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Convolutional Neural Network



Convolution Layer
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Filters always extend the full 
depth of the input volume

Convolve the filter 
with the image
i.e. “slide over the 
image spatially, 
computing dot 
products”.



Convolution Layer
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1 number: 
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Locality!

Objects tend to have a local 
spatial support.



Convolution Layer
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Weight sharing!

object appearance is 
independent of location
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Consider a second, green filter.

activation 
map



Convolution Layer (CONV)
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activation maps
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We stack these up to get a “new image” of size 28x28x6!

For example, if we had 6 5x5x3 filters, we’ll get 6 separate activation maps:

6 # CONV



Features of CONV
n Locality: 

n objects tend to have a local spatial support
n Translation invariance: 

n object appearance is independent of location
n Weight sharing

n units connected to different locations have the same 
weights

n equivalently, each unit is applied to all locations
n weights of filters are invariant.

n Each unit output of filter is connected to a local 
rectangular area in the input.
n – Receptive Field



Non-Linear Layer

n Increase the nonlinearity of the entire 
architecture without affecting the 
receptive fields of the convolution layer.
n Commonly used in CNN is ReLU.



Convolutional Neural Networks (CNN)
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A CNN is a sequence of convolution layers and 
nonlinearities.
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Parameters involved in 
convolution layer

n Input Volume size W1 x H1 x D1
n No. of filters K with size Fw x Fh x D1 convolved 

with stride (Sw,Sh).
n Input zero padded by ( Pw, Ph ) on both sides.
n Output volume size W2 x H2 x D2?

n W2 = (W1 – Fw + 2Pw)/Sw + 1
n H2 = (H1 – Fh + 2Ph)/Sh + 1
n D2 = D1

n Parameters ?
n (Fw * Fh * D1) * K weights + K biases

n d-th depth slice of output is the result of 
convolution of d-th filter over the padded input 
volume with a stride, then offset by d-th bias



Pooling Layer (POOL)
n To progressively reduce the spatial size of the 

representation.
n to reduce the amount of parameters and computation in the 

network.
n to control overfitting.

n Pooling partitions the input image into a set of non-
overlapping rectangles.

n For each such sub-region, outputs an aggregated value of 
the features in that region.
n Maximum value (Max pooling)
n Average value (Average pooling)

n Operates over each activation map independently



Pooling Layer (POOL)



Parameters involved in pooling
n Input Volume size W1 x H1 x D1
n Pool size Fw x Fh  with stride (Sw,Sh).
n Output volume size W2 x H2 x D2?

n W2 = (W1 – Fw )/S + 1
n H2 = (H1 – Fh )/S + 1
n D2 = D1

n Parameters ?
n 0!

n Uncommon to use zero-padding in 
Pooling layers.



Fully Connected Layer (FC)
n Contains neurons that connect to the 

entire input volume
n as in ordinary Neural Networks.

n Input volume to FC layer can also be 
treated as Deep Features.

n If the FC layer is a classifier, the input to 
FC can also be treated as feature vector 
representation for the sample.



Batch Normalization
n Normalizes input activation map to a layer by 

considering its distribution over a batch of 
training samples.

n To make Gaussian activation maps.
n Improves gradient flow through the network.
n Allows higher learning rates.
n Reduces the strong dependence on initialization.
n Acts as a form of regularization.
n Usually inserted after FC / CONV layers, and 

before non-linearity.



Batch Normalization (BN)
n Normalizes activation responses of a channel of 

previous layer 
n by subtracting mean of a responses of batch and 

dividing it by their standard deviation.
n Transforms the resultant output operation by 

scaling and translation by parameters a and b.
n learnt by the gradient descent algorithm.

n During test time running averages and s.d.’s of 
activation maps used along with learnt 
parameter a and b for each channel at a layer.



Drop out
n Randomly dropping out nodes of network (at 

hidden / visible layers) during training.
n Temporarily removing it from the network, along with 

all its incoming and outgoing connections.
n To regulate overfitting, more effective for smaller 

dataset.
n Simulates learning sparse representation in hidden 

layers.
n Implementation

n Retain output of a node with a probability p. 
n Typically within [0.5,1] at hidden layers and [0.8,1] in visible 

layers.



Learning weights with drop out
n Weights become larger due to drop out.

n Needs to be scaled at the end training.
n A simple heuristic.

n Outgoing weights of a unit retained with 
probability p during training, multiplied by p at test 
time.

n Scaling may be carried out during training 
time at each weight update.

n No need to rescale weight for the test network.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A Simple Way to Prevent 
Neural Networks from Overfitting ,JMLR, 15(Jun):1929−1958, 2014.



CNN Architectures



LeNet

n Gradient-based learning applied to document 
recognition.

n Architecture: 
Input→CONV→POOL→CONV→POOL→FC→FC
→Output

n Number of parameters: 60k 
n Number of floating point operations per inference: 

341k
n Sigmoid used for non-linearity.

*Y. Lecun et al, Proceedings of the IEEE, 1998



LeNet

*Y. Lecun et al, Proceedings of the IEEE, 1998

Six 5*5 filters,
Stride 1

Six 5*5 filters,
Stride 1

2*2 average
pooling,
Stride 2

2*2 average
pooling,
Stride 2



AlexNet
n Uses Local Response Normalization (LRN) 

Architecture:  
Input→CONV1→MAXPOOL1→NORM1→CO
NV2→MAXPOOL2→NORM2  
→CONV3→CONV4→CONV5→MAXPOOL3
→FC6→FC7→FC8→Output

n # of Weights: 61M  
n # of floating point oeprations: 724M
n ReLU used for non-linearity

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012



AlexNet

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012



Parameters Count: AlexNet
n Input: 227x227x3 images
n First layer (CONV1): 96 11x11 filters applied at stride 4
n Q: what is the output volume size? 

n Along length and breadth: (227-11)/4+1 = 55
n Output volume [55x55x96]

n Q: What is the total number of parameters in this layer?
n Parameters: (11*11*3)*96 = 35K (Without bias)
n Parameters: (11*11*3)*96 + 96 (With bias)

n Second layer (POOL1): 3x3 filters applied at stride 2
n Q: what is the output volume size? 

n Along length and breadth: (55-3)/2+1 = 27
n Output volume: 27x27x96 (Input to POOL1 is output of CONV1)

n Q: what is the number of parameters in this layer?
n Parameters: 0



ZFNet
n AlexNet but:
n CONV1: changed from (11x11 stride 4) to (7x7 stride 2)
n CONV3,4,5: instead of 384, 384, 256 filters use 512, 

1024, 512
n ImageNet top 5 error: 16.4% → 11.7%

* Zeiler and Fergus, 2013Smaller filter size, More filters in layer



VGG
n Smaller filters, deeper layers
n 8 layers (AlexNet) → 13 layers 

(VGG13) / 16 layers (VGG16Net) / 19 
layers (VGG19Net)

n Only 3x3 CONV stride 1, pad 1 and 2x2 
MAX POOL stride 2

n 7.3% top 5 error in ILSVRC’14
n Weights: 138M & FLOPS: 15.5G

*Simonyan et al., arXiv 2014, ICLR 2015

Deeper the layer, better accuracy.



VGG

*Simonyan et al., arXiv 2014, ICLR 2015

Deeper the layer, better accuracy.



VGG

n Stack of three 3x3 conv (stride 1) layers 
has same effective field as one 7x7 conv 
layer
n deeper with more non-linearities
n Fewer parameters: How?

n 3*(32 C2) vs. (72 C2)  for C channels per layer



GoogleNet
n CONV Layers: 21 (depth), 57 (total)
n Introduces inception modules.

n Concatenates output of filters of different sizes.
n Fully Connected Layers: 1
n Weights: 7.0M & FLOPS: 1.43G
n Architecture: ( 9 Inception Modules)   

INPUT→CONV1→POOL1→CONV2→CONV3→POOL2→INCEPTION1
→INCEPTION2→POOL3→INCEPTION3→INCEPTION4→INCEPTION5
→INCEPTION6→INCEPTION7→POOL4→INCEPTION8→INCEPTION9
→POOL5→FC1→OUTPUT

n ILSVRC’14 classification winner (6.7% top 5 error)
*Szegedy et al., arXiv 2014, CVPR 2015



GoogleNet

*Szegedy et al., arXiv 2014, CVPR 2015



Naïve Inception Module

28x28x(128+192+96+256) = 28x28x672



ResNet
n Problems with deeper model 

n causes overfitting
n harder to optimize, because of vanishing gradients.

n gradients die as we go deeper.

*He et al., ResNet arxiv 2015



ResNet

nUse network layers to fit a residual mapping instead of 
directly trying to fit a desired underlying mapping.



ResNet

*https://www.slideshare.net/SomnathBanerjee17/lenet-to-resnet

Total depths of 34, 50, 101, or 152 layers architectures are also 
available



Other Networks
n Network in Network (NIN)
n Wide Residual Networks
n Aggregated Residual Transformations for Deep Neural 

Networks (ResNeXt)
n DenseNets
n SqueezeNet: AlexNet-level Accuracy With 50x Fewer 

Parameters and <0.5Mb Model Size
n MobileNet (Depthwise Separable Convolutions)
n ShuffleNet (Grouped Convolutions)
n FractalNet: Ultra-Deep Neural Networks without Residuals



Training steps:
• Preprocessing of training dataset.

n Normalize data.
n Decorrelate data (Diagonal Covariance 

Matrix).
n Whitening of data (Identity Covariance 

Matrix).
n Subtract Mean.



Training steps:
• Data augmentation.

n Horizontal Flips
n Random Crops on scaled input
n Color jitter
n Distortions
n Transformations

• Weight initialization 
• Train the network by update of the weight 

parameters.



Few Training Tips
n Start with small regularization and find learning rate that 

makes the loss go down.
n Can overfit very small portion of the training data.
n Train first few epochs with few samples to initiate the 

hyper-parameters.
n If big gap between training accuracy and validation 

accuracy, then it is overfitting.
n Try increase regularization.

n If no gap, then may increase model capacity.



Transfer Learning

n No need of a lot of a data to train a CNN.
n Pre-trained models can be initialized for 

CNNs at the early stage of training.

*Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014



Transfer Learning

1. 
Train 
on 
Imag
eNet

2. Small 
Dataset 
(C 
classes)

Reinitiali
ze this 
layer and 
train

Freeze 
these

3. Bigger 
dataset

Train these 
layers

Freeze 
these

Lower learning 
rate
when fine-
tuning;
1/10 of original 
LR
is good starting
Point.

With bigger
dataset, train
more layers


