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Can you match the scene

P o Detection
1l o Description
i o Matching

Translation, rotation, scale ..



Feature detection

A local measure for uniquely identifying the feature.

= How does the measure change on shifting windows at
different points?

NG P U BN

“flat” region: “edge”: no “‘corner’:

no change in  change along significant

all directions  the edge change in all
direction directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



iFeature detection

Consider shifting the window W by (u,v).

* how do the pixels in W change?

e compare each pixel before and
after by summing up the squared

differences (SSD). W

~_

* this defines an SSD “error” of

E(u,v).

E(uv)= > [I(x+uy+v)—I(z,y)

(z,y)eW

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.




‘imall motion assumption

I(x4u,y+v) = I(x,y)- giu | gév Fhigher order terms

For small © and v
I(z 4 u,y +v) ~ I(z,y) + $tu+ v
~ I(z,y) + Lo I [ , }

shorthand: I, = %

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.
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ieature detection -

Iz 4+ u,y+v) ~ I(z,y) + GLu- gé” ~ (2, y) + L Iy]qu;]

Bu,v) = Y [I(z+uy+v)—I(zy)]
(z,y)eW
SID N Ra ] I Y (%)

(x,y)eW

a2 ] S | (O




so= 3 el gn L]

(z,y)EW Y

{eature detection

o= 3 el an |

(z,y)eW | ' | lz}
O H ®
For the example above

« Suppose the center of the green window
moved to anywhere on the blue unit circle.

 Directions for the largest and the smallest £
values?
 Eigenvectors of H.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Quick eigenvalue/eigenvector

{eview
Ar = \x

The eigenvectors of a matrix 4 are the vectors x that satisfy:

B hit — A h 3
det(A — \I) =0 det[ oA e )\]_o

The scalar M\ is the eigenvalue corresponding to x
= The eigenvalues are found by solving:

A = % [(hn + haa) = \/4h12h21 + (h11 — h22)2}

= For eigen vector solve the following:
i [
ha1 hoo — A Y
Once you know 2%, you find eigen vector [x y]T by solving the
above- Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



so= 3 el g L]

(x,y)eW

ﬂeature detection ‘ :

|
H
X H$_|_ m— /\_|_SC_|_

D~ e

Eigenvalues and eigenvectors of H

* Define shifts with the smallest and
largest change (E£ value)

» x, = direction of largest increase in E.
« 1. = amount of increase in direction x,
« x_ = direction of smallest increase in E.
« A- = amount of increase in direction x.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.




?ﬁature scoring function

E(u,v) to be large for small shifts in all
directions

* the minimum of E(u,v) should be large,
over all unit vectors [u v].

* this minimum is given by the smaller
eigenvalue (A.) of H

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute



?ﬁature detection: Algorithm

« Compute the gradient at each point in the image.
« Obtain the H matrix from the entries in the gradient.

]2 I_I_
H=|" _
_Iylx Iy i

« Compute eigenvalues of H.
 Locate points with large response (A_ > threshold)

« Select points where A_is a local maximum as
features.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



iocal maximum: illustration

 Points with A_ as a local maximum.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



he Harris operator

_Is a variant of the “Harris operator” for feature detection.

_ ALAD
T N
~determinant(H)
~ trace(H)

* The trace is the sum of the diagonals, i.e.,
trace(H) = hy; + hyy
* Very similar to A_but less expensive (no square root)
« Called the “Harris Corner Detector” or “Harris Operator”
» Lots of other detectors, this is one of the most popular.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



ihe Harris operator

Harris
operator

A

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Harris detector example

Input image f~Value Local maxima



o
-
e
O
)
(O
=
O
| -
-
A
(O
D
L




i Matching with Features

o Detect feature points in both images.
o Describe them by local statistics.

o Find corresponding pairs (Matching).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Invariance

> Is it possible to select same features under
various transformations?

- Rotation
- Change of illumination
- Scale

O L I |

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



:ﬁcale invariant detection

Key idea for detecting corners
Find scale that gives local maximum of f.

= f'is a local maximum in both position and
scale

= Common definition of f: Laplacian
(or difference between two Gaussian filtered
images with different s.d.’s.).

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Invariance

Consider two images I, and I, so that I, is
a transformed version of I,

=« For example,

. Translation Tranformational Invariance:

Detection of the same

= Rotation
. Scale features regardless of the
. Reflection transformation.

= Non-uniform scaling
« Illumination
« View ...

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Detection and description: to
be invariant

+

Both should be ensured.
1. Detector to be transformational invariant.

Harris measure is invariant to translation and rotation.

Scale requires handling of multi-resolution representation

= Usual approach: Computing features at multiple scales using
a Gaussian pyramid.

= More precise computation locates features at “the best scale”
(e.g., SIFT)

2. Feature descriptor to be transformational invariant.

captures the information in a region around the detected
feature point.

= €.g. histogram of gradient directions in a square window centering a
feature point.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Finding Keypoints — Scale,

i Location

= How do we choose scale?

+ Amount of interesting stuff

A

Radius

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Scale Invariant Detection

= Functions for determining scale
Convolve with image and observe extrema in 3-D.

Kernels:
Laplacian L =g’ (Gxx(xr y,0) + Gyy(x,, 0))

Difference of Gaussians P0G = G(x,y,ko) = G(x,y,0)

1 x?%+y?

e 202

where Gaussian G(x,y,0) = 2102

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Kernel plots in 1-D
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Both kernels are invariant to scale and rotation.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Relationship between LoG and
i DoG operator

G vz
go  °
V20— G(x,y,ka) —G(x,y,0)

ko — o

G(x,y,ko) — G(x,y,0) = (k —1)0?V?G

The factor (k-1) is kept constant across scales.
=>»does not influence extrema locations.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Finding Keypoints
i Scale, Location

=
octave > >@ .= 3D DoG space
== >(_:

=

Difference of \

GaUSS|an Gaussia'n’ Gaussian (DOG) D(;lf, Y, 0.)

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



iScaIe Invariant Detectors

= Harris-Laplacian (Mikolajczyk & Schmid)
= Apply Laplacian operation with varying scale.

s Get local maxima of Harris corner response in space
and scale.

. SIFT (Lowe)

 Find local maximum Difference of Gaussians in
space and scale

K. Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”.
ICCV 2001.

D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints™. [JCV
2004



Scale Invariant Detection:
Summary

= Given: two images of the same scene with a large
scale difference between them.

= Goal: find the same interest points independently in
each image.
= Solution: search for maxima of suitable functions in
scale and in space (over the image).
Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian
over scale, Harris’ measure of corner response over the
image.

2. SIFT [Lowe]: maximize Difference of Gaussians over scale
and space.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Keypoint localization

» There are still a lot of points, some
of them are not good enough.

= The locations of keypoints may be
not accurate.

s Eliminating edge points.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Ellmmatmg edge [ Dax D,
i pOIﬂtS ] Dzy Dy, |
D(.)=DoG of the function.

s Edge point: large principal curvature across the
edge but a small one 1n the perpendicular
direction.

= The eigenvalues of H are proportional to the
principal curvatures, so two eigenvalues

shouldn’t differ too much.  Eliminate keypoint if
the ratio greater than

T (H)2 +1)2 the threshold.
r(H) (r+1) for high value of » (say 10)

Det(H) r

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



%rientation assignment

= Create histogram of local
gradient directions at selected
scale.

= Assign canonical orientation at
peak of smoothed histogram.

= Each key specifies stable 2D

coordinates (X, y, scale,
orientation).
o *t 2

T

If there are two major orientations, use both.

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.




Keypoint localization with
orientation

; — inttial
g8 keypoints

‘! i ;}r
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=
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Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



i Keypoint Descriptors

= At this point, each keypoint has
= location
= Scale
= Orientation

= Next is to compute a descriptor for the local
image region about each keypoint that is

= highly distinctive

» invariant as possible to variations such as
changes in viewpoint and illumination



Scale Invariant Feature
;ransform (Lowe99, ICCV)

* Take 16x16 square window (orientation corrected)

around detected feature

« Compute edge orientation (angle of the gradient - 90°)

for each pixel

* Throw out weak edges (threshold gradient magnitude)

* Create histogram of surviving edge orientations

| i

27

% % angle histogram

s % ¥
ey ¥ X
MRS
Image gradients Keypoint descriptor

Adapted from slide by David Lowe



SIFT descriptor

 Divide the 16x16 window into a 4x4 grid of cells
(2x2 case shown below).

« Compute an orientation histogram for each cell
* 16 cells * 8 orientations = 128 dimensional

descriptor. “r ,
PR R R v: ‘ :
— N\ 1

A
‘K‘ AX ’
> * »

Image gradients Keypoint descriptor

Adapted from slide by David Lowe



i Robustness

Capable of handling
= changes in viewpoint
= Up to about 60 degree out of plane rotation
= Significant changes in illumination
= Sometimes even day vs. night



Speeded-Up Robust Features

i (SURF): Another descriptor

= Speeded-Up Robust Features (SURF)
» (Bay et al. ECCV, 2006)

= Box-type convolution filters and use of
integral images to speed up the
computation.

= Use of Hessian operator for key point
detection> Local maxima of det(H).

« Accumulate orientation corrected Haar
wavelet responses.




i Hessian Operator

Convolution with the Gaussian
second order derivative with image.

Dyx(X,0)  Dyy(X,0)

Hx,0) = [D.yx (x,0) D,,(x,0)

Keypoint: Maximum of det(7H(.)) over space and scale.

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Approximation of Gaussian by
¢ BOX fi Ite rS Bay et al, Speeded up robust features (SURF), CVIU, 2008

Dyy

< )

9x9 Box-filters are
approximation of
Gaussian width 1.2.
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w~(0.9



Fast computation using the
i integral image

i<z j<y
In(x) =Y Y I, j)
i=0 53=0
O.
Only 3 additions
DY '8 and four
y memory access.
A
Y =A-B-C+D

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Bay et al, Speeded up robust features (SURF), CVIU, 2008

i Haar Filter Responses

= Dominant orientation by accumulating
Haar horizontal and vertical responses
in a rotated sliding window (of width
600) at the scale of key point.

= The longest vector provides the
domina Nt directi()n ] 6 operations needed for

computing each filter response

using integral image.
Haar Filters
Box filter implementation.




SURF: Sum of Haar Wavelet
i responses

o Partitioned into 4x4
square sub-regions.

o Haar wavelet
responses at
regularly spaced
5x5 sample patches
in each sub-region.

o Each sub-region
has 4D vector. Size of the window=20 x scale

o Concatenate them
to 64 D vector.

Bay et al, Speeded up robust features (SURF), CVIU, 2008



Other types of detectors and
i descriptors

= FAST: Features from Accelerated
Segment Test (Rosten et al, PAMI,
2010).

= BRIEF: Binary Robust Independent
Elementary Features (Colonder et al,
ECCV, 2010).

= ORB: Oriented FAST and Rotated BRIEF
(Rublee et al, ICCV, 2011)




FAST: Principle

—

I I

C11-1
w ~ 4
=
> L1 [ | | B

ol [ LT (7] L
)

o 12 point test: If there exists 12 consecutive
points in the set of 16 points brighter than
the central pixel (Rosten et al ICCV'05).

o Modified strategy: Train decision tree on the
boolean conditions given labelled data.

Rosten et al, Faster and Better: A Machine Learning
Approach to Corner Detection, PAMI, 2010



FAST: Partitioning of points on
he circle and Training a DT

d, Lyox < 1, =t (darker)
Spox =318 Ip—t <Dy <L+t (similar)
b, I, +t < [, (brighter)

o Classification of points in three
classes and create three partitions
for a point.

o Train a decision tree.

Rosten et al, Faster and Better: A Machine Learning
Approach to Corner Detection, PAMI, 2010



i BRIEF: Principle

o Generate randomly a set of »n, pairs of locations
(x;,y;) in a patch centered around a point.
o Perform the following boolean test.

xv) =11 U PX <P®Y)
T(pix,y) = {O otherwise

BRIEF descriptor: n, Dimensional binary string

| 128, 256, 512
fnd(p)z 2 21 (p; X4, Y0)

1Si5nd Colonder et al, BRIEF: Binary Robust Independent
Elementary Features, ECCV, 2010



ORB: Principle
= TAST does not operate across scale.

= Apply FAST detector on pyramid of
smoothened images.

= Orientation by intensity centroid: The vector
from the center of the patch and to a centroid
considering the intensity distribution
(intensity weighted center of patch).

= Rotate the patch by the angle and compute
BRIEF called steered BRIEF.




i Matching
= Representation of a key-point by a feature vector.

= €.0. [fOf] fn]T

= Use distance functions / similarity measures.

= L, norm
1 Li(. ) = Zm gil

= L, norm Ly(f. §) = (Zlfl 91I2>

= L, norm Ly(f.§) = (i gllp>p

1=0



i Region descriptors

= Patch descriptors
= [exture descriptors
= Image / Sub-Image global descriptors



radients (HoG)

izatch Descriptor: Histogram of

= Compute centered horizontal and vertical
gradients with no smoothing.

= Compute gradient orientation and magnitudes,

= For color image, pick the color channel with the
highest gradient magnitude for each pixel.

= For a 64x128 image, divide the image into 16x16
blocks of 50% overlap. =7x15=105 blocks in
total.

N.Dalal and B. Triggs, Histograms of oriented gradients for
human detection, CVPR-2005



i Histogram of Gradients (HoG)

= Each block: 2x2 cells with size 8x8.

= Quantize the gradient orientation into 9 bins.

= The vote is the gradient magnitude.

= Interpolate votes between neighboring bin center.

= The vote can also be weighted with Gaussian to
down-weight the pixels near the edges of the block.

= Concatenate histograms.
= Feature dimension: 105x4x9 = 3,780

N.Dalal and B. Triggs, Histograms of oriented gradients for human
detection, CVPR-2005



Object detection with patch
idescriptors.

= Typical examples:
= Pedestrian detection
= Character recognition

= Detection as a classification task.
= Generate labeled sample feature descriptors.

= Train a classifier.
= NN, SVM, Decision Tree, Random Forest .....

= Label an unknown patch using its descriptor.




i Non-maximal suppression

= Expected to get a high detection score with
neighboring overlapping patches.

= Select the patch with locally maximal score.

= A greedy approach:

= Select the best scoring window
= It is expected to cover the target object.

= Suppress the windows that are too close to the
selected window.

= Search next top-scoring windows out of the rest.



i Texture descriptor

= [exture: spatial
arrangement of the
colors or intensities in
an image
= A gquantitative measure
of the arrangement of
intensities in the region.

Computer Vision by Shapiro and Stockman, Pearson, (2001)



i Texture descriptors

= Edge density and direction

= Local Binary Pattern (LBP).

= Co-occurrence Matrix.

= Laws’ texture energy features.



* Edge density and direction

ompute gradient at each pixel.

= The descriptor: normalized histograms of
magnitudes and directions of gradients over a

region. f/ Normalized histogram
of magnitudes.

= (Hr(mag),Hg(dir))

Normalized histogram
of directions.

= Numbers of bins in histograms kept small (e.q.
10).
= Use L1 norm between the feature vectors as a distance
measure. Normalized histogram - Area =1;



i Local Binary Pattern (LBP).

3121 b(i) = {1 if (1) >1(c))

0 Otherwise

41 ¢c | 0 7 ]
~~; You may have
516 | 7 LBP(c) = z b()2"  Gifferent ordering of
(=0 neighbors.

o Values range from 0 to 255.

o Obtain normalized histogram over a region.
o Not rotational invariant.

o Invariant to illumination and contrast.

T. Ojala, M. Pietikainen, and D. Harwood, A Comparative Study of Texture Measures with
Classification Based on Feature Distributions, Pattern Recognition, vol. 29, pp. 51-59, 1996.



Variations of LBP

= Making it rotational invariant.

= A circular neighborhood of radius R, with P pixels at
equal intervals of angles.

= Use interpolation if does not belong to the discrete grid.

P-1
LBPp g(c) = Z b(i)2 LBPg, & 2 LBP
=0

LBP}%(c) = min{ROR(LBPpg(c), i) |i=0,1,2,..P — 1}

where ROR(x, i) performs a circular bit-wise right shift on the
P-bit number x, i times. 36 distinct values for LBP"g ;.

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987



i Variations of LBP

= Uniform pattern
= Not more than 2 spatial transitions in the bit sequence.

= U(11111111)=0  yse rotation invariant value
= U(11101111)=2 by computing minimum
- U(10001001)=4  applying ROR operator. Exactly P+1

(b 1 uniform
| L patterns, hence
LBPEY2(c) = + z b(D)2" if ULBPyr(c)) <2 by digtinct
i=0

P+1 Otherwise values.

\

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987



Nine uniform patterns of
i LBPBIRriuZ

= The nine uniform patterns and the
numbers inside them correspond to
their unique codes.

L Q o Q Qo Q Q
. . . . . o . 0 . o . © . o . o o
e () ¢ e | e e 2 e e 3 0o e 4 0 e 5 0 e g o o 7 o o § o
* , ° * , ° * , ® * , ° e , © e , © o 0 © o © 0 4 ©

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987



Variance Measures of the

iContrast

s Local variance of intensities of uniform
pattern.

= Normalized histogram of local variances.

P—1 P—-1
1 ) _ lz

varp r (c) = Ez (gp - H) H )2 Ip
p=0 P=0

LBPE™Y?

Another robust representation:

varp,R

T. Ojala, M. Pietikainen, and T.i Maenpaa , Multiresolution Gray-Scale and Rotation Invariant
Texture Classification with Local Binary Patterns, TPAMI, VOL. 24, NO. 7, JULY 2002, pp. 971-987



i Co-occurrence Matrix (C,)

s C(x,y): How many times elements x
and y occur at a pair of pixels related
spatially (designated by r in the
notation).

= €.g. p r q denotes q is shifted from p by a
translation of t=(q,b), i.e. q=p+t.

= Ci,.»(x.y): Number of cases in an image where
I(p)=x and I(p+t)=y.




i Co-occurrence Matrix (C,)

0 1 0 1
0o/ 1/1] © 0
00111 1
111/ 0/0
1717000 Co,1) 0 1 Capo
0

Coo,1)



i Co-occurrence Matrix (C,)

= OO

== O 0O

OO | ==




Normalized Co-occurrence

Matrix (N .)

Divide by the sum of frequencies in a matrix.

0

1

1/3

1/6

= OO

== O 0O

OO | ==

1/6

1/3

Coo,1)

0

1

0

1/3

1/6

1

1/6

1/3

1

C(1,0)

2/9

2/9

2/9

1/3

C1,1)




Symmetric Co-occurrence

i Matrix (S)

S,(xy)=Cx,y)+C_(x.y)

0

1

4+4

2+2

2+2

4+4

= OO

== O 0O

OO | ==

Co,1ytCo,1)




Features from Normalized Co-
i occurrence Matrix

2
Energy = z 2 N:(x,y)
Xy

] N..(x,y)
Entropy = —z Z N, (x,y)log, N,
X Yy

Contrast = z E(x —v)?N,.(x,y)
Xy

Ny (%, y)
Homogeneity = ZZ T+ |x — 9]
X 'y




Features from Normalized Co-
i occurrence Matrix

Dx Zy(x — ;‘x) (y — Hy) Ny-(x,y)

Correlation =
Mean and s.d. Mean and s.d.
of row sums of c@n sums

/

FO) =) Ne(xy) 90D = ) M@ y)
y X



i Laws’ texture energy features

= A set of 9 5x5 masks used to compute

texture energy. A mask: Outer

L5 (Level): [14 64 1] product of any pair.
E5 (Edge): [-1-2021]  €.9. ESL5: ES.LST

S5 (Spot): [-1 020 -1] '—;'
R5 (ripple): [1-46-41 -
(ripple): [ ] ol 4 6 4 1
Computation with mask: 2
Convolution L1 -

K. Laws, “Rapid Texture Identification”, in SPIE Vol. 238: Image Processing for
Missile Guidance, 1980, pp. 376-380.



i Laws’ texture energy features

= A set of 9 5x5 masks used to compute

texture energy. L5E5 and E5L5
_ Take L5R5 and R5L5
L5 (Level): [14641]  average of E5S5 and S5E5

E5 (Edge): [-1-2021] responses  L5S5 and S5L5

S5 (Spot): [(1020-1] of two E5R5 and R5E5
R5 (rlpple) [1 -4 6 -4 1] masks. gggg and R555
16 such masks possible. R5R5

Combine a few pairs to make 9 masks. ES5E5

K. Laws, “Rapid Texture Identification”, in SPIE Vol. 238: Image Processing for
Missile Guidance, 1980, pp. 376-380.



Laws’ texture energy

15x15
window

Subtract local
average at each
pixel.

U

Convolve
with 16
masks.

L5E5 and E5L5
L5R5 and R5L5
E5S5 and S5E5
L5S5 and S5L5
E5R5 and R5ES
S5R5 and R5S5
S5S5
R5R5
ESES

——

9 dimensional
feature space.

1r

Combine a few
symmetric pairs
to 9 channels.

r

Compute
energy map for
each channel.

%

Sum of
absolute
values
in a
15x15
window.



i Use of texture descriptors

= Detection of object patches
represented by textured patterns.

= Segmentation of images.

= Classification / Matching

» Generate a Library of labelled feature
descriptors.

= Detection of classes (class labels).
= Matching to the nearest texture descriptor.



Image / Object Descriptor

= Bag of visual words

« Compute key-point based feature descriptors

over a library of images:f ggfjr?ﬁg

= Quantize them (clustering) to form a finite set of
representative descriptors (visual words).

= For an image assign the nearest visual word
corresponding to the feature descriptor of a key
point.

= Represent by each image by a histogram of
visual words.

Sivic et. al., Discovering objects and their location in images, ICCV’ 2005.




Vector of locally aggregated
descriptors (VLAD)

= Form the codebook of visual words as in BoVW
representation.
=« C, C, .., C; Cluster centers of dimension D (say).

= Each local descriptor x in an image is associated
to one of these visual words.

= Accumulate the differences w.r.t. the
corresponding cluster center.

v = 2 (x — C;)

o Form V= [VI Vy .o Vk] x assigned to C;

o VLAD descriptor=V/||V]| ~_

Jegou et al., Aggregating local descriptors into a
compact image representation, CVPR, 2010.

Dimension: k.D



Application of global image

‘L descriptor

= Content based image retrieval
= Image search based on visual content

I}Etrieved images from a database.

= : . = -




i Summary of Techniques

= Scale and = Scale and
transformation transformation
invariant feature invariant Feature
detection: descriptor:
= Harris corner- = SIFT, SURF, ORB

Laplacian Maximum.
= DOG Maximum.

= Intensity weighted
FAST.



Summary of Techniques

= Region and texture
descriptors.

= A few applications
= Key point descriptor:

= HOG Matching corresponding

= Edge density points of a scene.

= LBP = Region descriptor:

= Co-occurrence matrix Object detection

= Laws' texture energy = Global descriptor :Image
retrieval.

= Image global descriptor
= BoVW
= VLAD



