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Classical vs. Deep Architecture

Input OutputW(1),b(1) W(2),b(2) W(m),b(m)

Input Output

Classical ANN:
Only a few 
hidden layers.

Deep architecture:
Could have more than 
hundred  hidden layers.



Application: Image Classification
ImageNet Large Scale 
Visual Recognition 
Challenge.
n1000 object classes 
and 1.4M Images in 
the dataset.
nMajor algorithms 
submitted deep 
features based.

Image: https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus



Application: Object Recognition and 
Localization

Slide credit: Ross Girshick, ICCV 2015



Application: Object Segmentation

*Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016



Application: Pose Estimation

Cao et al, 
“Realtime Multi-
Person 2D Pose 
Estimation using 
Part Affinity Fields”, 
arXiv 2016



Application: Image Captioning

* Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015



Application: Dense Image Captioning

*Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016



Application: Super Resolution

*Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016



Application: Image Art Generate & 
Transfer

*Gatys, Ecker, and Bethge, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016



Application: Outside Computer Vision

n Machine Translation & Text Synthesis
n Speech Recognition & Synthesis
n Navigating Autonomous Vehicles
n Playing Atari like Games
n Alpha Go



Deep architecture: Why so 
late?

n Concepts introduced in 80’s.
n Basic principles remain the same.
n Two major reasons.

n Availability of large scale annotated data.
n Penetration of internet and smart phones.
n Wide spread of social networking.
n Online shopping, etc.

n Advancement of computing power.
n High throughput GPU computing.



Classical Image Classification

hand-crafted 
feature 

extractor 

Classifier 
Algorithm

output Tiger?

Cat?

Lion?
• Edges
• SIFT/SURF key Point
• HOG Regional Features
• Motion Features, etc.

• Bayesian 
• LDA
• SVM
• KNN



Classification Challenges

n Very tedious and costly to develop hand-crafted 
features to handle various challenges.

View Point variation       Deformation                   Occlusion Intraclass Variation

Illumination                       Clutter              Instances Scale

Highly dependent on one application, and not 
transferable easily to other applications.



Deep Features

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

Low-level 
features outputMid-level 

features
High-level 
features

Trainable 
classifier

Increasing level of abstraction



Deep Features

n Utilize large amount of training data to 
learn features.

n Rich hierarchical representations are 
learnt fast through multiple stage of 
feature learning process.

n Learned features are easy to adapt.

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)



Supervised Learning

Data: (x, y) where x is data, y is label
Goal: Learn a function f to map x → y
Examples: Classification, Regression, 

Object detection, Semantic 
Segmentation, Image Captioning, etc.



Image Classification
What class that image belongs to? How to 
classify?

Classify

Tiger

Cat

Lion
Learn a parametric function f
composed by weight 
parameters w model to classify 
Image x as class label y.



Supervised Learning
Data Driven Approach to learn the model in three 
steps:

Input data
(Image 
pixels)

Model 
weights

Predicted output 
(image label)

Model 
structure

Step 1: Define Model



Supervised Learning

Training
input

True 
output

Step 2: Collect data.



Supervised Learning

Minimize average 
loss over training 

set

Loss function:
Measures 
“badness” of 
prediction

Predicted output

Step 3: Learn the model.

Learned 
weights

Regularizer:
Penalizes 
complex 
models

Total Loss = Data Loss + Regularization Loss



Loss

n A loss function tells how good our current 
classifier is.

n Data loss: Model predictions should match 
training data
n Multiclass SVM loss (Hinge Loss):

n Softmax Loss (Multinomial Logistic Regression):

i



Cross-entropy Loss

n Another form of softmax loss.
n 2-class entropy:         

n -(y log(p)+(1-y) log(1-p));    p: Prob. (y=1|o)
n Multiclass:

Binary indicator (1 if o
belongs to c, else 0). 

Estimated Prob. of o
belonging to c

More general:

True Prob. of o
belonging to c



Regularization Loss

nRegularization Loss: Model should be 
“simple”, so it works on test data as “W” is 
not unique with just data loss.

n L2 Regularization (Weight Decay)
n L1 Regularization
n Elastic net (L1 + L2)

i



• Random Search
• Inefficient in higher dimensions
• Gradient descent 

• Back propagation algorithm

How to find best weights      ?



Gradient Descent

For more details  on brief details, ref to http://ruder.io/optimizing-gradient-descent/

Initialize w randomly
While true:

Compute gradient                 at current point

Move downhill a little bit:

Learning rate: How big 
each step should beupdating the weights at each 

iteration

How to update weights?



Back Propagation

n Forward pass: 
n Run graph “forward” to compute loss

n Backward pass: 
n Run graph “backward” to compute gradients 

with respect to loss
n Efficient to compute gradients for big, 

complex models.



Supervised Learning: Linear 
regression

Regularizer is Frobenius 
norm of matrix (sum of 

squares of entries)Learning Problem

Input and output are vectors Loss is Euclidean distance

Linear Regression

Model is just a matrix multiply



Supervised Learning: Neural Network

Input and output are vectors

Linear Regression

Model is just a matrix multiply
Model is two matrix multiplies
which is again as Linear Regression

New Model



Supervised Learning: Neural Network

Input and output are vectors

Linear Regression

Model is just a matrix multiply

New Model

Model is two matrix multiplies, 
with an elementwise 

nonlinearity



Non Linearity: Activation Functions

Sigmoid

• Squashes numbers to range 
[0,1] – can kill gradients.

• Best for learning “logical” 
functions – i.e. functions on 
binary inputs. 

• Not as good for image 
networks 

• Not zero-centered



Activation Function

*LeCun et al., 1991

tanh(x)

• Squashes numbers to range 
[-1,1]

• Zero centered (desirable)
• Still kills gradients when 

saturated
• Not as good for binary 

functions



Activation Function

*Krizhevsky et al., 2012

ReLU
(Rectified Linear Unit)

• Computes f(x) = max(0,x)
• Does not saturate (in +region)
• Converges faster than sigmoid/tanh 

on image data (e.g. 6 times).
• Very computationally efficient
• Not suitable for logical functions
• Not for control in recurrent nets
• Not zero-centered output
• Dead ReLU never activates as 

gradient is 0 for x < 0. So, no filter 
update!



Non Linearity: Activation Functions

*Mass et al., 2013

Leaky ReLU

• Does not saturate
• Converges faster than sigmoid/tanh 

on image data(e.g. 6 times.)
• will not “die”.



Non Linearity: Activation Functions

*Clevert et al., 2015

Exponential Linear Units (ELU)

• All benefits of ReLU
• Does not die
• Closer to zero mean outputs



Non Linearity: Activation Functions

*Goodfellow et al., 2013

MaxOut Neuron

• Does not have the basic form of dot product -> 
nonlinearity

• Generalizes ReLU and Leaky ReLU
• Does not saturate!
• Does not die!
• doubles the number of parameters / neuron



Neural Network
Two Layer Neual network /

One hidden layer Neural Network

Three Layer Neural Network 
/ 

Two hidden layer Neural 
Network



Neural Network

Sometimes Multilayer  called “Fully-Connected 
Network” or “Perceptron”

Hidden layers are learned feature representations
of the input! These are Deep Features!


