Range Image Processing
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i Range data

1 Range data is a 2-1/2 D or 3-D representation of the
scene.

d An image d(i, j), which records the distance d to the
corresponding scene point (X, Y, Z) for each image pixel
(i, ))-

O It could be provided as a set of 3-D scene points (point
cloud).

N




i Imaging techniques

= Passive imaging.
= Stereo imaging

= Active range sensing
o Time-of-flight sensors

o Triangulation-based sensors
o Structured Light



Time-of-Flight Range
ensors

_ Source and
t. Time taken to travel the detector
forward and return path. | collocated.
v: speed of light in the Use a moving
given medium. mirror to scan A0S
the beam. Pulsed
Distance: laser
d. (vXt)/2
Laser-based time-of-flight | | imitation:
range sensors: light o the minimum observation time
detection and ranging thus limited by the minimum
(LIDAR) or laser radar distance observable.

(LADAR) sensors.



Triangulation based
i Sensors

Known for a predetermined

The camera scanning path of the beam.
and light

source are Apply triangulation
calibrated. to get the 3D point.

(u,v)

bserved

@ in camera. A light
C

amera source.

Yi-Chih Hsieh, Decoding structured light patterns for three-dimensional imaging systems, Pattern Recognition 34 (2001) 343-349 .




i Imaging principle

Encoding the 3-D
position of
projected ray.

Scan theray in a
predetermined
calibrated path.

(i,3)

(uv) (\'
é A light
C

amera source.

Yi-Chih Hsieh, Decoding structured light patterns for three-dimensional imaging systems, Pattern Recognition 34 (2001) 343-349 .




Structured Light

Encoding the 3-D Project a strip or
position of pattern.

projected ray.
of all the scene

| \ points lying on the
[ jected strip.
@ Structured

C

Yi-Chih Hsieh, Decoding structured light patterns for three-dimensional imaging systems, Pattern Recognition 34 (2001) 343-349 .

Get 3-D positions




Space Encoding RN

= Projection of a sequence of m patterns
to encode 27 stripes using a plain
binary code.

= Number of stripes get doubled at
every new pattern.

= Each light point (i,j) is associated with
an m-bit binary code and its image is
observed.



Courtesy: Prof. Guido Gerig

BI na ry COd I n g http://www.cs.cmu.edu/afs/cs/academic/class/1
5385-s06/lectures/ppts/lec-17.ppt

Projected
X over time
Pattern 3
Pattern 2
||||"|‘il!_l||||h
Pattern 1
Codeword of this pixel: 101... = identifies - j
the corresponding pattern stripe e



Courtesy: Guido Gerig:
http://www.cs.cmu.edu/afs/cs/academic/class/15385-
s06/lectures/ppts/lec-17.ppt (adapted)

Spatial Codification -=-:-

= Project a certain kind of spatial pattern uniquely
appearing in the image as a set of neighborhood
points.
= Could be spatially arranged dots with varying in size and

colors.

= The pattern (providing a codeword) is associated
with a calibrated light point.
= does not require multiple projection over the object.

= The codeword obtained from a neighborhood of
the point around it.




RGBD images from
i Microsoft Kinect
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Uses infrared laser light with speckle pattern.



Light Amplification by
Stimulated Emissi f
i Why lasers? Radiation (LASER)
= easily generate bright beams with lightweight
sources.

= infrared beams used unobtrusively.
= focus well to give narrow beams.

= Single-frequency sources easier to detect.

=« do not disperse from refraction as much as full-
spectrum sources.

= semiconductor devices easily generate short
pulses.




iParametric curve (2D)

e Parametric curve: X:/cR —>R?
X(1)= ()W)
* Tangent atapomt: T(t) = (u'(t),v'(t))
) ‘ X'XX"‘ f

«Curvature at a point: k(f) = beterminant

‘X'P in 2D

13

du 0Jv
at
0°u  0%v
dt? 0t?




iParametric curve (3D)

e Parametric curve: X:/cR —> RS
X(t) = (u(),v(t),w(t))

» Tangent at a point: T(t) = (u'(t),v'(t), W (1))

| g
X

-Curvature at a point: K (t ) =

14



iPa rametric curve (3D)k 0= XX

Rectifying Plane -~

Moving trihedron

Or |:>

Frenet Frame

normal’—

S

o Normal Plane

X(t) = (u),v(t),w(t))
T(t) = W' (), v'(t),w'(t))

113
binormal X
Qf’;\tangent Unit vectors
oy [ TO = KON
N T

t

OB = —t(®)N@)

N'(t) = —k(®)T @) + T(t)B(t)

Osculating Plane

Formed by T(t) and a
point near P=X(t).



iParametric surfaces

e Parametric surface: x:UcR? > R3

X(u,v)=(x(u,v),y(u,v),z(u,v))

N

K X xX

e Surface Normal: X xX |

16



iParametric surfaces

e Parametric surface: x:UcR? > R?

X xX
X xX,|
« Parameterized curve on the surface:  B(f)=(u(f),v(?))

Bt) = (x(u(®), v(t), y(u(t), v(t), z(ut), v(t))
» Tangent vector to the curve B(¥) : {=y'(f)X V()X

17

e Surface Normal: ) =




First Fundamental Form

First fundamental form: The bilinear form that
associates two vectors in the tangent plane in the

form of dot product.
I(U.v) =u.v

W.r.t. f(t)
I(t.f)=t.t= WXy +V'X,). WXy +V'X,)
= (Xy. X )u"?+2(X,. . X,)u'v' + (X,.X,)v'"?
= Eu'?+2Fv' + Gv'?

F=x,.x,

E=x .x
Magnitude of the tangent vector { u:su
G=x,.x,



Second Fundamental Form

X(u,v) = (x(u,v), p(u,v),2(u,v)) N = X, xX
I1(4. %) = 4. dN (v) &, %X,
. dN(v)
- N
LN +EANQW) = [/

- q

When they k7 N + £ dN(v) =
are unit /N

vectors T(Ef = —k.C(?(p)

Angle between curve normal and surface normal

19 For normal section, ¢ =zero.= 11(£.t) = —k;~—
Normal Curvature



fecond Fundamental Form
X(u,v) = (x(u,v), p(u,),2(u,v))

-

f=u'(t)X, +v'(H)X,
11(t.7) = £.dN(t)
* Second fundamental form: e=—N.x,
L. f=—N.x,
II(t. t) =eu'” +2fu'v' + gv's g=—N.x,

* Normal Curvature: Second fundamental form
to be normalized by magnitude of tangent (first
50 normal form)



fecond Fundamental Form

f=u'(()X +V(1)X,

e=—N.x,
I11(t.t) = t.dN(t) f=-N.x,
* Second fundamental form: g=—N.x,

I(E.t) = eu'? + 2fu'v' + gv'
* Normal Curvature: Second fundamental form
to be normalized by magnitude of tangent (first
normal form)
~u(eE) _euw?+2fu'v'+gvr?
L7 10 Ew?+42Fu'v'+Gvr?

21



Linear map, Gaussian and

Mean curvatures N
Li : f1lE F1°! £,
inear map ’f g“ For o

G=x,.x

| 2R %

Eigen values and eigen vectors of Imear map provide

principal curvatures (k,,k,) associated with principal
directions.

Gaussian curvature (K): Determinant of linear map.
Mean curvature (H): Half of trace of hnear map.
e
o Eg+Ge- 22Ff:k +k, P f Kk,
2AEG-FY) 2 EG-F
Principal curvatures are roots of foIIowmg equation:

- K -2Hk+K =0 12 H+\/H -K




Eight visible
Surface types
' of

curvatures

Invariant Surface Characteristics for 3D Obiject
Recognition in Range Images, PAUL J. BESL
AND RAMESH C. JAIN, COMPUTER VISION,
GRAPHICS, AND IMAGE PROCESSING 33,

33-80 (1986)

Peak Surface H¢0Q K>0

Flat Surface H=0 K=0

)

[

Pit Surface H>0 K20

Minimal Surfaca H=0Q K<«Q

y

Ridge Surface H<0 K=0

Saddie Ridge H<«0 K<0

)

a o ~>

Valley Surfsce M>0 K=0

Saddie Vselley H»0 K<«O

|




Surface types from signs of

‘-L curvatures

ks

peak ridge saddle

k 0 ridge  flat  valley

+ saddle valley pit

peak

none

pit

ridge

flat

valley

Saddle
ridge

Minimal
surface

Saddle
valley



Example: Monge Pa;tches

X(u,v)= (uv h(uv)

e

X E=x .x

N
- XuXX € uu u u
N:‘X xX, | f==N.x, F=xx,
u V :_wa G:xv.xv

In this case

_ / .
S (1+h 2+h 2)1”2 (—hy, —h,, 1)
«E=1+h2 F=hh, G=1+h}

_ _huu B _huv . B _hvv

— (]+hu2+hv2)1/2 A (1+hu2+hv2)1/2 87 (1+hu2+hv2)1/2

25



Monge Patches:
ean and Gaussian Curvatures

Mean Curvature
—h,,(1+h%) —h,,(1+h%) +2h,h,h,

H= .
2(1 4+ h2 + h2)2

Gaussian Curvature

huu hvv o htzw

K =
(1+ h{ + h3)?




iEX.l

Consider the following representation of a surface
(X(M,V), y(u,V), Z(ulv))l O <= ulv <=1'

(W] 2 91(v)]
ol fs 2 A Bl
f3(W)) 4 -3 93 (V). 5 6 3

x(w,v) = LW g (v) yW,v) = HLwg(v) zWv) = f3(u)gs(v)

Compute the surface normal, Gaussian and mean
curvatures at (#,v)=(0.5,0.5).



i Ans.1

2
o 3 2 ol F
4 5 6 3
2 2U 4
wv)=1]1 7 8
ro-f5 b 3] e[ 7|y
1 4 -=-31L0 > 6 3110
At u=v=0.5,
5.75 4.5 5 7
F(0.5) = l 3.75 ] G(0.5) = [11.75 F'(0.5) = ll] G'(0.5) = [8]
—0.75 4.75 5 1
22.5 40.25
X,=F'(uOecw)= [11.75 X, =Fu) OG6 W)= l 30 ]
Element wise multiplication 23.75 —0.75




i Ans.1 (contd.)

Surface normal as (uy): 5 = Wty _ @ u—v=g§ 00%%7
1 X XX, || 07

E=X,X, e=Xyh

F=X,X, f=Xuwf F'(us= [—10] G'(v) = [ 2 ]

G = Xv.Xv g = va_ﬁ 2 o

=F ’(U) @ G(V) Xuv = F’ (u) @ G' (U) va — F('LL) @ G”(U)

f E F -1 Principal Curvatures (k,, k,):
Linear map: ’f g] E|ge|g values of linear map.
oq —

Gaussian curvature: k, .k, = K= >
EG —F
Eg + Ge — 2Ff
= H =
2(EG — F?)

Mean curvature: (k,+k,)/2



i Ans.1 (contd.)

e=107.352  E=1208.375
Atu=v=0.5 £ 13380  F=1240312
g=19.832 g=2520.625

Linear map (L): [0-168 —0.077
0.006 .005

Gaussian Curvature: Det.(L)=0.0013

Mean Curvature: Trace (L) /2 =0.086



Finding Step and Roof Edges
In Range Images

1:3"0;-.’@:;&::0

KB
22002099, 9 4\
2530, 9, 09,9, QO

QEEXS ’Q“‘\

“Describing Surfaces,” by J.M. Brady, J. Ponce, A.
Yuille and H. Asada, Proc. International Symposium
on Robotics Research, H. Hanafusa and H. Inoue

(eds.), MIT Press (1985)

31 Courtesy : www.cs.unc.edu/Research/vision/comp256/vision23.ppt




iEdge Models

Step edge:
{ k,x+h when x<0,
.

k,x+c+h when x>0.

Roof edge:
{ k,x+h when x<0,
-

k,x+h when x>0.

Adapted from:
WWW.Cs.unc.edu/Research/vision/comp256/vision23.ppt




Characterizing

Step edge  Roof edge

G(x; o )=Gaussian mask of scale o.

. 0°G(x;0)
Zs(x) = 52 * Z(X)

o

Curvature at Gaussian smoothened z(x): k_(x)= 3

l+z |
Ratios of 2" and 1%t derivatives of curvatures: ( 0)

Step edges: k! (x) - 2! (x) Roof edges:

Roughly remains = — Inversely
constant across ko(x) 25 (x) proportional to

scale.
scales.
Adapted from:

WWwW. cs.unc.edu/Research/vision/comp256/vision23.ppt




i Characterization of edges

Step edges are zero crossings of one of principal
curvatures (or Gaussian curvature), whose position

changes with scale.

"

kg roughly remains constant

J-across scales.
(o}

Roof edge is characterized by local maxima of curvature
and to be sought in the direction of dominant principal

curvature.
k_ roughly remains constant

k' across scales.

o)



“Describing Surfaces,” by J.M. Brady, J. Ponce, A. Yuille and
H. Asada, Proc. International Symposium on Robotics
Research, H. Hanafusa and H. Inoue (eds.), MIT Press (1985)

The Algorithm

ompute a set of Gaussian smoothed images at
multiple scales.
= Compute the principal directions and curvatures
at each point of the smoothed images.
= Compute zero crossings of the Gaussian
curvature and the extrema of the dominant
principal curvature in the corresponding

principal direction.
= Zero-crossings: Candidate step edge points.
= Extrema: Candidate roof edge points.

= Use the analytical models across scales to select
candidate points for respective edges.




Multi-scale edge tracking

*Features are tracked from course to fine
scales.

*All features at a given scale having no
ancestor in coarse scale are eliminated.

o|f ’;— remains roughly constant across scales
output step edge point.

o|f a’;—? remains roughly constant across scales
output roof edge point.

*Retain the points at finest scale as shift from

the point is more for larger scale.



Matching

Courtesy:
WWW.CS. UnC. EdU/ Res ear Ch/ Vi S I On/ Reprinted from “Toward a Surface Primal Sketch,”
COmDZ 5 6/ VIS/ 0n2 3 . DDt By J. Ponce and J.M. Brady, in Three-Dimensional

Machine Vision, T. Kanade (ed.), Kluwer Academic
Publishers (1987). © 1987 Kluwer Academic
37 Publishers.



Segmentation into Planes via
Region Growing

Idea: Iteratively merge the pair
of planar regions minimizing
the average distance to the
plane best fitting them.

Nodes: Planar Patches
Edges: Between adjacent patches.
Arc cost: Avg. distance to the

Greedy | i . plane best fitting them. _.....,
approach: m i

Select the best

(minimum cost)
arc,

and merge the

nodes.

Reprinted from “The Representation, Recognition and Locating of 3D Objects,” by O.D. Faugeras and M. Hebert, the International Journal of
Robotics Research, 5(3):27-52 (1986). © 1986 Sage Publications. Reprinted by permission of Sage Publications.

38
Courtesy: www.cs.unc.edu/Research/vision/comp256/vision23.ppt




Range image segmentation:
i Morphological approach

d Uses information of local orientation at a point.

A Introduces concepts of digital neighborhood plane
(DNP) and neighborhood plane set (NPS).

 Fast and easy computation on checking the
arrangement of neighboring points in the 3D
discrete space.

d The NPS at each point computed, which induces a
unique partition under the equivalence relation on
equality of NPS.

[ Approximate planar segments formed by region

1 J. Mukherjee et al., Segmentation of range images,
grOWIng . Pattern Recognition, 25(10), 1141-1156, 1992.




3-D Neighborhood of a point p

/&A 110 ©10 | 0.0
p Ny

N
(-1.0,0) | (0,0,0) (1.0.0)
ng Mg n

(-1,-1,0){ (0.-1,0) | (1.-1.0)

(-1,5.1.) | (0.1.1) (1.1,1)

(-100) | (000) | (1.01)

(=1,-1,0)] (0,-1,1) | (t.-10.1)

J. Mukherjee et al., Segmentation of range images,
Pattern Recognition, 25(10), 1141-1156, 1992.



Digital Neighborhood planes

Assume the
| , 3 point lies on a
—==7' surface.

Digital Neighborhood planes

J. Mukherjee et al., Segmentation of range images,
Pattern Recognition, 25(10), 1141-1156, 1992.



Digital neighborhood planes

Va Vs Ve == von
Ng P | No (==
U] Ug| Ui IR

n3 n2 nl ( (-1.1) | ( )
N4 P | No Set of points
N5 Ng| N7 defining DNP’s.
(3) J. Mukherjee et al., Segmentation of range images,

Pattern Recognition, 25(10), 1141-1156, 1992.



Digital neighborhood planes

Us| N3 V3| | uy| ng| vy = Sl
s P Vo | Us P |V )
U, Nyl V7 Us| N5| Vs ST

u3 n4 V5 ( (0-1.1) | (-1
U P | Vs Set of points
U;| Ng| V7 defining DNP’s.
(6) J. Mukherjee et al., Segmentation of range images,

Pattern Recognition, 25(10), 1141-1156, 1992.



Digital neighborhood planes

s D Vo uyp Ve s
U, Ng| Vi U, Ng| Vs ST

u3 nz V1 ( (0-1.1) | (-1
Us) P | Vo Set of points
Us| Ng| V7 defining DNP’s.
(9) J. Mukherjee et al., Segmentation of range images,

Pattern Recognition, 25(10), 1141-1156, 1992.



DNPs: Voxel Sets

7 8 g

J. Mukherjee et al., Segmentation of range images,
Pattern Recognition, 25(10), 1141-1156, 1992.



Neighborhood Plane Set
(NPS)

o Let P, be the set of points assigned to the ith

DNP.

o Neighborhood plane set (NPS) of a point p in an
image 4 in 23 ;

kIS a

lple ={i:INP)NANP| >k}, k=3

Darameter
threshold number of points required

for accepting a DNP in the
neighborhood.



Handling noise in range

i image

NPS at p
[ply = {i:IN®)NANP| >k}, k=3

Range image: D(x,y) ——> 3D point: p (x,y, D(x,»))

N, (p): An extended neighborhood around p of size
aXbXc.

Map points from N, (p) to N(p), and use the same
definitions of DNP and NPS.



Neighborhood mapping

i function (NMF)

F: Nabc(p) 2 N(p)

1. The NMF F should be total and onto.

e

I. For every point in N, (p) there exists a unique point in
NQP).

ii. For every point in N(p) at least there exists a point in
N, .(p) mapped to it.

. The NMF F should induce connected partition in

N, abc(p) y

Induced DNP’s should be connected.
Induced DNP’s should have strong structural
similarity with the respective DNP defined in N(p).



Neighborhood mapping function
(NMF): An example

(=1,-8,-1)] (0,-1,~

Ft N3zs(p)=2> N(P) ——
(|f:n (miq) UA:U
( 1:3.—!.) (0.:.-1) (1.00.—1)
5 L 5 -1

My M ™,

y\gj " Z @ T T
X

(-1.0,0) | (0.00) | (1.0.0)

N Me n
(_'--|v°) [0.-1.0) (I--1-°]

s o u
1) | ey | )
Y Ug Uy
(-101) | (00.) | (1.0.1)

us U Y
(=1, -1,0) | (0,<1,1) | (t.=1,1)

J. Mukherjee et al., Segmentation of range images,
Pattern Recognition, 25(10), 1141-1156, 1992.




Modified DNPs induced by 7,

o Induced DNPs are
connected.
o Structurally similar.

NEIGHBORHOOD PLANES

|

[—\ PR|NC|PALI7PLANES DlAGONAL] PLANES
S D
; ‘ L
\
AN
" : DNPs in base
configuration
7 8 = ?
J. Mukherjee et al., Segmentation of range images, J. Mukherjee et al., Segmentation of 3D surfaces,

Pattern Recognition, 25(10), 1141-1156, 1992, Pattern Recognition Letters, 11, 215-223, 1990.



The algorithm

. Compute NPS at each
pixel.

. Compute connected
components having the
same NPS.

Remove small connected
components.

. Smooth a region by
assigning its label to
spurious unlabeled pixels
within it.

3
\J - 14 |33

J. Mukherjee et al., Segmentation of range images,
Pattern Recognition, 25(10), 1141-1156, 1992.



Registration of range data

= Assumptions
= Surface belongs to the same object.
« Captured from different viewing direction.

» Coordinates of corresponding points are
related by rigid body transformation.

= Assume same scales for the coordinate axes.
= Computational problem

= Estimation of rotation and translation
parameters.



Estimation of rigid body
i transformation

wo corresponding point sets {m.} and {d.}, i=1,..N
di = le’ + T + Vi

noise

Solve for Rand T A . o
to minimize E = Z”di — Rm; — 7|
=

N
oF . .
ﬁ=0 |:> —;(di—Rmi—T)=O

) T=Jﬂﬁ—

Means of d; and m,'s



iA solution for Rand T

= — m-.. = M: — M
de; = di —d ‘i Minimize
N N | \
E= ) lde, = Rme | = (dLde, +mEme, — 2d%.Rm,)
=1 i=1 \_Y—f
Soluti f d Maximize
olution or Rand T SVD @
H=UDVT < ofH o .
R=vyrT Maximize traceNof RH
T =d — Rm ; : / Where, H = z mCidZi
S =

Correlation matrix



The Iterative Closest Point (ICP)
Registration Algorithm

1. Compute initial registration parameters R, and T,
Initialize error E to E, (error of model fitting).
2. Repeat following steps till error converges or
becomes small.
I. Apply transformation to the source scene (or
point clouds).
ii. Compute closest pairs between source and
target scenes.

iii. Re-compute registration parameters and error
of fitting.

“A Method for Registration of 3D Shapes,” by P.J. Besl and N.D. McKay, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 14(2):238-256



ICP Registration Results

56
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Reprinted from “A Method for Registration

of 3D Shapes,” by P.J. Besl and N.D. McKay,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 14(2):238-256 (1992). © 1992 IEEE.




iSummaw

1. Different types of range sensors.

o  Stereo imaging

o  Time of flight

o  Triangulation through scanning beams
o  Structured light

2. Use of differential geometry in extracting local

features of a pixel (point) in a range image.

o  Surface normal, Principal Curvatures, Gaussian curvature, mean
curvature.

o  Signs of curvatures characterize the local topology of surface.

3. Characterization of step and roof edges.
o  Step edge: Zero crossings of Gaussian curvature.
o  Roof edge: Extrema of dominant curvature along its direction.
o  Multiscale tracking of edge points.




i Summary (contd.)

4. Segmenting range images into planar patches.
o A greedy approach by fitting local surface patches and
merging them.
o A morphological processing based approach by
computing neighborhood planes and local orientation.

5. Registration of range images.
o Rigid body registration.
o Least square error estimation for rotation and translation
transformation matrices.
o Iterative refinement from initial estimates by computing
nearest neighboring pairs in two images.



