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n Does it mean dimension of the set S also n?
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Principal component analysis
n Consider a set of data points S={xi| xi in Rn}. 

The dimension of the space Rn is n.
n Does it mean dimension of the set S also n?

S could be represented as a set of points on a 2D space (R2).

Principal component 
analysis (PCA) finds the 
minimum dimensional 
subspace for representing 
data. 
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Computes a new set of orthogonal axes.
o Coordinate transformation



Maximizing variance of a 
component

n Consider a feature vector: X=(x1,x2,…xn).
n Variance of xi:
n Dominant component:

n Component with maximum variance.
n PCA maximizes variance of the dominant component.

n Consider W=(w1,w2,…wn) a unit vector. 
n Consider the mean of feature vectors: 
n For every Xj translated to the mean vector compute the 

component along W.
n Find W which maximizes variance of yj’s.
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Maximizing variance of a 
component

n A set of  data points: S={Xj=(x1j,x2j,…xnj)| Xj in Rn}.
n Mean vector of S:

n Compute W which maximizes:
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Maximizing variance of a 
component

n Compute W which maximizes:

Such that ||WTW||=1

To maximize:

Covariance matrix (C):

Lagrange multiplier

Eigen vector of C

Maximum eigen value



Principal components

n Dominant principal component.
n Eigen vector corresponding to maximum eigen value of  C .

n The set of eigen vectors corresponding to decreasing 
eigen values provide the principal components.

n Ev={e1,e2, … en}   with corresponding eigen values in 
increasing order.

n All vectors are normalized.

Covariance matrix (C):



Principal components
n i th principal component: 

n Dimension Reduction: Ignore eigenvectors of small 
eigen values.
n Suppose all the eigen vectors till k th eigen value retained 

for representing data.
n Y=(y1,y2, …, yk) is k-dimensional representation of data.

Mean of data points



Dimension Reduction

n k dimensional   vector
n k <n

n Total Variance of data:

n Variance is the sum of eigen values.

n Ratio of sum of k eigen values to total sum (variance of 
data): fraction of variance accounted for.



PCA-Algorithm 
n Input: A set of  data points: S={Xj=(x1j,x2j,…xnj)| Xj in Rn}.
n Output: A set of k eigen vectors: Ev={e1,e2,…,ek}
1. Compute mean of data points. 
2. Translate all data points to their mean.
3. Compute covariance matrix of the set.
4. Compute eigen vetcors and eigen values (in increasing 

order).
5. Choose k such that the fraction of variance accounted for is 

more than a threshold.
6. Use those k-components for representing any data point.



Example
n Data : {( 5, 3, 2), (4, 6, 0), (3, -7, 14), (2, 5, 3), 

(3, 13, -6)}
n Perform PCA and if applicable, reduce the 

dimension of data.



Example (contd.)



Example (contd.)

Eigen values of C: (83.3238, 1.5562, 0)

Total variance: Trace(C)=1.04+41.6+42.24=84.88
Sum of eigen 
values

Respective eigen vectors:



Example (contd.)
Respective eigen vectors:

Redundant dimension

Points lying in the plane:
X+Y+Z=10



Coordinate transformation

e1

e2

Normal to plane (e3)

X

Y

Z



Application of PCA
n Data compression

n Provides optimum set of orthonormal basis vectors for a 
set of data points.

n Data dependent.
n Basis vectors also called as ‘Karhunen-Loeve’ basis, and 

the transform called ‘Karhunen-Loeve Transform’ 
(KLT).

n Type-2 DCT basis vectors are approximately the eigen 
vectors of a 2-D matrix with (j,k) the entries as r|j-k|.

n Covariance matrix for a useful class of signals, where r is the 
measure of correlation between adjacent samples and a value 
near to 1.



Application of PCA
n Decorrelating components

n Color images in RGB space highly correlated.
n By performing PCA with different blocks  of color images a color 

transformation matrix obtained, useful for segmentation.
n (R+G+B)/3, R-B, (2G-R-B)/2

n Multispectral, hyperspectral and ultraspectral remote 
sensing images.

n Multispectral – 10’s of bands
n Hyperspectral – 100’s of bands
n Ultraspectral - 1000’s of bands
n PCA required to highlight decorrelated information.

Y.I. Ohta, T. Kanade, and T. Sakai, “Color information for region 
segmentation”, Computer Graphics and Image Processing, 13, 222-241, 1980



PCA components of a 
hyperspectral image

Band PCA 1 Band PCA 2 Band PCA 3 Band PCA 4 Band PCA 5

Band PCA 6 Band PCA 7 Band PCA 8 Band PCA 9 Band PCA 10

Band PCA 11 Band PCA 12 Band PCA 13 Band PCA 14 Band PCA 15

Band PCA 16 Band PCA 17 Band PCA 18 Band PCA 19 Band PCA 20

Courtesy: Li et al, “A New Subspace Approach for Supervised Hyperspectral Image 
Classification”, 2011 IEEE International Geoscience and Remote Sensing Symposium.

After 
component 20, 
not much 
details are 
available.

Removal of 
data 
redundancy.



Application of PCA
n Factor analysis.

n Highlights decorrelated factors.
n Useful for classification.

n For example, eigen faces for representing 
human faces.

n Performs PCA on a large set of images of human 
faces cropped to the same size.

n Any arbitrary face expressed as linear combination of 
them.

n Coefficients of linear combination represent an 
arbitrary face.



PCA: Eigen faces

http://en.wikipedia.org/wiki/Image:Eigenfaces.png



Application of PCA

n Classification / High level processing
n Using the representation derived by factor 

analysis or component analysis.

Factor 
analysis

PCA
basis 
vectors

Classification Output



Fisher linear discriminant
n For the purpose of classification, dimensional 

reduction using PCA may not work.
n It captures the direction of maximum variance for 

a data set.
n For labelled data sets, it does not capture the 

direction of maximum separation between the 
groups of data points of differing labels.

Well separated 
but not along 
the direction of  
principal 
component. 

Direction for 
principal 
component.



Fisher linear discriminant
n Consider a set of data points S={xi| xi in Rn}.

n N1 points in class w1.
n N2 points in class w2.
n Say, N1+ N2=N (total data points).

n Consider a line with direction u.
n Projection of data xi on u: yi= xi

Tu
n One dimensional subspace representing data.



Separation between projected 
data of different classes

n m1= mean of data points in w1.
n m2= mean of data points in w2.
n Projection of means:

n my1=m1
Tu

n my2=m2
Tu

n A measure of separation:
n D=|my1 

_ my2|
n Does not consider variance of data.

my1 my2

D



A better measure of 
separation

q Normalized by a factor proportional to 
class variances.

q Scatter of data belonging to class C:

n Measure of separation:

n To obtain u maximizing J(u).

my1 my2

D

Class Variance x Number of samples

Scatter of class w1
Scatter of 
class w2

Mean

Scatter of projected 
samples should be small.



Scatter matrix
n Scatter matrix for samples of class C in 

original space :



Within the class Scatter matrix

Within the class scatter matrix: Sw=S1+S2

Scatter matrixes for 
class w1 and w2.



Between the class scatter 
matrix

Between the class scatter matrix: Means of w1 and w2

Rewriting optimization function

To maximize



Solution
To maximize

u should be such that
Eigen value problem. Should be invertible

SBu  has the eigen vector along (m1-m2)

(m1-m2)(m1-m2)Tu = k (m1-m2)

k
u=SW

-1 (m1-m2)



Example
n Data points:

n X1={(5, 3, 2), (4, 6, 0), (3, -7, 14)}
n X2={(-2 -5 17), (3 -13 10), (-4 -2 16)}

n Perform LDA and get the optimum direction. 
Check separability in the line of projection.

n Perform PCA on the whole data set ignoring 
class information and get the dominant 
principal direction. Check the separability of 
projected points on it.



Example (contd.)
n LDA:

SW=S1+S2



Example (contd.)
n LDA: Separability

Well separated.



Example (contd.)
n PCA:

Eigen values: 72.96, 20.29, 1.47 
Eigen vectors:



Example (contd.)
n PCA: Separability

Overlapping.



Sparse Representation: 
Problem Statement

n Consider a dictionary of N elementary n-D 
vectors known as atoms.
n D={di| i=1,2,..,N}, N>n 

n Consider any arbitrary vector n-D vector X.
n Compute the best linear approximation using 

a subset of D as basis vectors.
n The number of atoms should be minimum.
n Reconstruction should be as close as possible.



Exact / Approximate 
Representation
n Exact reconstruction.

n Keeping the number of atoms fixed 
(say, m).



Sparse Approximation

n The problem of approximating a signal 
with the best linear combination of 
elements from a redundant dictionary.
n Optimal  / Near optimal representation
n Fast computation
n Optimal dictionary (joint optimization 

problem)

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



Sparse approximation
n Minimize the approximation error using L2

norm using m terms.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.

Dictionary

Data vector

Linear combination

Fixed no. of atoms.

Optimization task
D={di| i=1,2,..,N}, N>n 



Reconstruction given S

Construct matrix B from S with the columns 
as elements of S.

Dimension: nxm

Y

How to get the best 
approximation for m
elements ?



Approaches

n Two major approaches
n Orthogonal Matching pursuit (OMP)
n Basis pursuit (BP)



OMP
n An iterative greedy algorithm  

n selects at each step the dictionary element best 
correlated with the residual part of the input vector. 

n produces a new approximant by projecting the 
residual onto the dictionary elements that have 
already been selected. 

n extends the trivial greedy algorithm that succeeds 
for an orthonormal system.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



BP
n A more sophisticated approach that replaces 

the original sparse approximation problem by 
a linear programming problem.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



Matching 
pursuit

n Minimize the approximation error using L2 norm 
using m terms.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.

MP may select the same atom multiple times.

At k th step:
Initialization

Residue (rk)  Approximate representation (ak)

D={di| i=1,2,..,N}, N>n 

r0=X        a0=0



OMP
n Minimize the approximation error using L2 norm using 

m terms.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.

OMP selects an atom only 
once, as the residual is always 
orthogonal to selected set.

This minimization can be 
performed incrementally 
with standard least-squares 
techniques.

D={di| i=1,2,..,N}, N>n 

At k th step:
Initialization r0=X        a0=0 S0={ }



BP
n Minimize the approximation error using L1

norm.
n A convex function, hence can be minimized in 

polynomial time.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.

subject to

There exists different approaches to solve 
this problem.



Ex.1
n Consider the following set of basis vectors.

(a) Show that they form an orthonormal set of basis vectors.
(b) Decompose a vector [1 2 3]T as a linear combination of 
the above set.



Ans. 1(a)
n Take any pair of vectors and perform 

the dot product, it would be zero.
n Magnitude of these vectors is 1.
n Hence, a set of orthonormal basis 

vectors.



Ans. 1(b)

.
..



Ex. 2
n Consider a dictionary in a 3-D space consisting of 

following atoms:
{[ 1 1 1]T, [1 -1  1]T, [-1 -1  1]T, [-1  1  1]T}

Derive the best representation of the vector [1 2 3] 
using 2 atoms of the above dictionary following 
orthogonal matching pursuit (OMP).



Ans. 
n 1st selection of an atom:

<[1 2 3]T, [1 1 1]T>= 6 and maximum.
n Therefore, r1=[1 2 3]T-6[1 1 1]T

=[-5 -4 -3]T

n 2nd selection: <[-5 -4 -3]T, [-1 -1 1]T>=6 and maximum.
n Therefore, a2= x.[1 1 1]T+ y.[-1 -1 1]T LSE solution 

approximating [1 2 3]T.
A



Ans. (contd.)



Learning a dictionary
n Given a set of data points 

X={xi|i=1,2,…,N, xi in Rn}, what should 
be a dictionary D of K atoms so that it 
would provide best possible sparse 
representation for each member of the 
set.



Motivation 
n Use of dictionaries adaptive to specific 

classes of signals or data of interest.
n Application specific. 

n Dictionaries learned from exemplars 
with sparse representation property 
ensured.



Problem statement

n To obtain a sparse Y in RK such that 
n X=DY, or X~ DY

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

n x N

n x K

K x N

Various Sparsity constraints:



K-SVD: Forming dictionary for 
sparse representation

n Given a set of training signals {xi}i=1
N , 

to obtain the dictionary of K elements 
that leads to the best possible 
representations for each member in 
this set with strict sparsity constraints.

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

Various Sparsity constraints:



K-SVD
n Generalizes K-means clustering problem.

1. Choose a dictionary of K atoms.
2. Obtain sparse representation.
3. Update dictionary atoms.
4. Repeat steps 2 and 3 till convergence.

n K-means clustering: Extreme sparse 
representation of a signal by a single atom only.

n K-SVD: A sparse linear combination of K atoms.
Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



K-means clustering
n Given a set of atoms D={di}1

K

n Assign the training examples {xi}i=1
N to their nearest 

neighbor in D.
n Usually L2 norm used.

n Given the assignment update D to better fit the 
examples.

n Update mean of each partition of assignment.

n Start with any initial set of distinct atoms.

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



K-means clustering: A code book 
with extreme sparse representation

n The code book: D={di}1
K=[d1 d2 … dK ]nxK

n The training examples: [X ]nxN={xi}i=1
N

n Extreme sparse vector: ej= [ 0 0 …0 1 0 ... 0]T 

n Only j th term is 1 of K-dim. vector.
n Sparse representation: Y=[y1 y2 ... yN]KxN

n where yi is one of ej’s .
n Optimization problem: Minimize ||X – DY ||2

F
n yi=er if ||xi-dr||2 is minimum among all atoms.

n Update atoms: dj= Mean ({xi | yi=ej}), for all j.
Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

Frobenius norm



KSVD: Generalization of K-means 
clustering

n The code book: D={di}1
K=[d1 d2 … dK ]nxK

n The training examples: [X ]nxN={xi}i=1
N

n Sparse representation: Y=[y1 y2 ... yN]KxN
n where yi provides linear combination of maximum T0

nonzero terms.
n Optimization problem:

n Minimize ||X – DY ||2
F subject to ||yi||0 < T0, for all i.

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



Rewriting optimization function
n yj

T : j th row of Y.

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

Consider effect of 
minimizing w.r.t. k th 
row of Y associated with 
code vector dk keeping 
other terms fixed.

Perform SVD: Ek=UDVT

and take columns of U
and V for max singular 
value (say D(1,1)).

But the column vector 
may not be sparse.

Minimize ||X – DY ||2
F subject 

to ||yi||0 < T0, for all i.

Ek 1st Column of U: dk
D(1,1) x 1st column of V: yT

k



K-SVD: Enforcing 
sparsity

n Choose only samples from X which have a 
nonzero component along dk.

n Form reduced Ek (denoted EkR) and yk
T by yk

R.
n Perform SVD of EkR to get dk and yk

R.
n Update dk and yk

T.
n Repeat for all dj’s and obtain updated D and Y.
n Repeat till convergence

Michal Aharon, Michael Elad, and Alfred Bruckstein,  K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse 
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

Performing SVD K 
times for K atoms 
in each iteration.

yj
T : j th row of Y.



The algorithm
n Input: X={xi | i=1,2,….,N}, xi in Rn.

n Output: D={di|i=1,2,..,K}, di in Rn. Y={yi|i=1,2,..,N}, yi in RK.
n Form an initial dictionary of K atoms.

n K-means clustering.
n Obtain an initial sparse representation Y using any 

pursuit algorithm.
n OMP

n Iterate for updating j th atom and sparse 
representation associated with this atom (j th row of 
Y).



Applications
n Compression.
n Denoising
n Deblurring
n Super-resolution

n Mapping of learned dictionaries
n Inpainting



Summary
n Dimension reduction techniques

n Principal Component Analysis
n Data represented in minimal subspace.
n Involves coordinate transformation.
n Chooses a direction maximizing variance of dominant 

component.
n Decorrelating data across different dimensions.

n Fisher’s Linear Discriminant
n Data projected on an 1-D subspace.
n Appropriate for classification using a linear 

discriminant function.



Summary
n Sparse representation

n Pursuit algorithms
n Matching pursuit
n Orthogonal matching pursuit.
n Basis pursuit

n Dictionary learning and sparse 
representation.
n K- SVD 


