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Points and lines in a plane
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i Intersection of parallel lines
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i Meaning of an ideal point
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i Ideal points

Ideal points: Points on the X-Y plane or principal plane
parallel to projection plane.

For canonical coordinate
system, they are of the form:

An ideal point denotes a direction toward infinity!
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i Line at infinity
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Line at infinity (I, ): Line containing every ideal point.
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model for the projective plane
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From Hartley and Zisserman, “Multiple view geometry inOcomputer vision”, Cambridge Univ. Press.
(2000)



Projection of parallel lines
from any arbitrary plane
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i Vanishing points

Vanishing Points

corresponding to parallel

lines of a plane lie on a W
line, called vanishing line.
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A real life example
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i Conics in P2
= Curves described by 2"d degree equation in the
plane.
ax? +bxy +cy*+dx+ey+f =0
= A point in homogeneous coordinate: (x,,x,x3)
> (x /x5 X,/x;3)

(5 +o() () c() +a()r () r=c

= ax? + bxyx, + cxi + dx;x3 + exy,x3 + fxf =0



Conics in P?

axi + bxixy + cxs + dxyx; + exyx3 + fx5 =0
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Conics 1dentified by C with 5 d.o.f. (a:b.:c:d:e:f)



i Five points define a conic

For each point the conic passes through

ax; +bx,y, +cyl +dx, +ey, + f =0
|:> (xl'z’xiyiﬂyizaxinyipfk:o
.
C = (a,b,C,d,e,f)



i Five points define a conic

For each point the conic passes through
ax. +bx.y. +cy. +dx. +ep. + f =0
Stacking constraints yields
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i Tangent lines to conics

The line 1 tangent to C at point x on C
1s given by I=Cx

From Hartley and Zisserman, “Multiple view geometry in computer
vision”, Cambridge Univ. Press (2000)



Dual conics

ine tangent to the conic C satisfies 1' C' 1=0

As C is
1 =Cx [> x = C1l symmetric,
xI'Cx =0 > (C_ll)TC(C_ll) =0 fc_l

O IT(c ) e =0 ITC T =0

Dual conics = line conics = conic envelopes
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From Hartley and Zisserman, “"Multiple view /g\éome”cry\; ||:1 computer
vision”, Cambridge Univ. Press (2000)



i Degenerate Conics

= Rank of C <3
= Rank 2 2 Two lines / points
= Rank 1 - One repeated lines / points

= Degenerate point conic:
C=l.m™+m.I" rank 2, ifl <> m

= Degenerate dual line conic:
C'=x.y™+y.X" rank2,ifx<>y



= x]1=0, and I'x=0
= x=]X1 andl=x X x’

Summary

= A point in a 2-D projective space represents a ray
passing through origin of an implicit 3D space.

= Requires additional dimension for representation.
= Homogeneous Coordinate Representation

= Straight lines in RZare elements of a 2D projective
space.

= Points and lines hold duality theorem.

= Conics are represented by a 3x3 symmetric matrix.

= Every conic has a dual conic or line conic as an envelop
of its tangents.




