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Image formation in optical
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Real Space and Projective

i Space (2D)

p € R?

> p(x,y)

’,’6 p( le le k)

7p(x,y,1) ,
p €P

1
1
1
1
1
1
Z !
1
1
1
1

(@)
Homogeneous
pkx,kY,K) " Coordinate system



i Homogeneous Representation
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Singular point in the projective space.



Homogeneous Representation

e
InRz 72 (> InP2:X = (30
| 5
257
The pointin Rz 2= | | = [°
e point in R x = . =[6
5
- —O-
InP2:X= o]l <& InRz 2
0.

Does not belong to P2.



Homogeneous representation
i of a line in a plane
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i Points and lines in P
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Exactly one line through two points.
Exactly one point at intersection of two lines.

p—




i Examples

1. Compute the line passing through (3,5) and (5,0) in

a plane.
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2. Compute the point of intersection of the lines:
5x-2y+4=0 and 6x-7y-3 0.
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iDuaIity
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Duality principle:

To any theorem of 2-dimensional projective geometry
there corresponds a dual theorem, which may be
derived by interchanging the role of points and lines
in the original theorem.



