Deep neural architecture and
applications (part I)

!'_ (Week 12: Lecture 55)

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: K. Sairam

Classical vs. Deep Architecture

Input—>

WL b

WQ2)\b(2)

Classical ANN:
R iny a few
Output hidden layers.

Deep architecture:
Could have more than
hundred hidden layers.

i Application: Image Classification

ImageNet Large Scale s st
Visual Recognition
Challenge. o .
=1000 object classes o8 8
. 3 °
and 1.4M Images in : :
the dataset. o
sMajor algorithms
Submitte d d e ep o ® Traditional CV ® Deep Learning

2010 2011 2012 2013 2014 2015

features based.

Image: https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus

mean Average Precision (mAP)

Application: Object Recognition and

ocalization Localization
Where?

person : 0.992

Recognition
What?

80% PASCAL VOC
70% A
60% Before deep convnets R-CNNv1 A
50% { A \
40% A A
A Using deep convnets

30% A
20% 4

A

10%
0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
year

Slide credit: Ross Girshick, ICCV 2015

i Application: Object Segmentation

pipedtreoreersemrson
tennis racket .rson
persoperson

person PerSON pergon

tonni§ ockdenniS racket

sports ball

baseball bat

person

*Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016

person
PErSON persoparson persohersor
porson

person

sheep / sheep Sheep

person
person

person
person . gorson

tennis Facket

person

sports ball

Cao et al,
“‘Realtime Multi-
Person 2D Pose
Estimation using
Part Affinity Fields”,
arXiv 2016

Application: Image Captlonlng

“straw” “hat”

th

Tt

START ustrawn Mhat"

[| -~

‘man in black shirt is playing “construction worker in orange “two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road." lego toy." wakeboard."

"man in blue wetsuit is surfing on
wave."

"girl in pink dress is jumping in "black and white dog jumps over "young girl in pink shirt is
air" bar" swinging on swing."

* Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Application: Dense Image Captioning

people are in the background man wearing a black shirt

light on the wall sign on the wall man wearing a white shirt arge greenred shirt on aman Aelephant is s’[andlglge Srant is brown

trees

man with roof of a
black hair building
man sitting trunk of an Fas
on atable white laptop elephant green trees
on a table in the
y background
e rocks on
man wearing mansiting . oung
; on a table g
blue jeans , leg of an
woman bal! 1S =3 elephant
. wearing a white |
blue jeans on § black shirt
the ground ground is § leg of an
chairis brown iciple <% =5 ; elephant
man sitting on a bench ¥ man wearing black shirt shadow on

floor is brown ground is brown elephant is standing the ground

*Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Application: Super Resolution

bicubic SRResNet

*Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016

Application: Image Art Generate &
Transfer

*Gatys, Ecker, and Bethge, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

i Application: Outside Computer Vision

= Machine Translation & Text Synthesis
= Speech Recognition & Synthesis

= Navigating Autonomous Vehicles

= Playing Atari like Games

= Alpha Go

Deep architecture: Why so

i late?

= Concepts introduced in 80’s.
= Basic principles remain the same.

= WO major reasons.

= Availability of large scale annotated data.
= Penetration of internet and smart phones.
= Wide spread of social networking.
= Online shopping, etc.
=« Advancement of computing power.
= High throughput GPU computing.

i Classical Image Classification

rendorafed Classifier . gutput Tiger?
extractor Al g @) rlth m
/ \ Cat?
» Edges . Bayesian -
. SIFT/SURF key Point , LD’A Hlon”

HOG Regional Features « SVM
Motion Features, etc. « KNN

Classification Challenges

m tedious and costly to develop hand-crafted

View Point variation Deformation

Nt e »
- PR 7
v en LG e SN

[llumination Clutter Instances

Highly dependent on one application, and not
transferable easily to other applications.

Deep Features

Increasing level of abstraction

Low-level Mid-level High-level Trainable

features features features classifier output

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

i Deep Features

= Utilize large amount of training data to
learn features.

= Rich hierarchical representations are
learnt fast through multiple stage of
feature learning process.

= Learned features are easy to adapt.

*Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

i Supervised Learning

Data: (x, y) where x is data, y is label
Goal: Learn afunctionftomap x — vy
Examples: Classification, Regression,
Object detection, Semantic
Segmentation, Image Captioning, etc.

Image Classification

What class that image belongs to”? How to
classify?

M__— Classify Cat

Learn a parametric function f -lon
composed by weight

parameters w model to classify

Image x as class label y.

Supervised Learning

Data Driven Approach to learn the model in three
steps:

Step 1: Define Model

| T Model
Predicted output
redicted outpu /'|nput data weights

(image label)
Model (Image

structure pixe|s)

Supervised Learning

Step 2: Collect data.

{(w’ia yz) 7{\;1
AN

Training True
iInput output

Supervised Learning

Step 3: Learn the model.
Total Loss = Data Loss + Regularization Loss

\ Predllcted output
N

—a,rgmm—ZZ :zzz,), vi) + R(w)

\ f Loss function: Regula.rifzer:
Learned \jinimize average Measures Penalizes
weights |oss over training “badness” of complex

set prediction models

iLoss

= A loss function tells how good our current
classifier is.

= Data loss: Model predictions should match
training data
= Multiclass SVM loss (Hinge Loss):
L= %3, 3, max(0, f(i; W); — f(zi; W)y, +1)

=« Softmax Loss (Multinomial Logistic Regression):

L; = —log(.)

L;i = —log P(Y = yi| X = x;) > €

Cross-entropy Loss

s Another form of softmax loss.
= 2-class entropy:

-(v log(p)+(1-y) log(1-p)); p: Prob. (y=1|o)

=« Multiclass:
/ Estimated Prob. of o
z Yo.c log(Po,c) , belonging to ¢

Binary indicator (1 if o

belongs to c, else 0). True Prob. of o

belonging to c

More general: — Z Qo,c lOQ(Po,c)

i Regularization Loss

sRegularization Loss: Model should be
“simple”, so it works on test data as "W" is
not unique with just data loss.

= L, Regularization (Weight Decay) R(W) = X, X, W,
= L, Regularization R(W) = > > |Whil

= Elastic net (L, + L,) RW) = ¥, S BW2, + Wiyl

How to find best weights w* ?

g(w)
A
1 (N A
w” = argmin ~ E L(f (i w),yi) + R(w)

=1
= arg min g(w)
« Random Search

« Inefficient in higher dimensions

« Gradient descent
« Back propagation algorithm

Gradient Descent

How to update weights?

Initialize w randomly
While true:
Compute gradient Vg(w) at current point

Move downhill a little bit: w = w — aVg(w)
/ \

Learning rate: How big
each step should be

updating the weights at each
iteration

For more details on brief details, ref to http://ruder.io/optimizing-gradient-descent/

i Back Propagation

= Forward pass:
= Run graph “forward” to compute loss

= Backward pass.:

= Run graph “backward” to compute gradients
with respect to loss

= Efficient to compute gradients for big,
complex models.

Supervised Learning: Linear
‘L regression

. . L .
r; € RPin g € RPowt U7,y) = §||y—y||3

Input and output are vectors Loss is Euclidean distance

Linear Regression

flz, W) =Wz
W € RPeux Do R(W) = A|W|[3,,

Model is just a matrix multiply Regularizer is Frobenius

norm of matrix (sum of

squares of entries
Learning Problem N G)

. | 2 2
|44 :argmwlfnﬁz;uwxi_3/H2+)‘HWHf"“0

1=

i Supervised Learning: Neural Network

z; € RV gy, € RPow

Input and output are vectors New Model
Linear Regression flz, Wy, Wy) = Woll 2
H Din
flz, W) =Wz Wy e R

. Wy € RPeuexH
W e RDoutXDzn 2 S

Model is just a matrix multiply W = WyW;
Model is two matrix multiplies
which is again as Linear Regression

‘L Supervised Learning: Neural Network

€T; € RPin Yi € RPout
Input and output are vectors New Model

Linear Regression ; 3 =
flz, W) =W flx, Wy, W3) = Woo(Wix)
W E RDoutXDin Wl 6 RHXDin

Dout xH
Model is just a matrix multiply Wy € R¥out™

Model is two matrix multiplies,
with an elementwise
nonlinearity

o:RH s RH

i Non Linearity: Activation Functions

1.0} —

08F /

Sigmoid

olx)=1/(14+e7%)

Squashes numbers to range
[0,1] — can kill gradients.
Best for learning “logical”
functions — i.e. functions on
binary inputs.

Not as good for image
networks

Not zero-centered

i Activation Function

..........

nnnnnnnnnn

Squashes numbers to range
[_111]

Zero centered (desirable)
Still kills gradients when
saturated

Not as good for binary
functions

*LeCun et al., 1991

i Activation Function

....................

RelLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

Does not saturate (in +region)
Converges faster than sigmoid/tanh
on image data (e.g. 6 times).

Very computationally efficient

Not suitable for logical functions
Not for control in recurrent nets
Not zero-centered output

Dead RelLU never activates as
gradient is 0 for x < 0. So, no filter
update!

*Krizhevsky et al., 2012

i Non Linearity: Activation Functions

;! » Does not saturate
 Converges faster than sigmoid/tanh
I on image data(e.g. 6 times.)
i will not “die”.
Leaky RelU

f(z) = max(0.01z, z)

*Mass et al., 2013

f(x)

i Non Linearity: Activation Functions

Exponential Linear Units (ELU)

« All benefits of ReLU
 Does not die
« Closer to zero mean outputs

f(s] = T ifz >0
Y7 \a(expla) - 1) ifz <0

*Clevert et al., 2015

i Non Linearity: Activation Functions

MaxOut Neuron

max(w; + by, w) z + by)

« Does not have the basic form of dot product ->

nonlinearity
» Generalizes ReLU and Leaky RelLU

 Does not saturate!
« Does not die!
 doubles the number of parameters / neuron

*Goodfellow et al., 2013

Neural Network

wo Layer Neual network / /
One hidden layer Neural Network Two hidden layer Neural

flz, Wy, W3) = Woo(Wix) Network

HXDin
W eR £, Wy, Wo, W3) = Wso(Wa(o(Whz)))

Dyuse X H W, € R Pin
Wy € R Hyx H
Wy € R 2 X1

W3 = RDout X Ho

(X
<7 PNRAN
G

S
ERSERS
‘ 2 ‘ output layer
hidden layer 1 hidden layer 2

Three Layer Neural Network

7
«
o0

»‘\«'{4
K
X\

output layer

input layer
hidden layer

§
\
.

)

input layer

iNeuraI Network

«
W
OC

R>

N\

AN

tput layer
input layer

hidden layer 1 hidden layer 2

b

5
%
»

)

output layer
input layer
hidden layer

Sometimes Multilayer called “Fully-Connected
Network” or “Perceptron”

Hidden layers are learned feature representations
of the input! These are Deep Features!

