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!'_ Convolutional Neural Network
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Convolution Layer (CONV)

activation maps

Y

>
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For example, if we had 6 5x5x3 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image” of size 28x28x6!



Features of CONV

Locality:

= Objects tend to have a local spatial support
Translation invariance:

= Object appearance is independent of location

Weight sharing
= units connected to different locations have the same
weights
= equivalently, each unit is applied to all locations
= weights of filters are invariant.

Each unit output of filter is connected to a local
rectangular area in the input.
= — Receptive Field



i Non-Linear Layer

= Increase the nonlinearity of the entire
architecture without affecting the
receptive fields of the convolution layer.

» Commonly used in CNN is RelLU.



i Convolutional Neural Networks (CNN)
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Parameters involved in
i convolution layer

nput Volume size W, x H; x D4
= No. of filters K with size F, x F,, x D; convolved
with stride (S,,,S;)-
= Input zero padded by ( P,, P,,) on both sides.
s Output volume size W, x H, x D,?
= W, =(W,-F, +2P,)/S, + 1
« H,=(H;—-F, + 2P,)/S, + 1
[ D2 —_ Dl
= Parameters ?
« (F, * F, * Dy) * Kweights + K biases
= d-th depth slice of output is the result of

convolution of d-th filter over the padded input
volume with a stride, then offset by d-th bias
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Pooling Layer (POOL)

0 progressively reduce the spatial size of the
representation.

m to reduce the amount of parameters and computation in the
network.
= to control overfitting.

= Pooling partitions the input image into a set of non-
overlapping rectangles.

= For each such sub-region, outputs an aggregated value of
the features in that region.

= Maximum value (Max pooling)
= Average value (Average pooling)

m  Operates over each activation map independently



Pooling Layer (POOL)
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# Parameters involved in pooling

put Volume size W, x H; x D,
= Pool size F,, x F, with stride (S,,,S;,).

s Output volume size W, x H, x D,?
IW2=(W1_FW)/S+1

s Parameters ?
s O

= Uncommon to use zero-padding in
Pooling layers.



i Fully Connected Layer (FC)

s Contains neurons that connect to the
entire input volume

= as in ordinary Neural Networks.

= Input volume to FC layer can also be
treated as Deep Features.

= If the FC layer is a classifier, the input to
FC can also be treated as feature vector
representation for the sample.



iBatCh Normalization

= Normalizes input activation map to a layer by
considering its distribution over a batch of
training samples.

= To make Gaussian activation maps.

= Improves gradient flow through the network.
= Allows higher learning rates.

= Reduces the strong dependence on initialization.
= Acts as a form of regularization.

= Usually inserted after FC / CONV layers, and
before non-linearity.



i Batch Normalization (BN)

= Normalizes activation responses of a channel of
previous layer

= by subtracting mean of a responses of batch and
dividing it by their standard deviation.

= Transforms the resultant output operation by
scaling and translation by parameters a and b.
= learnt by the gradient descent algorithm.

= During test time running averages and s.d.’s of

activation maps used along with learnt
parameter « and b for each channel at a layer.



Drop out

= Randomly dropping out nodes of network (at
hidden / visible layers) during training.
= Temporarily removing it from the network, along with
all its incoming and outgoing connections.

= To regulate overfitting, more effective for smaller
dataset.

= Simulates learning sparse representation in hidden
layers.

= Implementation

= Retain output of a node with a probability p.

= Typically within [0.5,1] at hidden layers and [0.8,1] in visible
layers.



Learning weights with drop out

= Weights become larger due to drop out.
= Needs to be scaled at the end training.

= A simple heuristic.

= Outgoing weights of a unit retained with
probability p during training, multiplied by p at test
time.
= Scaling may be carried out during training
time at each weight update.

= NO need to rescale weight for the test network.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A Simple Way to Prevent
Neural Networks from Overfitting ,JMLR, 15(Jun):1929-1958, 2014.



!'_ CNN Architectures



| eNet

Gradient-based learning applied to document
recognition.

Architecture:
Input—-CONV—-POOL—-CONV—-POOL—-FC—FC

—QOutput
Number of parameters: 60k

Number of floating point operations per inference:
341k

Sigmoid used for non-linearity.

*Y. Lecun et al, Proceedings of the IEEE, 1998



C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ps 16@5x
S2: f. maps

32x32
6@14x1

Full oonAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
Six 5*5 filters, 2*2 average Six 5*5 filters, 2*2 average
Stride 1 pooling, Stride 1 pooling,
Stride 2 Stride 2

*Y. Lecun et al, Proceedings of the IEEE, 1998



i AlexNet

= Uses Local Response Normalization (LRN)

Architecture:
Input—-CONV1—->MAXPOOL1—->NORM1—-CO
NV2—-MAXPOOL2—-NORM2
—CONV3—-CONV4—-CONV5—-MAXPOOL3
—FC6—-FC7—-FC8—Output

= # of Weights: 61M
= # of floating point oeprations: 724M
= RelU used for non-linearity

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012



i AlexNet
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*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012



i Parameters Count: AlexNet

= Input: 227x227x3 images

= First layer (CONV1): 96 11x11 filters applied at stride 4
s Q: what is the output volume size?

=« Along length and breadth: (227-11)/4+1 = 55

= Output volume [55x55x96]

s Q: What is the total number of parameters in this layer?
= Parameters: (11*11*3)*96 = 35K (Without bias)

= Parameters: (11*11*3)*96 + 96 (With bias)

= Second layer (POOL1): 3x3 filters applied at stride 2

= Q: what is the output volume size?

»« Along length and breadth: (55-3)/2+1 = 27

= Output volume: 27x27x96 (Input to POOL1 is output of CONV1)
s Q: what is the number of parameters in this layer?

= Parameters: 0



i ZFNet

= AlexNet but:
= CONV1: changed from (11x11 stride 4) to (7x7 stride 2)

= CONV3,4,5: instead of 384, 384, 256 filters use 512,
1024, 512

= ImageNet top 5 error: 16.4% — 11.7%

image size 224 110 26 13 13 13

filter size 7 ¢ 3 1 3
1 L384 V1 \3‘34
| stride 2 3x3 max -
L 4096 class
stride stri units softmax

Input Image
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

Smaller filter size, More filters.in layer.



i VGG

= Smaller filters, deeper layers

= 8 layers (AlexNet) — 13 layers
(VGG13) /16 layers (VGG16Net) / 19
layers (VGG19Net)

= Only 3x3 CONV stride 1, pad 1 and 2x2
MAX POOL stride 2

s 7.3% top 5 error in ILSVRC'14
= Weights: 138M & FLOPS: 15.5G

Deeper the layer, better accuracy.

*Simonyan et al., arXiv 2014, ICLR 2015



Tx512
1

x 1 x 4096 1 xl'x 1900

@ convolution+ReLU
U] max pooling

| fully connected+ReL.U

] softmax

y

Deeper the layer, better accuracy.

*Simonyan et al., arXiv 2014, ICLR 2015



i VGG

= Stack of three 3x3 conv (stride 1) layers
has as one /x/ conv
layer
= deeper with more non-linearities

= Fewer parameters: How"?
= 3%(32 C?) vs. (7% C?) for C channels per layer



GoogleNet

ONV Layers: 21 (depth), 57 (total)

Introduces inception modules.
= Concatenates output of filters of different sizes.

Fully Connected Layers: 1
Weights: 7.0M & FLOPS: 1.43G

Architecture: ( 9 Inception Modules)
INPUT—CONV1—POOL1—CONV2—CONV3—POOL2—INCEPTION1
—INCEPTION2—POOL3—INCEPTION3—INCEPTION4—INCEPTION5
—INCEPTION6—INCEPTION7—POOL4—INCEPTION8—INCEPTION9
—POOL5— —OUTPUT

ILSVRC’14 classification winner (6.7% top 5 error)

*Szegedy et al., arXiv 2014, CVPR 2015



1x1+1

MaxPoo

3Ix3+2(S}

*Szegedy et al., arXiv 2014, CVPR 2015



i Naive Inception Module

28x28x(128+192+96+256) = 28x28x672

Filter
concatenation

~1x1conv, | | 3x3conv, | | 5x5conv,

| 128 || 192 || o6 | | *3poo

Module input: Input
28x28x256




ResNet

Problems with deeper model

= causes overfitting
= harder to optimize, because of vanishing gradients.

= gradients die as we go deeper.

lterations lterations

Training error
Test error

*He et al., ResNet arxiv 2015



iResNet

sUse network layers to fit a residual mapping instead of
directly trying to fit a desired underlying mapping.

weight layer

F(x) ) relu

weight layer

identity
X

H(x)=F(x)+x



ResNet

Total'depths of 34, 50, 101, or 152 layers architectures are also
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*https://www.slideshare.net/SomnathBanerjeel7/lenet-to-resnet



i Other Networks

Network in Network (NIN)
= Wide Residual Networks

= Aggregated Residual Transformations for Deep Neural
Networks (ResNeXt)

s DenseNets

= SqueezeNet: AlexNet-level Accuracy With 50x Fewer
Parameters and <0.5Mb Model Size

= MobileNet (Depthwise Separable Convolutions)
= ShuffleNet (Grouped Convolutions)
= FractalNet: Ultra-Deep Neural Networks without Residuals



i Training steps:

- Preprocessing of training dataset.
= Normalize data.

=« Decorrelate data (Diagonal Covariance
Matrix).

= Whitening of data (Identity Covariance
Matrix).

= Subtract Mean.



i Training steps:

. Data augmentation.

= Horizontal Flips

= Random Crops on scaled input

= Color jitter

= Distortions

= Transformations

. Weight initialization

. Train the network by update of the weight
parameters.



i Few Training Tips

= Start with small regularization and find learning rate that
makes the loss go down.

= Can overfit very small portion of the training data.

= Train first few epochs with few samples to initiate the
hyper-parameters.

= If big gap between training accuracy and validation
accuracy, then it is overfitting.

= Try increase regularization.
= If no gap, then may increase model capacity.



i Transfer Learning

= NO need of a lot of a data to train a CNN.

= Pre-trained models can be initialized for
CNNs at the early stage of training.

*Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014



Transfer Learning
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