data Normalization:
Y=X, if X in class 1 (o=1).
=-X, if X in class 2 (o=-1)

Iterative Optimization 
using gradient descent

1. Start with W(0).
2. Update W

3. Continue step 2 till converges.

May be taken as a 
constant.



Other forms of  the error 
function

n There could be other 
forms of the criterion 
function.
n Jp(W): not continuous
n Jq(W): continuous.

n Very smooth in boundary.
n May get stuck there.
n Value  dominated by long  Y’s.

Another error function
(Relaxation criterion)

Stronger linear separability
å

£

-
=Ñ

bYW
2

T

r
T Y

b)YY(W(W)J

Gradient computation:



More stringent criteria of  
linear separability

W

b

WTX=b

Y

Y’

Linear support vector machines 
(SVM) maximize b between two 
linearly separable data points of 
classes.



The algorithm (Batch 
relaxation with margin)
n Initialize W to W(0).
n Iterate till convergence 
n Compute the set M of misclassified 

samples (with margin b), so that 
n M={Y|WTY<=b}

n Compute gradient.
n Update W.

å
£

-
=Ñ

bYW
2

T

r
T Y

b)YY(W(W)J



Single sample relaxation 
with margin

n Initialize W to W(0).
n Perform the update of W by considering 

samples one by one in every iteration.
n Consider an i th sample Yi at k th iteration.
n If (WTYi <=b)

n Update W.
n Stop when very little change in updates at 

the end of an iteration.



Perceptron modelling a 
neuron

x1

x2

xn

w1
w2

wn

f (z) o

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/

Logistic / SigmoidSignum

A network of perceptrons 
provides a powerful 
model describing input / 
output relations.

bias



Artificial Neural Network
n A network of perceptrons.

n Input: A vector
n Output: A vector / A scalar
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Feed-forward Network
n No feed back or loop in the network.

X



Multilayered feed-forward 
Network

Input Layer
• Accepts input

Hidden Layer

Output Layer
• Generates output.

n Layer-wise 
processing
n i th layer takes 

input from (i-1)th
layer  and forwards 
its output to the 
input of next layer.

Fully connected 
(FC) feed-
forward network.



Mathematical description 
of the model

n Let j th neuron of i th layer be nej
(i).

n Its corresponding weights
n Wj

(i)= (wj1
(i), wj2

(i), …., wjn_(i-1)
(i))

n Bias: wj0
(i)

n n_(i-1): Dimension of input to the neuron
n n_i: Dimension of output at i th layer

n Output of the neuron:



Mathematical description 
of the model

n Output of j th neuron in i th layer:

n Input output relation in i th layer

W(i)
b(i)



Input output relation

n Output of j th neuron in i th layer:

n Input output relation in i th layer

W(i) b(i)

Input Output
W(1),b(1) W(2),b(2) W(m),b(m)



Input output relation

Input OutputW(1),b(1) W(2),b(2) W(m),b(m)

WInput Output

Parameters



Optimization problem

F(X;W)Input Output

Given {(Xi , Oi)}, i=1,2,…,N, find W such that it 
produces Oi given input Xi for all i.  

Minimize:

Apply the same gradient descent procedure to obtain the solution.



Optimization problem

F(X;W)Input Output

Minimize: Apply the same 
gradient descent 
procedure to obtain 
the solution.

Training samples:
{(Xi , Oi)}, i=1,2,…,N

1. Start with an initial W0.
2. Update W iteratively.

Stochastic gradient descent:



Chain rule of computing 
gradient of a single neuron
x1

x2

xn

w1
w2

wn

f (z) o

Target response: t
Error:
E=(t-o)2

f(z)(1-f(z))

-2(t-o) f ’(z) xi Analytical method!
Computed given the 
functional values. 



Computing gradient: Back 
propagation method

n For multi-layered feed forward network.
n Apply chain rule.

n From output to toward input.
n From output layer to toward input layer.
n Compute partial derivatives of weights at (i-1)th  

layer from the i th layer.



Back propagation: Concept

o

Error:
E=(t-o)2

w31
(2)

Layer 1 Layer 2 Layer 3
Layer 4

y1
(3)

y2
(3)

y1
(2)

y4
(1)



Back propagation: Concept

o

Error:
E=(t-o)2

w31
(2)

y1
(3)

y2
(3)

y1
(2)

y4
(1)

1 2 3 4

5



Back propagation: Delta 
rule

o

Error:
E=(t-o)21 2 3 4

5

Delta rule:

w31
(2) y1

(3)

y2
(3)y3

(1)

y1
(2)



Back propagation: Delta 
rule

i-1 th layer

j

δ1
(i)

δj
(i)

i th layer
1

n_i

k

δk1
(i)=f’(z1

(i)) δ1
(i)

wk1

δn_i
(i)wk,n_1

δkj
(i)=f’(zj

(i)) δj
(i)

wkj

å=-

j

(i)
kjkj

1)(i
k δwδ

m

δmk
(i-1)=f’(zk

(i-1)) δk
(i-1)

)2(1)(i
mkδ

--

¶
¶

=D i
mmk y

o
Ew

ym
(i-2)

Accumulated 
gradient value 
from output to 
this point.

)(
1
iy
o

¶
¶

)1( -¶
¶
i
ky
o

mkw
E

¶
¶

δk,n_j
(i)=f’(zj

(i)) δn_j
(i)



ANN training
n Initialize W(0) .
n For each training sample (xi, oi) do

n Compute functional values of each neuron 
in the forward pass.

n Update weights of each link starting from 
the output layer using back propagation.

n Continue till it converges.



Classification or 
regression?

n Primarily a regressor.
n Build a model to predict functional value F(x) 

given input x.
n Can be converted to a classifier by 

appropriate encoding of classes (output 
vector o).
n Two class problem

n Binary encoding: 0 / 1
n One hot encoding: (1 0) / (0 1)



Evaluation of a classifier
n Two class problems.

n Positive class and Negative class
n TP: Set of +ve samples predicted +ve.
n FP: Set of –ve samples  predicted +ve.
n TN: Set of –ve samples predicted –ve.
n FN: Set of –ve samples predicted +ve.

AP AN

PP TP FP

PN FN TN

Precision: TP/PP
Recall:      TP/AP

Sensitivity / Recall: 
TPR= TP/AP
Specificity:
TNR= TN/AN

Accuracy:
(TP+TN)/Total

F-Score:
Harmonic mean of 
precision and recall

RecallPrec
RecallPrec2

Recall
1

Prec
1

2F
+
´´

=
+

=



Evaluation of a classifier
n Multi class problems.

n Confusion matrix
ω1 ω2 ω3

ω1

ω2

ω3

True classes

Predicted 
classes

Accuracy: (Sum of diagonal) / Total



Cross validation

n For supervised classification.
n Separate training and test data.
n Train network using training data.
n Evaluate using test data.



k-fold cross validation
n Divide the data in k sets of equal size.
n Train using (k-1) sets and test with the 

remaining.
n Do it for every set as a test set.
n Report the average performance. 



Summary
n Classification

n Task of assigning a known category or class to an object.
n Clustering

n the task of organizing objects into groups whose members 
are similar in some way.

n Clustering techniques
n K-Means
n K-Medoids.
n GMM



Summary
n Classification techniques

n Naïve Bayesian
n K-NN
n Linear discriminant analysis
n ANN


