Feature matching and model
fitting
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Can you get the 3-D structure
of the scene?

Get a set of pairs of corresponding points.
Compute fundamental matrix.

Derive camera matrices.

Solve for 3-D coordinates of scene points for each
pair of corresponding points.
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i Matching with Features

o Detect feature points in both images.
o Describe them by local statistics.

o Find corresponding pairs (Matching).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Matching key points

epresentation of a key-point by a feature vector.

= €.0. [fOf] fn]T

= Use distance functions / similarity measures.

= L, norm
1 Li(. ) = Zm gil

«Lnorm  L(f.9)= (Zlfl gl|2>

= L, norm Ly(f.§) = (i gllp>p

1=0



i Weighted Distance function

= More weights to reliable components.

dy(f,9) = (f — PTAF — 9)

f, g: Column vectors of dimension x.
A: A +ve semidefinite matrix

o Symmetric.

o vi4v>=0 for all v.

o Typical example: Diag(w, w,, ... w_,), w>=0

Al )= i wilfi - 90




A few other similarity
i measures

s Normalized Cross Correlation.

. cov(f.9)

o(f,g) =
s.d.(f)xs.d.(g)

%Z?;ol(fi_f)(gi_g)

(AR =D (L5 (9i-9)?

f.g
17 Ngl

= Cosine similarity.



Matching criteria

= Distance based
= Fixed threshold (FT):
= Report all matches within the threshold value.

= Nearest neighbor (NN):
= Report the nearest neighbor.

= Nearest Neighbor Distance Ratio (NNDR):

= Report the NN if ratio of distances between the
NN and 2" NN is small.



i Matching criteria

NNDR: d/d,
NNDR: d,/d, (Reject)
(Accept)



i Matching histograms

= L, norm of bins (representing same
intervals of covariates).

= Usually L; used.

= Kullback-Leiber divergence (of pdf).

P
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= Earth Mover’s Distance (EMD)



Earth Mover’s Distance (EMD)

= EMD of two histograms P and O measures the
minimum accumulated cost of transferring masses
from any bin of P to any bin of O so that the
histogram P gets transformed into Q.
= Cost defined by the product of transferred mass and
distance between bin.
= m X |i-j| for transferring mass m from ith bin of P to jth bin of Q.
= This would make P[i]=P[i]-m and O[;j]=0[j]+m.
= Total mass of P and QO should be same.

= Accumulated cost is normalized w.r.t. to the total transfer
of mass.




H. Ling and K. Okada, An Efficient Earth Mover’s Distance Algorithm
for Robust Histogram Comparison, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29 (5), pp. 840-853, 2007.

Computing EMD

= [Wo0 nhormalized histograms:
« P={p,} and 0={gq,}, for i=0,1,..., N-1.
= m,; transferred from i th bin of P to ; th bin of Q.
= d; distance between i th and ; th bin.

= EMD is the minimum normalized work (transfer of
masses) required for transforming P into O.

Zi,j mijdij> m;; = 0
2.i,j Mij

zmijﬁpi ZmUqu szijﬁmin(zpi,z:%)
' i J i

] i J

EMD(P,Q) = min (

M={m;;}



H. Ling and K. Okada, An Efficient Earth Mover’s Distance Algorithm
for Robust Histogram Comparison, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29 (5), pp. 840-853, 2007.

Computing EMD

= EMD is the minimum normalized work (transfer of
masses) required for transforming P into O.

= Before initiating transfer operation, bins of Q is
intialized to zero. The input specificaiton ¢;'s are
used for specifying constraints of the optimization
equations.

EMD(P,Q) = min (

M={m;;}

Zi,j mijdij> m;; = 0
2.i,j Mij

ZmijSPi Zmiquj szijﬁmin(zpi»zq]')
i j i
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Efficient computation of

feature matching
= Range query
= Nearest Neighbor of the query.

= Report all the features within a distance
from the query.

= Ordinarily of linear time complexity O(N),

= N is the number of features in the target image /
database.

= Use of indexing and hashing.
= K-D Tree
= Locality Sensitive Hashing.




K-D tree

= A binary tree.

= Each node contains a (key) feature vector.

= Each node behaves like a node of binary

search tree (BST) for values of a particular
dimension

= Called cut-dimension.

= Alternate periodically on nodes along any path.

= Places a key feature vector following the rules of
BST comparing on the value of the cut-dimension.



NN Search using K-D tree

= As you walk through the tree nodes

= Store the current smallest distance and the
respective key-feature.

= Prune sub-trees by comparing the minimum
distance with the corner nodes of the

hypervolume (bounding boxes) represented by the
sub-tree.

= Search the sub-tree to maximize the chance of
pruning.
= GO to the sub-tree closer to the query.



NN Search using K-D tree

= May require to traverse all the nodes of the
tree.

= Worst case: O(N)

= In practice close to: O(log(N)+29), where d is the
dimension of the feature space.
= log(N) to find the cell near the query point.
= 29 search around cells in the neighborhood.



Locality sensitive hashing

i (LSH)

= Locality preserving hashing function
(h(.)) w.r.t a distance function d(.).
= Prob.(A(X)=A(y)) should be high, if d(x,y)
is small,
= else the probability should be small.




i LSH: A typical example

hoose a random unit vector r of dimension
n (e.g. following Normal distribution
(N(0,1)) independently in each dimension).

= For any vector x of dimension » define a
hash function as follows:

hy(X) = {
It can be shown, for any x and y Angle between

Prih.(x) = h (y)]=1— O(X¥) " xand y.

1 ifxr>0
0 otherwise




LSH multidimenstional
i bucketing

= You may also have a set of k random vectors
independently generating k hash values, and
define the multidimensional bucket for hashing to
place the input vector.

= HOX)=[h1(X) hea(X) ... hpy(X)]

= You may have L multiple buckets (corresponding
to L sets of k random vectors) for the same input.
= Hi{(X), Hy(X), ..., H (X)

= Given a query y compute L buckets and search for
NN in all of them.




i Model fitting

= Given a set of data points fit a model to establish
relationship among the data points.

= Homography matrix between pixels in two images of the
same planar scene.

=« Fundamental matrix between corresponding points in two
stereo images.

= Given a set of 2-D points fit a straight line / parabolic
curve / circle / a high degree polynomial curve passing
through them.

= Obtain data points and fit appropriate model.
= Preprocessing, feature detection-description-matching.



i Knowledge of models

= Mathematical form of the class / family
of Models.

= 3x3 non-singular homography matrix for
projective transformation.

= 3x3 singular fundamental matrix for stereo
geometry.

= 3X4 Projection matrix.



Choice of a model

= Error of fitting
= Mean square error

= Likelihood
= Pr (Data | Model)

= Size of a model
=« Number of independent parameters

= Training and Test Error
= Large training error: Under-fitting.
= Low training error, but large test error: Over-fitting
= Low training and test error: A good fit.



F|tt|ng curves and lines

/ ; , ,&:«ﬁ\g‘;l{“ “& ‘ ’

S|mple model lines simple model: circles

— To decide
QW | about
appropriate
parametric
models.

complicated model: Steam-boat



iVarious Issues

. Noise / Error
. in estimation of feature locations.

. Extraneous data
. Clutter (outliers), multiple lines.

. Missing data
. occlusions

Adapted from slides by S. Lazebnik.



Fitting a straight line over 2D

i points

= Fitting techniques
= Least Squares
= Total Least Squares
= Random Sample Consensus (RANSAC)
= Hough Voting




i Line fitting in varying contexts

. Given points belonging to a line, to find the
“optimal” line parameters.

= Least squares
. To handle outliers.
= RANSAC

. Presence of many lines.
= Voting methods: Hough transform

Adapted from slides by S. Lazebnik.



iLeast squares line fitting

n “Vertical” least
E = Z(yl — mx; — C)Z squares
=1 4 ymx-l—c/
lData' I (x‘,y-) .
(X, 01 o0 (X V) . _

= Line equation:
By, =mXx;, tc

= Find (m, ¢) to minimize

Adapted from slides by S. Lazebnik.



F

Least squares / e
i line fitting [ o)

>

= Data: (xl,yl), sy (xna yn)

n
= Line equation: y, =mx; + ¢ E = Z(yi — mx; — ¢)?
= Find (m, ¢) to minimize —

my\2 o Ym 2
E=xi, (vt 1[")’ = [ [ Al =y - xere
Vn X, 1
E=(—-XC)T(Y-XC) =YTY —2(XCO)TY + (XC)T(XC)
dE
—= = 2X"XC —2X"Y = 0 > C=XTX)"1XTy

Adapted from slides by S. Lazebnik.



Least squares
i ine fitting

C=X'x)"xTy

1 __
cov(X,Y)_;ZixiYi—xy

n
E=) (yi—mx; = c)?
=1

var(X) %Zixf—fz E = n(var(y) — mzvar(x))

C=y—mx

Goodness of fit:

The R? goodness-of-fit criterion compares the
variability in the measurements not explained
by the model to the total variability in the

measurements.
A~ 2
R2=1— ?=1(yi_yi)[>R2=1_ E
e (i — )2 n.var(y)

e Not rotation-invariant.
e Fails completely for vertical lines.

Adapted from slides by S. Lazebnik.



Total least squares

s Distance between a point (x, y,) and the line
pxtqy=d: |px; + qy;—d| given p*+g¢°=1.

n
E = 2(1”51' + qy; — d)?
i=1

'y

.~ pxtqy=d
. Unit normal:
. (x,y) N=@9)

oFE
% z 2(pxl+qyl_d)_0

(=1

-

—> d=pi+qy > E= 2(p(xi—f) +q(vi=y))*
=1

Adapted from slides by S. Lazebnik.



i Total least squares

'y

£= E(P(xi—f) +q(i—9))’ N pRray=d
i=1 . Unit normal:
U . (xpy) N9
)

N .
gc1 —X Y1 —)9 Ii ?
E = = : ] [q] =(UN)T (UN)
Xn =X Yn—Yy
dE .
— =2(UTU)N =0 Subject to ||V]|=1.
dN N

Eigen vector of UTU corresponding to the smallest eigen value.
Adapted from slides by S. Lazebnik.



i Total least squares

Xp—X 3’1 -y p ’ t
E=|| : [ [Il =wmrwn px+qy=d
*n T X y” Y . Unit normal:
% —2(UTU)N = 0 Subject to [[M[=1. . (x,y) N=@ 9
n y
> (=27 Z(xl _Di-9| & oo
U'u =| , =l i ° G ey
Z(xi -0 i —¥) z(yl y)?
Li=1 - x

Eigen vector of UTU corresponding to the smallest eigen value.

Adapted from slides by S. Lazebnik.



Random sample consensus
(RANSAC)

. A general framework for model fitting in the
presence of outliers.

. Outline

= Choose a small subset of points uniformly at
random.

= Fit a3 model to that subset.

= Find all remaining points that are “close” to the
model and reject the rest as outliers.

= Do this many times and choose the best model.

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Adapted from slides by S. Lazebnik.



i RANSAC for line fitting

Perform the following N times:
Select s points uniformly at random.
Fit a line using the LSE method.

Find inliers to this line

points whose distance from the line is less
than t.

For sufficient number of inliers (say > d),
accept the line and refit using all inliers.

Adapted from slides by M. Pollefeys



Adapted from slides by M. Pollefeys

Choice of parameters

lal number of points s
= Typically minimum number needed to fit the model.

. Distance threshold ¢t

= Choose t so probability for inlier is p (e.g. 0.95).
= Zero-mean Gaussian noise with std. dev. o: t=1.960.

. Number of trials N

= Choose N so that, with probability p, at least in one trial
random selections are free from any outlier. (e.g. p=0.99)
(outlier ratio: e).

. Consensus set size d n=No. of data points

e

= Should match expected inlier ratio: (1-e) x n:



Estimating number of

i trials N

QOutlier ratio: e

Prob. that all s samples are inliers: (1-e)*
Prob. that at least one sample is an outlier in a

trial: = (1-(1-¢)9)

Prob. that all N trials have an outlier:(1- (1- )5V
Given probability p, so that at least one random

sample is free from outliers. = (1- (1-¢e))V=1-p

_ log(1-p)
log(]‘ o (1 o 8)5) Adapted from slides by M. Pollefeys

.— Prob. that a sample is outlier.

N
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i Choosing N

N 400+
‘1\]' — l‘:)gg;(::l- o I:):) OO Oé Ci4 0.6 Oé 1
log(1 — (1 —e)%) e
p=0_99 proportion of outliers e

5% 10% 20% 25% 30% 40% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72

12 17 26 S7 146

16 24 37 97 293

20 33 54 163 588

26 44 78 272 1177
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o~ DB W W
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Adapted from slides by M. Pollefeys



RANSAC pros and cons

ros

= Simple and general

= Applicable to many different problems
=« Often works well in practice

Cons

= Many parameters to tune

=« Can't always get a good initialization of the model based
on the minimum number of samples

= Sometimes too many iterations are required
= Not appropriate for low inlier ratio.

Adapted from slides by M. Pollefeys



i Voting schemes

. Let each feature vote for all the models
that are compatible with it.

. Hopefully the noise features will not
vote consistently for any single model

. Missing data doesn’t matter as long as
there are enough features remaining to
agree on a good model.



ough transform

o Discretize parameter space into bins

o For each feature point in the image, put a vote in
every bin in the parameter space that could have
generated this point.

o Find bins that have the most votes.

. | y=mx+b
. m |
Image space Hough parameter space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959



Parameter space

i representation

. A straight line in the image corresponds
to a point in Hough space.

Image space

/y=m1X+b1

X

¢

Hough parameter space

(mllbl)
@

m

Adapted from slides by S. Seitz



Parameter space
i representation

. A point in the image corresponds to a
line in the Hough space.

Image space Hough parameter space
D
Y b=-x;m+Yy;
'(X11Y1) > \
' m

Adapted from slides by S. Seitz



Parameter space
i representation

. Two points in the image correspond to
two lines in the Hough space.

Image space Parameters of Hough parameter space
straight line b
'i joining these 4
Y+ d (X21Y>) two points.

’(XIIYI) :,> K\»\ b=-x,m+y,

Adapted from slides by S. Seitz



Parameter space

i representation

. Problems with the (m,b) space:
= Unbounded parameter domain
= Vertical lines require infinite m

. Alternative: polar representation

xcosd + ysingd = p
* 0O varies from 0 to 180°
« p varies from 0 to the length

of diagonal of the image grid.

——
=

X

Each point will add a sinusoid in the (0,p) parameter space

Adapted from slides by S. Seitz



Algorithm

Initialize accumulator A to all zeros
For each edge point (X,y) in the image

{
For 8 = 0 to 180

}

A: Accumulator array

Find the value(s) of (8, p) where A(6, p) is a local

maximum

= The detected line in the image is given by

P=XCosO +ysinb

Adapted from slides by S. Seitz



IBasic illustration

features votes

http://ostatic.com/files/images/ss_hough.jpg



A more complicated image

Image [

http://ostatic.com/files/images/ss_hough.jpg



iEffect of noise

features

votes

http://ostatic.com/files/images/ss_hough.jpg



i Dealing with noise

. Requires appropriate resolution of discretization of the
grid in the parameter space

= |00 coarse:

= large votes in a cell for accumulating too many different
lines correspond to a single bucket

= 100 fine:

= May miss lines as some points may not be exactly
collinear voting different buckets.



i Dealing with noise

. Smoothing accumulator array.
. Try to get rid of irrelevant features

= Take only edge points with significant
gradient magnitude




i Summary

= Feature matching.
= Distance function / Similarity measure.

« Different policies
= Use of a threshold value.
= Nearest Neighbor.
= Nearest neighbor with distance ratio (NNDR).

= Use of indexing / hashing for efficient computation.
= Special distance functions for comparing histograms.

= Kullback-Leiber Divergence (KLD)
= Earth Mover’s Distance (EMD)




i Summary

= Model fitting

= Prior knowledge of the model useful.
=« Need to consider goodness of fit.

= Different techniques for line fitting
= Least squares
= Total least squares.
= RANSAC
= Hough Transform.



