
Deep neural architecture and
applications (part I)
(Week 12: Lecture 55)

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: K. Sairam

Classical vs. Deep Architecture

Input OutputW(1),b(1) W(2),b(2) W(m),b(m)

Input Output

Classical ANN:
Only a few
hidden layers.

Deep architecture:
Could have more than
hundred hidden layers.

Application: Image Classification
ImageNet Large Scale
Visual Recognition
Challenge.
n1000 object classes
and 1.4M Images in
the dataset.
nMajor algorithms
submitted deep
features based.

Image: https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus

Application: Object Recognition and
Localization

Slide credit: Ross Girshick, ICCV 2015

Application: Object Segmentation

*Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016

Application: Pose Estimation

Cao et al,
“Realtime Multi-
Person 2D Pose
Estimation using
Part Affinity Fields”,
arXiv 2016

Application: Image Captioning

* Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Application: Dense Image Captioning

*Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Application: Super Resolution

*Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016

Application: Image Art Generate &
Transfer

*Gatys, Ecker, and Bethge, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Application: Outside Computer Vision

n Machine Translation & Text Synthesis
n Speech Recognition & Synthesis
n Navigating Autonomous Vehicles
n Playing Atari like Games
n Alpha Go

Deep architecture: Why so
late?

n Concepts introduced in 80’s.
n Basic principles remain the same.
n Two major reasons.

n Availability of large scale annotated data.
n Penetration of internet and smart phones.
n Wide spread of social networking.
n Online shopping, etc.

n Advancement of computing power.
n High throughput GPU computing.

Classical Image Classification

hand-crafted
feature

extractor

Classifier
Algorithm

output Tiger?

Cat?

Lion?
• Edges
• SIFT/SURF key Point
• HOG Regional Features
• Motion Features, etc.

• Bayesian
• LDA
• SVM
• KNN

Classification Challenges

n Very tedious and costly to develop hand-crafted
features to handle various challenges.

View Point variation Deformation Occlusion Intraclass Variation

Illumination Clutter Instances Scale

Highly dependent on one application, and not
transferable easily to other applications.

Deep Features

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

Low-level
features outputMid-level

features
High-level
features

Trainable
classifier

Increasing level of abstraction

Deep Features

n Utilize large amount of training data to
learn features.

n Rich hierarchical representations are
learnt fast through multiple stage of
feature learning process.

n Learned features are easy to adapt.

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

Supervised Learning

Data: (x, y) where x is data, y is label
Goal: Learn a function f to map x → y
Examples: Classification, Regression,

Object detection, Semantic
Segmentation, Image Captioning, etc.

Image Classification
What class that image belongs to? How to
classify?

Classify

Tiger

Cat

Lion
Learn a parametric function f
composed by weight
parameters w model to classify
Image x as class label y.

Supervised Learning
Data Driven Approach to learn the model in three
steps:

Input data
(Image
pixels)

Model
weights

Predicted output
(image label)

Model
structure

Step 1: Define Model

Supervised Learning

Training
input

True
output

Step 2: Collect data.

Supervised Learning

Minimize average
loss over training

set

Loss function:
Measures
“badness” of
prediction

Predicted output

Step 3: Learn the model.

Learned
weights

Regularizer:
Penalizes
complex
models

Total Loss = Data Loss + Regularization Loss

Loss

n A loss function tells how good our current
classifier is.

n Data loss: Model predictions should match
training data
n Multiclass SVM loss (Hinge Loss):

n Softmax Loss (Multinomial Logistic Regression):

i

Cross-entropy Loss

n Another form of softmax loss.
n 2-class entropy:

n -(y log(p)+(1-y) log(1-p)); p: Prob. (y=1|o)
n Multiclass:

Binary indicator (1 if o
belongs to c, else 0).

Estimated Prob. of o
belonging to c

More general:

True Prob. of o
belonging to c

Regularization Loss

nRegularization Loss: Model should be
“simple”, so it works on test data as “W” is
not unique with just data loss.

n L2 Regularization (Weight Decay)
n L1 Regularization
n Elastic net (L1 + L2)

i

• Random Search
• Inefficient in higher dimensions
• Gradient descent

• Back propagation algorithm

How to find best weights ?

Gradient Descent

For more details on brief details, ref to http://ruder.io/optimizing-gradient-descent/

Initialize w randomly
While true:

Compute gradient at current point

Move downhill a little bit:

Learning rate: How big
each step should beupdating the weights at each

iteration

How to update weights?

Back Propagation

n Forward pass:
n Run graph “forward” to compute loss

n Backward pass:
n Run graph “backward” to compute gradients

with respect to loss
n Efficient to compute gradients for big,

complex models.

Supervised Learning: Linear
regression

Regularizer is Frobenius
norm of matrix (sum of

squares of entries)Learning Problem

Input and output are vectors Loss is Euclidean distance

Linear Regression

Model is just a matrix multiply

Supervised Learning: Neural Network

Input and output are vectors

Linear Regression

Model is just a matrix multiply
Model is two matrix multiplies
which is again as Linear Regression

New Model

Supervised Learning: Neural Network

Input and output are vectors

Linear Regression

Model is just a matrix multiply

New Model

Model is two matrix multiplies,
with an elementwise

nonlinearity

Non Linearity: Activation Functions

Sigmoid

• Squashes numbers to range
[0,1] – can kill gradients.

• Best for learning “logical”
functions – i.e. functions on
binary inputs.

• Not as good for image
networks

• Not zero-centered

Activation Function

*LeCun et al., 1991

tanh(x)

• Squashes numbers to range
[-1,1]

• Zero centered (desirable)
• Still kills gradients when

saturated
• Not as good for binary

functions

Activation Function

*Krizhevsky et al., 2012

ReLU
(Rectified Linear Unit)

• Computes f(x) = max(0,x)
• Does not saturate (in +region)
• Converges faster than sigmoid/tanh

on image data (e.g. 6 times).
• Very computationally efficient
• Not suitable for logical functions
• Not for control in recurrent nets
• Not zero-centered output
• Dead ReLU never activates as

gradient is 0 for x < 0. So, no filter
update!

Non Linearity: Activation Functions

*Mass et al., 2013

Leaky ReLU

• Does not saturate
• Converges faster than sigmoid/tanh

on image data(e.g. 6 times.)
• will not “die”.

Non Linearity: Activation Functions

*Clevert et al., 2015

Exponential Linear Units (ELU)

• All benefits of ReLU
• Does not die
• Closer to zero mean outputs

Non Linearity: Activation Functions

*Goodfellow et al., 2013

MaxOut Neuron

• Does not have the basic form of dot product ->
nonlinearity

• Generalizes ReLU and Leaky ReLU
• Does not saturate!
• Does not die!
• doubles the number of parameters / neuron

Neural Network
Two Layer Neual network /

One hidden layer Neural Network

Three Layer Neural Network
/

Two hidden layer Neural
Network

Neural Network

Sometimes Multilayer called “Fully-Connected
Network” or “Perceptron”

Hidden layers are learned feature representations
of the input! These are Deep Features!

