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Range data
q Range data is a 2-1/2 D or 3-D representation of the 

scene.
q An image d(i, j), which records the distance d to the 

corresponding scene point (X, Y, Z) for each image pixel 
(i, j).

q It could be provided as a set of 3-D scene points (point 
cloud).



Imaging techniques
n Passive imaging.

n Stereo imaging
n Active range sensing

o Time-of-flight sensors
o Triangulation-based sensors
o Structured Light



Time-of-Flight Range 
Sensors

Laser-based time-of-flight 
range sensors: light 
detection and ranging 
(LIDAR) or laser radar 
(LADAR) sensors. 

Limitation: 
o the minimum observation time 

thus limited by the minimum 
distance observable.

t: Time taken to travel the 
forward and return path.
v: speed of light in the 
given medium.

Distance:
d: (v x t)/2

Source and 
detector 
collocated.

Pulsed 
laser 

Use a moving 
mirror to scan 
the beam.



Triangulation based 
Sensors

Yi-Chih	Hsieh,	Decoding	structured	light	patterns	for	three-dimensional	imaging	systems,	Pattern	Recognition	34	(2001)	343-349	.

(u,v)

(i,j)

(X,Y,Z)

A light 
source.Camera

The camera 
and light 
source are 
calibrated.

Apply triangulation 
to get the 3D point.

Known for a predetermined 
scanning path of the beam.

Observed 
in camera.



Imaging principle

Yi-Chih	Hsieh,	Decoding	structured	light	patterns	for	three-dimensional	imaging	systems,	Pattern	Recognition	34	(2001)	343-349	.

(u,v)

(i,j)

(X,Y,Z)

A light 
source.Camera

Scan the ray in a 
predetermined 
calibrated path.

Encoding the 3-D 
position of 
projected ray.



Structured Light

Yi-Chih	Hsieh,	Decoding	structured	light	patterns	for	three-dimensional	imaging	systems,	Pattern	Recognition	34	(2001)	343-349	.

(u,v)

(i,j)

(X,Y,Z)

Structured 
lightCamera

Project a strip or 
pattern.
Get 3-D positions  
of all the scene 
points lying on the 
projected strip.

Encoding the 3-D 
position of 
projected ray.



Space Encoding
n Projection of a sequence of m patterns 

to encode 2m stripes using a plain 
binary code. 

n Number of stripes get doubled at 
every new pattern.

n Each light point (i,j) is associated with 
an m-bit binary code and its image is 
observed.



Binary Coding

Pattern 1

Pattern 2

Pattern 3

Projected 
over time…

Codeword of this píxel: 101… à identifies 
the corresponding pattern stripe

Courtesy: Prof. Guido Gerig 
http://www.cs.cmu.edu/afs/cs/academic/class/1
5385-s06/lectures/ppts/lec-17.ppt



Spatial Codification
n Project a certain kind of spatial pattern uniquely 

appearing in the image as a set of neighborhood 
points. 
n Could be spatially arranged dots with varying in size and 

colors.
n The pattern (providing a codeword)  is associated 

with a calibrated light point.
n does not require multiple projection over the object.

n The codeword obtained from a neighborhood of 
the point around it.

Courtesy: Guido Gerig: 
http://www.cs.cmu.edu/afs/cs/academic/class/15385-
s06/lectures/ppts/lec-17.ppt (adapted)



RGBD images from 
Microsoft Kinect

Uses infrared laser light with speckle pattern.



Why lasers?
n easily generate bright beams with lightweight 

sources.
n infrared beams used unobtrusively.
n focus well to give narrow beams.
n single-frequency sources easier to detect.

n do not disperse from refraction as much as full-
spectrum sources.

n semiconductor devices easily generate short 
pulses.

Light Amplification by 
Stimulated Emission of 
Radiation (LASER)
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Parametric curve (2D)
• Parametric curve:      X : I Ì R ® R2

))(),(()( tvtutX =

3|'|
|"'|)(

X
XXtk ´

=•Curvature at a point: Determinant 
in 2D

• Tangent  at a point: 
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Parametric curve (3D)
• Parametric curve:      X : I Ì R ® R3

3|'|
|"'|)(

X
XXtk ´

=•Curvature at a point: 
Cross Product of 
3-vectors

• Tangent  at a point: 
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Parametric curve (3D)
3|'|
|"'|)(

X
XXtk ´

=

C         
P=X(t)

N(t)

t

B(t)

T(t)

Osculating Plane
Normal Plane

Rectifying Plane

Formed by T(t) and a 
point near P=X(t).

Unit vectors
Moving trihedron
Or
Frenet Frame

binormal

normal

tangent
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Parametric surfaces
• Parametric surface:      x : UÌ R2 ® R3

|| vu

vu

XX
XXN

´
´

=
!

• Surface Normal:

)),(),,(),,((),( vuzvuyvuxvuX =

N

Xu

S Xv
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Parametric surfaces
• Parametric surface:      x : UÌ R2 ® R3

|| vu

vu

XX
XXN

´
´

=
!

• Surface Normal:

)),(),,(),,((),( vuzvuyvuxvuX =

• Parameterized curve on the surface: ))(),(()( tvtut =b

• Tangent vector to the curve β(t) :
vu XtvXtut )(')(' +=

!



First Fundamental Form
First	fundamental	form:	The	bilinear	form	that	
associates	two	vectors	in	the	tangent	plane	in	the	
form	of	dot	product.

E=xu . xu
F=xu . xv
G=xv . xv

{Magnitude of the tangent vector
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Second Fundamental Form

|| vu

vu

XX
XXN

´
´

=
!)),(),,(),,((),( vuzvuyvuxvuX =

dN(v)

dv
n

N

Angle between curve normal and surface normal

Normal Curvature

When they 
are unit 
vectors

t
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• Second fundamental form: e= – N . xuu
f = – N . xuv
g= – N . xvv

{
• Normal Curvature:  Second fundamental form 
to be normalized by magnitude of tangent (first 
normal form)

Second Fundamental Form

vu XtvXtut )(')(' +=
!

)),(),,(),,((),( vuzvuyvuxvuX =



21

• Second fundamental form:

e= – N . xuu
f = – N . xuv
g= – N . xvv

{
• Normal Curvature:  Second fundamental form 
to be normalized by magnitude of tangent (first 
normal form)

Second Fundamental Form

vu XtvXtut )(')(' +=
!
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Linear map, Gaussian and 
Mean curvatures
Linear	map:

Gaussian curvature (K): Determinant of linear map.
Mean curvature (H): Half of trace of linear map.

Eigen	values	and	eigen	vectors	of	linear	map	provide	
principal	curvatures	(k1,k2)		associated	with	principal	
directions.

2)(2
2 21
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=
-
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-
-

=

022 =+- KHkk
Principal	curvatures	are	roots	of	following	equation:

KHHk -±= 2
2,1

e= – N . xuu
f = – N . xuv
g= – N . xvv

E=xu . xu
F=xu . xv
G=xv . xv



Eight visible 
Surface types 
from signs of 
curvatures K

Invariant Surface Characteristics for 3D Object
Recognition in Range Images, PAUL J. BESL 
AND RAMESH C. JAIN, COMPUTER VISION, 
GRAPHICS, AND IMAGE PROCESSING 33, 
33-80 (1986)



Surface types from signs of 
curvatures

- 0 +

- peak ridge saddle

0 ridge flat valley

+ saddle valley pit

k1

k2

- 0 +

- peak ridge Saddle 
ridge

0 none flat Minimal 
surface

+ pit valley Saddle 
valley

K

H
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Example: Monge Patches
X ( u, v ) =  (u, v, h( u, v ))

In this case

• N=                           ( –hu , –hv , 1)T

• E = 1+hu
2;  F = huhv,; G = 1+hv

2

• e =                          ;   f =                          ;  g =

(1+hu
2+hv

2)1/2
1

(1+hu
2+hv

2)1/2

–huu

(1+hu
2+hv

2)1/2

–huv

(1+hu
2+hv

2)1/2

–hvv

h

u

vh(u,v)

|| vu

vu

XX
XXN

´
´

=
! e= – N . xuu

f = – N . xuv
g= – N . xvv

E=xu . xu
F=xu . xv
G=xv . xv



Monge Patches:
Mean and Gaussian Curvatures

Mean Curvature

Gaussian Curvature



Ex. 1

Consider the following representation of a surface 
(x(u,v), y(u,v), z(u,v)), 0 <= u,v <=1.

Compute the surface normal, Gaussian and mean 
curvatures at (u,v)=(0.5,0.5).



Ans.1

At u=v=0.5,

Element wise multiplication



Ans.1 (contd.)

Surface normal as (u,v): at u=v=0.5

Linear map: Principal Curvatures (k1, k2): 
Eigen values of linear map.

Gaussian curvature: k1.k2

Mean curvature: (k1+k2)/2



Ans.1 (contd.)

At u=v=0.5
e=107.352
f= 13.389
g=19.832

E=1208.375
F= 1240.312
g=2520.625

Linear map (L):

Mean Curvature: Trace (L) /2 =0.086

Gaussian Curvature: Det.(L)=0.0013
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Finding Step and Roof Edges 
in Range Images

“Describing Surfaces,” by J.M. Brady, J. Ponce, A. 
Yuille and H. Asada, Proc. International Symposium 
on Robotics Research, H. Hanafusa and H. Inoue 
(eds.), MIT Press (1985)

Courtesy : www.cs.unc.edu/Research/vision/comp256/vision23.ppt



Edge Models

k1x+h when x<0,

k2x+c+h when x>0.{z=

Step edge:

k1x+h when x<0,

k2x+h when x>0.
{z=

Roof edge:

Adapted from: 
www.cs.unc.edu/Research/vision/comp256/vision23.ppt



Characterizing 
Edges

( )2
3

'

"

1
)(

s

s
s

z

zxk
+

=

Step edge Roof edge

Curvature at  Gaussian smoothened z(x):

Ratios of 2nd and 1st derivatives  of curvatures:
Step edges:
Roughly remains 
constant across 
scales.

Roof edges:
Inversely 
proportional to 
scale.

Adapted from: 
www.cs.unc.edu/Research/vision/comp256/vision23.ppt



Characterization of edges
Step	edges	are	zero	crossings	of	one	of	principal	
curvatures	(or	Gaussian	curvature),	whose	position	
changes	with	scale.	

Roof	edge	is	characterized	by	local	maxima	of	curvature	
and	to	be	sought	in	the	direction	of	dominant	principal	
curvature.
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roughly	remains	constant	
across	scales.

roughly	remains	constant	
across	scales.



The Algorithm
§ Compute a set of Gaussian smoothed images at 

multiple scales.
§ Compute the principal directions and curvatures 

at each point of the smoothed images.
§ Compute zero crossings of the Gaussian 

curvature and the extrema of the dominant 
principal curvature in the corresponding 
principal direction. 
§ Zero-crossings: Candidate step edge points.
§ Extrema: Candidate roof edge points.

§ Use the analytical models across scales to select 
candidate points for respective edges.

“Describing Surfaces,” by J.M. Brady, J. Ponce, A. Yuille and 
H. Asada, Proc. International Symposium on Robotics 
Research, H. Hanafusa and H. Inoue (eds.), MIT Press (1985)



Multi-scale edge tracking
•Features	are	tracked	from	course	to	fine	
scales.
•All	features	at	a	given	scale	having	no	
ancestor	in	coarse	scale	are	eliminated.
•If						remains	roughly	constant	across	scales	
output	step	edge	point.
•If								remains	roughly	constant	across	scales	
output	roof	edge	point.
•Retain	the	points	at	finest	scale	as	shift	from	
the	point	is	more	for	larger	scale.
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Scale-
Space
Matching

Reprinted from “Toward a Surface Primal Sketch,”
By J. Ponce and J.M. Brady, in Three-Dimensional
Machine Vision, T. Kanade (ed.), Kluwer Academic
Publishers (1987). Ó 1987 Kluwer Academic 
Publishers.

Courtesy: 
www.cs.unc.edu/Research/vision/
comp256/vision23.ppt



38

Segmentation into Planes via 
Region Growing

Idea: Iteratively merge the pair 
of planar regions minimizing 
the average distance to the 
plane best fitting them. 

Reprinted from “The Representation, Recognition and Locating of 3D Objects,” by O.D. Faugeras and M. Hebert, the International Journal of 
Robotics Research, 5(3):27-52 (1986). Ó 1986 Sage Publications. Reprinted by permission of Sage Publications.

Nodes:	Planar	Patches
Edges:	Between	adjacent	patches.
Arc	cost:	Avg.	distance	to	the	
plane	best	fitting	them.Greedy	

approach:
Select	the	best	
(minimum	cost)	
arc,
and	merge	the	
nodes.

Courtesy: www.cs.unc.edu/Research/vision/comp256/vision23.ppt



Range image segmentation: 
Morphological approach 

q Uses information of local orientation at a point.
q Introduces concepts of digital neighborhood plane 

(DNP) and neighborhood plane set (NPS).
q Fast and easy computation on checking the 

arrangement of neighboring points in the 3D 
discrete space.

q The NPS at each point computed, which induces a 
unique  partition under the equivalence relation on 
equality  of NPS.

q Approximate planar segments formed by region 
growing. J. Mukherjee et al., Segmentation of range images, 

Pattern Recognition, 25(10), 1141-1156, 1992.



3-D Neighborhood of a point p

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.



Digital Neighborhood planes

Digital Neighborhood planes

Assume the 
point lies on a 
surface.

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.



Digital neighborhood planes

Set of points 
defining DNP’s.

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.

u2 n2 v2

u8 p v8
u6 n6 v6

v4 v8 v0

n4 p n0
u4 u8 u0

(1) (2)

n3 n2 n1

n4 p n0
n5 n6 n7

(3)



Digital neighborhood planes

Set of points 
defining DNP’s.

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.

u3 n3 v3

u8 p v8
u7 n7 v7

u1 n1 v1

u8 p v8
u5 n5 v5

(4) (5)

u3 n4 v5

u2 p v6
u1 n0 v7

(6)



Digital neighborhood planes

Set of points 
defining DNP’s.

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.

u5 n4 v3

u6 p v2
u7 n0 v1

u1 n2 v3

u0 p v4
u7 n6 v5

(7) (8)

u3 n2 v1

u4 p v0
u5 n6 v7

(9)



DNPs: Voxel Sets

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.



Neighborhood Plane Set 
(NPS)

o Let Pi be the set of points assigned to the ith 
DNP. 

o Neighborhood plane set (NPS) of a point p in an 
image A in Z3 :

k is a parameter
• threshold number of points required  

for accepting  a DNP in the 
neighborhood. 



Handling noise in range 
image

Range image: D(x,y) 3D point: p (x,y, D(x,y))

Nabc(p): An extended neighborhood around p of size 
axbxc.

Map points from Nabc(p) to N(p), and use the same 
definitions of DNP and NPS.

NPS at p



Neighborhood mapping 
function (NMF)

F: Nabc(p) à N(p).
1. The NMF F should be total and onto.

i. For every point in Nabc(p) there exists a unique point in 
N(p).

ii. For every point in N(p) at least there exists a point in 
Nabc(p) mapped to it.

2. The NMF F should induce connected partition in 
Nabc(p).

3. Induced DNP’s should be connected.
4. Induced DNP’s should have strong structural 

similarity with the respective DNP defined in N(p).



Neighborhood mapping function 
(NMF): An example

F1: N335(p)à N(p)

x
y z

p

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.



Modified DNPs induced by F1

DNPs in base 
configuration

J. Mukherjee et al., Segmentation of range images, 
Pattern Recognition, 25(10), 1141-1156, 1992.

J. Mukherjee et al., Segmentation of 3D surfaces, 
Pattern Recognition Letters, 11, 215-223, 1990.

o Induced DNPs are 
connected.

o Structurally similar.



The algorithm

1. Compute NPS at each 
pixel.

2. Compute connected 
components having the 
same NPS.

3. Remove small connected 
components.

4. Smooth a region by 
assigning its label to 
spurious unlabeled pixels  
within it. J. Mukherjee et al., Segmentation of range images, 

Pattern Recognition, 25(10), 1141-1156, 1992.



Registration of range data 
n Assumptions

n Surface belongs to the same object.
n Captured from different viewing direction.
n Coordinates of corresponding points are 

related by rigid body transformation.
n Assume same scales for the coordinate axes.

n Computational problem
n Estimation of rotation and translation 

parameters.



Estimation of rigid body 
transformation

n Two corresponding point sets {mi} and {di}, i = 1, .. N

Solve for R and T
to minimize

noise

Means of di and mi’s



A solution for R and T

Maximize

Minimize

Where,
Correlation matrix

Solution of R and T SVD 
of H



The Iterative Closest Point (ICP) 
Registration Algorithm

1. Compute initial registration parameters R0 and T0. 
Initialize error E to E0 (error of model fitting).

2. Repeat following steps till error converges or 
becomes small.
i. Apply transformation to the source scene (or 

point clouds).
ii. Compute closest pairs between source and 

target scenes.
iii. Re-compute registration parameters and error 

of fitting.
“A Method for Registration of 3D Shapes,” by P.J. Besl and N.D. McKay, IEEE 
Trans. on Pattern Analysis and Machine Intelligence, 14(2):238-256
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ICP Registration Results

Reprinted from “A Method for Registration
of 3D Shapes,” by P.J. Besl and N.D. McKay,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 14(2):238-256 (1992). Ó 1992 IEEE.



Summary

1. Different types of range sensors.
o Stereo imaging
o Time of flight
o Triangulation through scanning beams
o Structured light

2. Use of differential geometry in extracting local 
features of a pixel (point) in a range image.
o Surface normal, Principal Curvatures, Gaussian curvature, mean 

curvature.
o Signs of curvatures characterize the local topology of surface. 

3. Characterization of step and roof edges.
o Step edge: Zero crossings of Gaussian curvature.
o Roof edge: Extrema of dominant curvature along its direction.
o Multiscale tracking of edge points.



Summary (contd.)

4. Segmenting range images into planar patches.
o A greedy approach by fitting local surface patches and 

merging them.
o A morphological processing based approach by 

computing neighborhood planes and local orientation.
5. Registration of range images.

o Rigid body registration.
o Least square error estimation for rotation and translation 

transformation matrices.
o Iterative refinement from initial estimates by computing 

nearest neighboring pairs in two images.


