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Can you get the 3-D structure 
of the scene?

o Get a set of pairs of corresponding points.
o Compute fundamental matrix.
o Derive camera matrices.
o Solve for 3-D coordinates of scene points for each 

pair of corresponding points. 



Feature matching

?



Matching with Features

o Detect feature points in both images.

o Describe them by local statistics.

o Find corresponding pairs (Matching).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Matching key points
n Representation of a key-point by a feature vector.

n e.g. [f0 f1 … fn]T

n Use distance functions / similarity measures.
n L1 norm

n L2 norm

n Lp norm



Weighted Distance function
n More weights to reliable components.

f , g: Column vectors of dimension n.
A: A +ve semidefinite matrix

o Symmetric.
o vTAv>=0 for all v.
o Typical example: Diag(w0, w2, … wn-1), wi>=0



A few other similarity 
measures
n Normalized Cross Correlation.

n Cosine similarity.



Matching criteria
n Distance based

n Fixed threshold (FT): 
n Report all matches within the threshold value.

n Nearest neighbor (NN): 
n Report the nearest neighbor.

n Nearest Neighbor Distance Ratio (NNDR):
n Report the NN if ratio of distances between the 

NN and 2nd NN is small.



Matching criteria
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Matching histograms
n Lp norm of bins (representing same 

intervals of covariates).
n Usually L1 used.

n Kullback-Leiber divergence (of pdf).

n Earth Mover’s Distance (EMD)



Earth Mover’s Distance (EMD)
n EMD of two histograms P and Q measures the 

minimum accumulated cost of transferring masses 
from any bin of P to any bin of Q so that the 
histogram P gets transformed into Q.
n Cost  defined by the product of transferred mass and 

distance between bin. 
n m x |i-j| for transferring mass m from ith bin of P to jth bin of Q.
n This would make P[i]=P[i]-m and Q[j]=Q[j]+m.

n Total mass of P and Q should be same.
n Accumulated cost is normalized w.r.t. to the total transfer 

of mass.



Computing EMD
n Two normalized histograms:

n P={pi} and Q={qi}, for i=0,1,…, N-1.
n mij transferred from i th bin of P to j th bin of Q.
n dij distance between i th and j th bin.

n EMD is the minimum normalized work (transfer of 
masses) required for transforming P into Q.

H. Ling and K. Okada, An Efficient Earth Mover’s Distance Algorithm 
for Robust Histogram Comparison, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 29 (5), pp. 840-853, 2007.



Computing EMD
n EMD is the minimum normalized work (transfer of 

masses) required for transforming P into Q.
n Before initiating transfer operation, bins of Q is 

intialized to zero. The input specificaiton qj’s are 
used for specifying constraints of the optimization 
equations.

H. Ling and K. Okada, An Efficient Earth Mover’s Distance Algorithm 
for Robust Histogram Comparison, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 29 (5), pp. 840-853, 2007.



Efficient computation of 
feature matching

n Range query
n Nearest Neighbor of the query.
n Report all the features within a distance 

from the query.
n Ordinarily of linear time complexity O(N),

n N is the number of features in the target image / 
database.

n Use of indexing and hashing.
n K-D Tree
n Locality Sensitive Hashing.



K-D tree
n A binary tree.
n Each node contains a (key) feature vector.
n Each node behaves like a node of binary 

search tree (BST) for values of a particular 
dimension
n Called cut-dimension.
n Alternate periodically on nodes  along any path.
n Places a key feature vector following the rules of 

BST comparing on the value of the cut-dimension.



NN Search using K-D tree
n As you walk through the tree nodes

n Store the current smallest distance and the 
respective key-feature.

n Prune sub-trees by comparing the minimum 
distance  with the corner nodes of the 
hypervolume (bounding boxes) represented by the 
sub-tree.

n Search the sub-tree to maximize the chance of 
pruning.

n Go to the sub-tree closer to the query. 



NN Search using K-D tree
n May require to traverse all the nodes of the 

tree.
n Worst case: O(N)
n In practice close to: O(log(N)+2d), where d is the 

dimension of the feature space.
n log(N) to find the cell near the query point.
n 2d search around cells in the neighborhood.



Locality sensitive hashing 
(LSH)

n Locality preserving hashing function 
(h(.)) w.r.t a distance function d(.).
n Prob.(h(x)=h(y)) should be high, if d(x,y) 

is small, 
n else the probability should be small.



LSH: A typical example
n Choose a random unit vector r of dimension 

n (e.g. following Normal distribution 
(N(0,1)) independently in each dimension).

n For any vector x of dimension n define a 
hash function as follows:

It can be shown, for any x and y Angle between 
x and y.



LSH multidimenstional 
bucketing

n You may also have a set of  k random vectors 
independently generating k hash values, and 
define the multidimensional bucket for hashing to 
place the input vector.
n H(x)=[hr1(x) hr2(x) …. hrk(x)]

n You may have L multiple buckets (corresponding 
to L sets of k random vectors) for the same input.
n H1(x), H2(x), …, HL(x)

n Given a query y compute L buckets and search for 
NN in all of them.



Model fitting
n Given a set of data points fit a model to establish 

relationship among the data points.
n Homography matrix between pixels in two images of the 

same planar scene.
n Fundamental matrix between corresponding points in two 

stereo images.
n Given a set of 2-D points fit a straight line / parabolic 

curve / circle / a high degree polynomial curve passing 
through them.

n Obtain data points and fit appropriate model.
n Preprocessing, feature detection-description-matching.



Knowledge of models

n Mathematical form  of the class / family 
of Models.
n 3x3 non-singular homography matrix for 

projective transformation.
n 3x3 singular fundamental matrix for stereo 

geometry.
n 3x4 Projection matrix.



Choice of a model
n Error of fitting

n Mean square error
n Likelihood 

n Pr (Data | Model)
n Size of a model

n Number of independent parameters
n Training and Test Error

n Large training error: Under-fitting.
n Low training error, but large test error: Over-fitting 
n Low training and test error: A good fit.



Fitting curves and lines

To decide 
about 
appropriate 
parametric 
models.

simple model: lines simple model: circles

complicated model: Steam-boat



Various Issues

• Noise / Error
• in estimation of feature locations.

• Extraneous data
• clutter (outliers), multiple lines.

• Missing data
• occlusions

Adapted from slides by S. Lazebnik.



Fitting a straight line over 2D 
points
n Fitting techniques

n Least Squares
n Total Least Squares
n Random Sample Consensus (RANSAC)
n Hough Voting



Line fitting in varying contexts
• Given points belonging to a line, to find the 

“optimal” line parameters.
n Least squares

• To handle outliers.
n RANSAC

• Presence of many lines.
n Voting methods: Hough transform

Adapted from slides by S. Lazebnik.



Least squares line fitting

nData: 
n(x1, y1), …, (xn, yn)

n Line equation:
n yi = m xi + c

n Find (m, c) to minimize 

(xi, yi)

y=mx+c

Adapted from slides by S. Lazebnik.

“Vertical” least 
squares



Least squares 
line fitting

n Data: (x1, y1), …, (xn, yn)
n Line equation: yi = m xi + c
n Find (m, c) to minimize 

(xi, yi)

y=mx+c

Adapted from slides by S. Lazebnik.



Least squares 
line fitting (xi, yi)

y=mx+c

• Not rotation-invariant.
• Fails completely for vertical lines.

Adapted from slides by S. Lazebnik.

Goodness of fit:

The R2 goodness-of-fit criterion compares the 
variability in the measurements not explained 
by the model to the total variability in the 
measurements.



Total least squares
n Distance between a point (xi, yi) and the line
px+qy=d : |pxi + qyi – d| given p2+q2=1.

å =
-+=

n

i ii dybxaE
1

2)( (xi, yi)

px+qy=d
Unit normal: 

N=(p, q)

Adapted from slides by S. Lazebnik.



Total least squares
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U

Subject to ||N||=1.

Eigen vector of UTU corresponding to the smallest eigen value.
Adapted from slides by S. Lazebnik.



Total least squares
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Adapted from slides by S. Lazebnik.



Random sample consensus 
(RANSAC)

• A general framework for model fitting in the 
presence of outliers.

• Outline
n Choose a small subset of points uniformly at 

random.
n Fit a model to that subset.
n Find all remaining points that are “close” to the 

model and reject the rest as outliers.
n Do this many times and choose the best model.

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and 
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Adapted from slides by S. Lazebnik.



RANSAC for line fitting
n Perform the following N times:
• Select s points uniformly at random.
• Fit a line using the LSE method.
• Find inliers to this line

• points whose distance from the line is less 
than t.

• For sufficient number of inliers (say > d), 
accept the line and refit using all inliers.

Adapted from slides by M. Pollefeys



Choice of parameters
• Initial number of points s

n Typically minimum number needed to fit the model.
• Distance threshold t

n Choose t so probability for inlier is p (e.g. 0.95). 
n Zero-mean Gaussian noise with std. dev. σ: t=1.96σ.

• Number of trials N
n Choose N so that, with probability p, at least in one trial 

random selections are free from any outlier. (e.g. p=0.99) 
(outlier ratio: e).

• Consensus set size d
n Should match expected inlier ratio: (1-e) x n.

Adapted from slides by M. Pollefeys

n=No. of data points



Estimating number of 
trials N

Given probability p, so that at least one random 
sample is free from outliers.

Outlier ratio: e Prob. that a sample is outlier. 

Prob. that all s samples are inliers: (1- e)s

Prob. that at least one sample is an outlier in a 
trial:
Prob. that all N trials have an outlier:(1- (1- e)s)N

(1- (1- e)s)

(1- (1- e)s)N=1-p

Adapted from slides by M. Pollefeys



Choosing N

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

p=0.99

Adapted from slides by M. Pollefeys

e

N



RANSAC pros and cons
• Pros

n Simple and general
n Applicable to many different problems
n Often works well in practice

• Cons
n Many parameters to tune
n Can’t always get a good initialization of the model based 

on the minimum number of samples
n Sometimes too many iterations are required
n Not appropriate for low inlier ratio.

Adapted from slides by M. Pollefeys



Voting schemes
• Let each feature vote for all the models 

that are compatible with it.
• Hopefully the noise features will not 

vote consistently for any single model
• Missing data doesn’t matter as long as 

there are enough features remaining to 
agree on a good model.



Hough transform
q Discretize parameter space into bins
q For each feature point in the image, put a vote in 

every bin in the parameter space that could have 
generated this point.

q Find bins that have the most votes.

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959 
Image space Hough parameter space

y=mx+b

m
b



Parameter space 
representation

• A straight line in the image corresponds 
to a point in Hough space.

Image space
Hough parameter space

Adapted from slides by  S. Seitz

x

y

y=m1x+b1

m

b

(m1,b1)



Parameter space 
representation

• A point in the image corresponds to a 
line in the Hough space.

Image space Hough parameter space

Adapted from slides by  S. Seitz

m

b
b=-x1m+y1

x

y

(x1,y1)



Parameter space 
representation

• Two points in the image correspond to 
two lines in the Hough space.

Image space Hough parameter space

Adapted from slides by  S. Seitz

m

b
b=-x1m+y1

x

y

(x1,y1)

(x2,y2)

b=-x2m+y2

Parameters of 
straight line 
joining these 
two points.



• Problems with the (m,b) space:
n Unbounded parameter domain
n Vertical lines require infinite m

• Alternative: polar representation

Parameter space 
representation

rqq =  +  sincos yx

Each point will add a sinusoid in the (q,r) parameter space 
Adapted from slides by  S. Seitz

• q varies from 0 to 180o

• r varies from 0 to the length 
of diagonal of the image grid.



Algorithm
• Initialize accumulator A  to all zeros
• For each edge point (x,y) in the image
• {

For θ = 0 to 180
• {

ρ = x cos θ + y sin θ
A(θ, ρ) = A(θ, ρ) + 1

}
}

• Find the value(s) of (θ, ρ) where A(θ, ρ) is a local 
maximum
n The detected line in the image is given by 

ρ = x cos θ + y sin θ
Adapted from slides by  S. Seitz

ρ

θ

A: Accumulator array



features votes

Basic illustration

http://ostatic.com/files/images/ss_hough.jpg



A more complicated image

http://ostatic.com/files/images/ss_hough.jpg



features votes

Effect of noise

http://ostatic.com/files/images/ss_hough.jpg



Dealing with noise
• Requires appropriate resolution of  discretization of the 

grid in the parameter space
n Too coarse: 

n large votes in a cell  for accumulating  too many different 
lines correspond to a single bucket

n Too fine: 
n may miss lines as some points may not be exactly 

collinear voting different buckets.



Dealing with noise
• Smoothing accumulator array.
• Try to get rid of irrelevant features 

n Take only edge points with significant 
gradient magnitude



Summary
n Feature matching.

n Distance function / Similarity measure.
n Different policies

n Use of a threshold value.
n Nearest Neighbor.
n Nearest neighbor with distance ratio (NNDR).

n Use of indexing / hashing for efficient computation.
n Special distance functions for comparing histograms.

n Kullback-Leiber Divergence (KLD)
n Earth Mover’s Distance (EMD)



Summary
n Model fitting

n Prior knowledge of the model useful.
n Need to consider goodness of fit.
n Different techniques for line fitting

n Least squares 
n Total least squares.
n RANSAC
n Hough Transform.


