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Can you match the scene 
points?

Translation, rotation, scale ..

o Detection
o Description
o Matching



Feature detection

“flat” region: 
no change in 
all directions

“edge”:  no 
change along 
the edge 
direction

“corner”:
significant  
change in all 
directions

n How does the measure change on shifting windows at 
different points?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

A local measure for uniquely identifying the  feature.



• how do the pixels in W change?
• compare each pixel before and 

after by summing up the squared 
differences (SSD).

• this defines an SSD “error” of 
E(u,v).

Feature detection

W

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Consider shifting the window W by (u,v).



Small motion assumption

For small u and v

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection W
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Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection

For the example above
• Suppose the center of the green window 

moved to anywhere on the blue unit circle.
• Directions for the largest and the smallest E

values?
• Eigenvectors of H.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Quick eigenvalue/eigenvector 
review

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar l is the eigenvalue corresponding to x
n The eigenvalues are found by solving:

n For eigen vector solve the following:

Once you know l, you find eigen vector [x y]T by solving the 
above. Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and 

largest change (E value)
• x+ = direction of largest increase in E. 
• l+ = amount of increase in direction x+

• x- = direction of smallest increase in E. 
• l- = amount of increase in direction x-

x-

x+

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature scoring function
E(u,v) to be large for small shifts in all

directions
• the minimum of E(u,v) should be large, 

over all unit vectors  [u v].
• this minimum is given by the smaller 

eigenvalue (l-) of H

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection:  Algorithm

• Compute the gradient at each point in the image.
• Obtain the H matrix from the entries in the gradient. 

• Compute eigenvalues of H. 
• Locate points with large response (l- > threshold)
• Select points where l- is a local maximum as 

features.
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Local maximum: illustration

• Points with l- as a local maximum.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



The Harris operator
l- is a variant of the “Harris operator” for feature detection.

• The trace is the sum of the diagonals, i.e., 
trace(H) = h11 + h22

• Very similar to l- but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other detectors, this is one of the most popular.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



The Harris operator

Harris 
operator

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Harris detector example

Input image f-Value Local maxima



Feature matching

?



Matching with Features

o Detect feature points in both images.

o Describe them by local statistics.

o Find corresponding pairs (Matching).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Invariance
o Is it possible to select same features under 

various transformations?
o Rotation
o Change of illumination
o Scale
o ..

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Scale invariant detection

Key idea for detecting corners
Find scale that gives local maximum of f.

n f is a local maximum in both position and 
scale

n Common definition of f:  Laplacian
(or difference between two Gaussian filtered 
images with different s.d.’s.).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Invariance
Consider two images I1 and I2 so that I2 is 
a transformed version of I1
n For example,

n Translation
n Rotation
n Scale
n Reflection
n Non-uniform scaling
n Illumination
n View …

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Tranformational Invariance: 
Detection of the same 
features regardless of the 
transformation.



Detection and description: to 
be invariant

Both should be ensured.
1. Detector to be transformational invariant.

n Harris measure is invariant to translation and rotation.
n Scale requires handling of  multi-resolution representation 

n Usual approach: Computing features at multiple scales using 
a Gaussian pyramid.

n More precise computation locates features at  “the best scale” 
(e.g., SIFT)

2. Feature descriptor to be transformational invariant.
n captures the information in a region around the detected 

feature point.
n e.g. histogram of gradient directions in a square window centering a 

feature point.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Finding Keypoints – Scale, 
Location

n How do we choose scale?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Scale Invariant Detection
n Functions for determining scale

Kernels:

where Gaussian

Laplacian

Difference of Gaussians

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Convolve with image and observe extrema in 3-D.



Both kernels are invariant to scale and rotation.
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Kernel plots in 1-D



Relationship between LoG and 
DoG operator

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

The factor (k-1) is kept constant across scales. 
èdoes not influence extrema locations.



Finding Keypoints 
– Scale, Location

Convolve with
Gaussian

Downsample

Find extrema
in 3D DoG space

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Scale Invariant Detectors
n Harris-Laplacian (Mikolajczyk & Schmid)

n Apply Laplacian operation with varying scale.
n Get local maxima of Harris corner response in space 

and scale.

D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 
2004

• SIFT (Lowe)
• Find local maximum Difference of Gaussians in 

space and scale

K. Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. 
ICCV 2001.



Scale Invariant Detection: 
Summary

n Given: two images of the same scene with a large 
scale difference between them.

n Goal: find the same interest points independently in 
each image.

n Solution: search for maxima of suitable functions in 
scale and in space (over the image).

Methods: 

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian 
over scale, Harris’ measure of corner response over the 
image.

2. SIFT [Lowe]: maximize Difference of Gaussians over scale 
and space.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Keypoint localization
n There are still a lot of points, some 

of them are not good enough.
n The locations of keypoints may be 

not accurate.
n Eliminating edge points.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Eliminating edge 
points

n Edge point: large principal curvature across the 
edge but a small one in the perpendicular 
direction.

n The eigenvalues of H are proportional to the 
principal curvatures, so two eigenvalues 
shouldn’t differ too much.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

D(.)=DoG of the function.

Eliminate keypoint if 
the ratio greater than 
the threshold.



Orientation assignment

n Create histogram of local 
gradient directions at selected 
scale.

n Assign canonical orientation at 
peak of smoothed histogram.

n Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation).

If there are two major orientations, use both.
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Keypoint localization with 
orientation

832

729 536

233x189

initial 
keypoints

keypoints 
after

gradient 
threshold

keypoints 
after
ratio 

threshold
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Keypoint Descriptors
n At this point, each keypoint has

n location
n scale
n orientation

n Next is to compute a descriptor for the local 
image region about each keypoint that is
n highly distinctive
n invariant as possible to variations such as 

changes in viewpoint and illumination



• Take 16x16 square window (orientation corrected) 
around detected feature

• Compute edge orientation (angle of the gradient - 90°) 
for each pixel

• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature 
Transform (Lowe’99, ICCV)

Adapted from slide by David Lowe

0 2p
angle histogram



SIFT descriptor

• Divide the 16x16 window into a 4x4 grid of cells 
(2x2 case shown below).

• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional 

descriptor.

Adapted from slide by David Lowe



Robustness

n changes in viewpoint
n Up to about 60 degree out of plane rotation

n significant changes in illumination
n Sometimes even day vs. night

Capable of handling



Speeded-Up Robust Features 
(SURF): Another descriptor

n Speeded-Up Robust Features (SURF)
n (Bay et al. ECCV, 2006)
n Box-type convolution filters and use of 

integral images to speed up the 
computation.

n Use of Hessian operator for key point 
detectionà Local maxima of det(H).

n Accumulate orientation corrected Haar 
wavelet responses.



Hessian Operator
Convolution with the Gaussian 
second order derivative with image.

Keypoint: Maximum of det(H(.)) over space and scale.

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Approximation of Gaussian by 
Box filters

Dyy

Dxy

9x9 Box-filters are 
approximation of 
Gaussian width 1.2.

w~0.9

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Fast computation using the 
integral image

Only 3 additions 
and four 
memory access.

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Haar Filter Responses
n Dominant orientation by accumulating 

Haar horizontal and vertical responses 
in a rotated sliding window (of width 
600) at the scale of key point.

n The longest vector provides the 
dominant direction.

Haar Filters
Box filter implementation.

Bay et al, Speeded up robust features (SURF), CVIU, 2008

6 operations needed for 
computing each filter response 
using integral image.



SURF: Sum of Haar Wavelet 
responses

Size of the window=20 x scale

o Partitioned into 4x4 
square sub-regions.

o Haar wavelet 
responses at 
regularly spaced 
5x5 sample patches 
in each sub-region.

o Each sub-region 
has 4D vector.

o Concatenate them 
to 64 D vector. Bay et al, Speeded up robust features (SURF), CVIU, 2008



Other types of detectors and 
descriptors
n FAST: Features from Accelerated 

Segment Test (Rosten et al, PAMI, 
2010).

n BRIEF: Binary Robust Independent 
Elementary Features (Colonder et al, 
ECCV, 2010).

n ORB: Oriented FAST and Rotated BRIEF 
(Rublee et al, ICCV, 2011)



FAST: Principle

o 12 point test: If there exists 12 consecutive 
points in the set of 16 points brighter than 
the central pixel (Rosten et al ICCV’05).

o Modified strategy: Train decision tree on the 
boolean conditions given labelled data.

Rosten et al, Faster and Better: A Machine Learning 
Approach to Corner Detection, PAMI, 2010



FAST: Partitioning  of points on 
the circle and Training a DT

o Classification of points in three 
classes and create three partitions 
for a point.

o Train a decision tree.
Rosten et al, Faster and Better: A Machine Learning 
Approach to Corner Detection, PAMI, 2010



BRIEF: Principle
o Generate randomly a set of nd pairs of locations 

(xi,yi) in a patch centered around a point.
o Perform  the following boolean test.

BRIEF descriptor: nd Dimensional binary string
128, 256, 512 

Colonder et al, BRIEF: Binary Robust Independent
Elementary Features, ECCV, 2010



ORB: Principle
n FAST does not operate across scale.
n Apply FAST detector on pyramid of 

smoothened images.
n Orientation by intensity centroid: The vector 

from the center of the patch and to a centroid 
considering the intensity distribution 
(intensity weighted center of patch).

n Rotate the patch by the angle and compute 
BRIEF called steered BRIEF.



Matching
n Representation of a key-point by a feature vector.

n e.g. [f0 f1 … fn]T

n Use distance functions / similarity measures.
n L1 norm

n L2 norm

n Lp norm



Region descriptors

n Patch descriptors 
n Texture descriptors
n Image / Sub-Image  global descriptors



Patch Descriptor: Histogram of 
Gradients (HoG)

n Compute centered horizontal and vertical 
gradients with no smoothing.

n Compute gradient orientation and magnitudes,
n For color image, pick the color channel with the 

highest gradient magnitude for each pixel.
n For a 64x128 image, divide the image into 16x16 

blocks of 50% overlap. à7x15=105 blocks in 
total.

N.Dalal and B. Triggs, Histograms of oriented gradients for 
human detection, CVPR-2005



Histogram of Gradients (HoG)
n Each block: 2x2 cells with size 8x8.
n Quantize the gradient orientation into 9 bins.
n The vote is the gradient magnitude.
n Interpolate votes between neighboring bin center.
n The vote can also be weighted with Gaussian to 

down-weight the pixels near the edges of the block.
n Concatenate histograms.

n Feature dimension: 105x4x9 = 3,780

N.Dalal and B. Triggs, Histograms of oriented gradients for human 
detection, CVPR-2005



Object detection with patch 
descriptors.

n Typical examples:
n Pedestrian detection
n Character recognition

n Detection as a classification task.
n Generate labeled sample feature descriptors.
n Train a classifier.

n NN, SVM, Decision Tree, Random Forest …..
n Label an unknown patch using its descriptor.



Non-maximal suppression
n Expected to get a high detection score with 

neighboring overlapping patches.
n Select the patch with locally maximal score.

n A greedy approach:
n Select the best scoring window 

n It is expected to cover the target object. 
n Suppress the windows that are too close to the 

selected window. 
n Search next top-scoring windows out of the rest. 



Texture descriptor
n Texture: spatial 

arrangement of the 
colors or intensities in 
an image
n A quantitative measure 

of the arrangement of 
intensities in the region.

Computer Vision by Shapiro and Stockman, Pearson,  (2001)



Texture descriptors
n Edge density and direction
n Local Binary Pattern (LBP).
n Co-occurrence Matrix.
n Laws’ texture energy features.



Edge density and direction
n Compute gradient at each pixel.
n The descriptor: normalized  histograms of 

magnitudes and directions of gradients over a 
region.
n (HR(mag),HR(dir))

n Numbers of bins in histograms kept small (e.g. 
10).
n Use L1 norm between the feature vectors as a distance 

measure.

Normalized histogram 
of magnitudes.

Normalized histogram 
of directions.

Normalized histogram à Area =1;



Local Binary Pattern (LBP).

T. Ojala, M. Pietikainen, and D. Harwood, A Comparative Study of Texture Measures with 
Classification Based on Feature Distributions, Pattern Recognition, vol. 29, pp. 51-59, 1996.

c 0
123

4
5 6 7

o Values range from 0 to 255.
o Obtain normalized histogram over a region.
o Not rotational invariant.
o Invariant to illumination and contrast.

You may have 
different ordering of 
neighbors.



Variations of LBP
n Making it rotational invariant.

n A circular neighborhood of radius R, with P pixels at 
equal intervals of angles.

n Use interpolation if does not belong to the discrete grid.

where ROR(x , i) performs a circular bit-wise right shift on the 
P-bit number x, i times.

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant 
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987

LBP8,1 ß à LBP

36 distinct values for LBPri
8,1.



Variations of LBP
n Uniform pattern

n Not more than 2 spatial transitions in the bit sequence.
n U(11111111)=0
n U(11101111)=2
n U(10001001)=4

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant 
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987

Use rotation invariant value 
by computing minimum 
applying ROR operator. Exactly P+1 

uniform 
patterns, hence 
P+2 distinct 
values.



Nine uniform patterns of 
LBP8,R

riu2

n The nine uniform patterns and the 
numbers inside them correspond to 
their unique codes.

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant 
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987



Variance Measures of the
Contrast

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant 
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987

n Local variance of intensities of uniform 
pattern. 

n Normalized histogram of local variances.



Co-occurrence Matrix (Cr)
n Cr(x,y): How many times elements x

and y occur at a pair of pixels related 
spatially (designated by r in the 
notation).
n e.g. p r q denotes q is shifted from p by a 

translation of t=(a,b), i.e. q=p+t.
n C(a,b)(x,y): Number of cases in an image where 

I(p)=x and I(p+t)=y.



Co-occurrence Matrix (Cr)

0 0
0 0

1 1
1 1
0 0
0 0

1 1
1 1 C(0,1)

0

1

0 1

C(1,0)

0

1

0 1

C(0,1)

0

1

0 1



Co-occurrence Matrix (Cr)

0 0
0 0

1 1
1 1
0 0
0 0

1 1
1 1 C(0,1)

0

1

0 1

C(1,0)

0

1

0 1

C(1,1)

0

1

0 1

4 2

2 4

4 2

2 4

2 2
2 3



Normalized Co-occurrence 
Matrix (Nr)

0 0
0 0

1 1
1 1
0 0
0 0

1 1
1 1 C(0,1)

0

1

0 1

C(1,0)

0

1

0 1

C(1,1)

0

1

0 1

1/3 1/6

1/6 1/3

1/3 1/6

1/6 1/3

2/9 2/9
2/9 1/3

Divide by the sum of frequencies in a matrix.



Symmetric Co-occurrence 
Matrix (Sr)

0 0
0 0

1 1
1 1
0 0
0 0

1 1
1 1 C(0,1)+C(0,-1)

0

1

0 1

C(1,0)+C(-1,0)

0

1

0 1

C(1,1)+C(-1,-1)

0

1

0 1

4+4 2+2

2+2 4+4

4+4 2+2

4+4 2+2

2+2 2+2
2+2 3+3

Sr(x,y)=Cr(x,y)+C-r(x,y)



Features from Normalized Co-
occurrence Matrix



Features from Normalized Co-
occurrence Matrix

Mean and s.d. 
of row sums

Mean and s.d. 
of column sums



Laws’ texture energy features
n A set of 9 5x5 masks used to compute 

texture energy.

K. Laws, “Rapid Texture Identification”, in SPIE Vol. 238: Image Processing for 
Missile Guidance, 1980, pp. 376-380.

L5 (Level): [1 4 6 4 1]
E5 (Edge): [-1 -2 0 2 1]
S5 (Spot):  [-1 0 2 0 -1]
R5 (ripple): [1 -4 6 -4 1]

A mask: Outer 
product of any pair.
e.g. E5L5: E5.L5T

Computation with mask:
Convolution



Laws’ texture energy features
n A set of 9 5x5 masks used to compute 

texture energy.

K. Laws, “Rapid Texture Identification”, in SPIE Vol. 238: Image Processing for 
Missile Guidance, 1980, pp. 376-380.

L5 (Level): [1 4 6 4 1]
E5 (Edge): [-1 -2 0 2 1]
S5 (Spot):  [-1 0 2 0 -1]
R5 (ripple): [1 -4 6 -4 1]

16 such masks possible.
Combine a few pairs to make 9 masks.

L5E5 and E5L5
L5R5 and R5L5
E5S5 and S5E5
L5S5 and S5L5
E5R5 and R5E5
S5R5 and R5S5
S5S5
R5R5
E5E5

Take 
average of 
responses 
of two 
masks.



Laws’ texture energy 

Subtract local 
average at each 

pixel.

Convolve 
with 16 
masks.

Compute 
energy map for 
each channel.

Combine a few 
symmetric pairs 
to 9 channels.

Input image 9 dimensional 
feature space.

15x15
window

Sum of 
absolute 
values 
in a 
15x15 
window.

L5E5 and E5L5
L5R5 and R5L5
E5S5 and S5E5
L5S5 and S5L5
E5R5 and R5E5
S5R5 and R5S5
S5S5
R5R5
E5E5



Use of texture descriptors
n Detection of object patches 

represented by textured patterns.
n Segmentation of images.
n Classification / Matching 

n Generate a Library of labelled feature 
descriptors.

n Detection of classes (class labels).
n Matching to the nearest texture descriptor.



Image / Object Descriptor 
n Bag of visual words 

n Compute key-point based feature descriptors 
over a library of images.

n Quantize them (clustering) to form a finite set of 
representative descriptors (visual words).

n For an image assign the nearest visual word 
corresponding to the feature descriptor of a key 
point.

n Represent by each image by a histogram of 
visual words.

Sivic et. al., Discovering objects and their location in images, ICCV’ 2005.

K-means 
clustering



Vector of locally aggregated 
descriptors (VLAD)

n Form the codebook of visual words as in BoVW 
representation.
n C1, C2, …, Ck

n Each local descriptor x in an image is associated 
to one of these visual words.

n Accumulate the differences w.r.t. the 
corresponding cluster center.

Cluster centers of dimension D (say). 

o Form V=[v1 v2 …. vk]
o VLAD descriptor=V/||V||

Dimension: k.DJegou et al., Aggregating local descriptors into a 
compact image representation, CVPR, 2010.



Application of global image 
descriptor
n Content based image retrieval

n Image search based on visual content

Query 
image

Retrieved images from a database.



Summary of Techniques
n Scale and 

transformation 
invariant feature 
detection:
n Harris corner-

Laplacian Maximum.
n DOG Maximum.
n Intensity weighted 

FAST.

n Scale and 
transformation 
invariant Feature 
descriptor:
n SIFT, SURF, ORB



Summary of Techniques
n Region and texture 

descriptors.
n HoG
n Edge density
n LBP
n Co-occurrence matrix
n Laws’ texture energy

n Image global descriptor
n BoVW
n VLAD

n A few applications
n Key point descriptor: 

Matching corresponding 
points of a scene.

n Region descriptor: 
Object detection

n Global descriptor :Image 
retrieval.


