Deep neural architecture and
applications (Part III)

!'_ Week 12: Lectures 58 - 60

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: K. Sairam

*

a Ider a deep CNN architecture which takes an image of size
240 x 240 x3 as input for the purpose of classification into
two classes. The architecture has

 three convolution layers with filter sizes of 7x7, 5x5,
and 3x3, respectively (the ordering of layers starts from the
input). The number of channels in these layers are 64,
32 and 16, respectively.

d two max pool layers of filter size 2 x 2 with stride 2 in
both the directions between the first and second, and
second and third convolution layers.

d two fully connected (FC) layers having the number of
neurons as 50 and 20, respectively. The activation
function of each neuron used in this network is the ReLU
(Rectified linear unit) function.

i Ex. 1 (contd.)

= Answer the following questions.

= (a) Provide a schematic diagram of the architecture of
the network.

= (b) Provide the sizes of outputs from each convolution
layers.

= (c) Compute the number of parameters that you require
to learn in each layer.

Ans. 1

@ 240x240x3

54x54x16

/X7x64

Il 234x234x64
2x2 MxP

]l 117x117x64
5x5x32

il 113x113x32
2x2 MxP

i 56X56X32
3x3x16

I 50

FC: 50 — FC: 20

o=

Ans. 1

@ 240x240x3

No. of params.

7X7x64 " 7X7x3x64+64
Il 234x234x64
2x2 MxP 0
]l 117x117x64
5x5x32 » 5x5x64x32+32
1 113x113x32
2x2 MxP 0
]! 56X56X32
3x3x16 3X3x32x16+16
54x54x16 J| 50
.1 _FC:50 |= FC: 20 — 50x20+20
50x54x54x16+50

2075><7Y _, 20x2+2

i Applications:

2. Object Recognition and Localization
3.

4.

Object Recognition and Localization

Localization
Where?

person : 0.992

Recognition
What?

Object Recognition and Localization

Region Proposal | Feature Classification
Extraction

Pre-CNN Exhaustive Hand Crafted Linear
RCNN Region Proposal CNN Linear SVM
Fast RCNN Region Proposal Deep

Faster RCNN Deep

RCNN with CNN feature extractor

1 warped region aeroplane? no.

person? yes.

tvmonitor? no.

2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

*Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.

iRCNN — Region Proposal

Selective Search:
sHierarchical grouping based on color, texture, size.
sBottom-up Segmentation, merging regions at multiple scales.

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

i RCNN Problems

Ad hoc training objectives.

= Fine-tune network with softmax classifier (log
loss) from pre-trained network in imageNet.

= [rain post-hoc linear SVMs (hinge loss).

= [rain post-hoc bounding-box regressions (least
squares).

= [raining is slow, takes a lot of disk space.

= Inference (detection) is slow. Need to run full
forward pass of CNN for each region proposal.

RCNN Inference Time

= PropTime + NumProp*ConvTime + NumProp*fcTime

PropTime:
Time taken for generating all proposals.
NumProp:
Number of proposals generated.
fcTime

Time taken to 1dentify the object in the image.

iFast RCNN

1. A Fast R-CNN network takes as input an
entire image and a set of object proposals.
2. Computes CNN feature map for the whole
image.

3. Processes features maps in ROls.

Fast RCNN Time: PropTime + 1*ConvTime + NumProp*fcTime

*Girshick, “Fast R-CNN”, ICCV 2015.

‘LFast RCNN

. Rol

Rol

pooling
N

- projection\\

Conv X|
feature map

layer
It

Outputs: beX
softmax regressor

I, L.

FCs

Rol feature
vector

For each Rol

Fast RCNN Time: PropTime + 1*ConvTime + NumProp*fcTime

*Girshick, “Fast R-CNN”, ICCV 2015.

i Fast RCNN

1 Each feature vector to a sequence of fully
connected (fc) layers.
J Two sibling output layers:

- Alayer with softmax probability estimates
over K object classes plus a catch-all
“packground” class

J another layer producing four real-valued
numbers for each of the K object classes.

*Girshick, “Fast R-CNN”, ICCV 2015.

RCNN

Bbox reg || SVMs Classify regions with SVMs
Bbox reg || SVMs

Bbox reg | | SVMs Forward each region

through ConvNet

ConvNet

Warped image regions

Regions of Interest (Rol)
from a proposal method

Image: Ross Girshick, 2015.

Fast RCNN

FCs |

Regions 0 0 eature map of image

Arp '.
O DIOPO
U U O1E - U U -
- OU - -
ConvNet
SN 0 age
i 7 4

* Image: Ross Girshick, 2015.

‘ﬁast RCNN Loss

True box coordinates

Predicted Box coordinates

/

L(p,u,t*,v) = Lgs(p,u) + Alu > 1| L (2%, v)

A | |

True Class Scores Log Loss
Predicted Class Scores Smooth L1 Loss

i Faster RCNN

= Insert a Region Proposal Network (RPN)
after the last convolutional layer.

= RPN trained to produce region proposals
directly; no need for external region proposals!

= After RPN, use Rol Pooling and an upstream
ccz:lﬁlsl\?ifier and bbox regressor just like Fast R-

*Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Faster RCNN

classifier

Rol pooling

Region Proposal Network

feature map

CNN
[y 4
AETY - 77—

o i e e P e MO

A i e i S R T R e e el T

*Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

i Region Proposal Network

=Slide a small window on the feature map

=Build a small network for:
sClassifying object or not-object, and
= regressing bbox locations
sInitial localization:
=Position of the sliding window w.r.t image.
sFiner localization:

«Box regression performs finer localization w.r.t
this sliding window.

Faster RCNN Approach Time: 1*ConvTime + NumProp*fcTime

Region Proposal Network

classify regress
obj./not-obj. box locations
scores coordinates
256-d

i
RNEEAN

convolutional feature map

Faster RCNN Approach Time: 1*ConvTime + NumProp*fcTime

iRPN Loss

L'Cls (pz s pJ;) LTGQ (tir t:)
2 Class SOftmaX Cross 2k scores 4k coordinates
entropy IOSS cls layer \ t reg layer
Either object or not object
256-d
- . L intermediate layer
pi*=1if loU > 0.7 (it is
object)
Ppi*=0if loU < 0.3 (it is not
(@) bJ e Ct) sliding window
.OtherW|Se, do not conv feature map
contribute to loss
L({p:}. {t:}) = Zchsm pi) + A

N cls j\ reg

z

<=

k anchor boxes

Zp reg(tis).

i Semantic Segmentation

sLabel each pixel in the image with a
category label.

sDon’t differentiate instances, only care
about pixels.

Instance Level Semantic Segmentation
sEven differentiate instances

i Semantic Segmentation

Building Blocks of CNNs:
=Convolution
sDown-Sampling
= MaxPool, AvgPool, Strided Convolution (S>1)
sUp-Sampling

= UnPooling, Upconvolution

i Up- Sampling: Max Unpooling

1 2 6 3

3 5 p) 1 MaxPool 5 6

1 |2 |2 |1 7 |8

7 |3 |4 |8 - o [0 |1 |0
After few layers 0 1 0 0
in Network v 0 0 0 0

0 |0 |b [0 T——_ 1 [0 |0 |1

0 1270 19 waxumpoot | |° Pooling Indices
- o0lIn I

0 |0 |0 |0 c |4 9

C 0 0 d

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

i Up- Sampling: Upconvolution

= Also called as

= Transpose Convolution, Fractionally strided convolution,
Backward strided convolution, Deconvolution.

= Output contains copies of the filter weighted by the
input, summing at where it overlaps in the output

Sum where
— | output overlaps

Input
Weighted 3 x 3 transpose
filter convolution, stride 2 pad 1

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

==

Convolution as matrix
i Multiplication

1D Conv, filter size = 3, stride = 1, padding = 1

x*xd=Xd 7+ a=X"a
0 [z 0 0 O] l azr l
Y Z 0 0 01]a ay + 2z y z 0 0] [al ay + bx
x ¥y z 0 O||lp|_|ax+by+cz||z y = 0| |b| |az+by+ecz
0 x y Z O0l|lc| |bx+cy+dz||0 2 y z| |c| |bz+cy+dr
0 0 x Yy l|d cx + dy 0 0 z vy _d_ cz + dy
0 000 2z | dz
Convolution Transpose Convolution

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Convolution as matrix
i Multiplication

1D Convy, filter size = 3, stride = 2, padding = 1

Txd=Xa 7+l da=X"a
0]] [ax
" y O ay
r y z 0 0 0]|b] [ay+bz z x| |a| |az+bx
0 0 z y =z O] c _{bx—i-cy—i—dz] 0 wyi| |b] by
d 0 =z bz
i 0 0] 0
Convolution Transpose Convolution

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

iExZ

= Given the following pooling indices Max
unpool by 2x2 of the input block X as
given below.

0 1 0 1
0 0 0 0
Pooling indices: |°® |9 [! |[O©
0 1 0 0
2 6
X
30 45

Pooling
indices

0o |1 |0 |1
o [0 |0 |o 2 |6
o (o |1 |o 30 |45
o |1 [0 o
@Max-unpool
o |2 |o |6
o (o |0 |o
0o (o |45 |0
0 (30 |0 |0

Input
X

ﬁExB

= Up-convolve the following input x using
the filter h.

- I

- I I
8 O f
7 -- thggiiil?tg r

h

i Semantic Segmentation

= The upsampling of learned low resolution semantic
feature maps is done using upconvolutions which are
initialized with billinear interpolation filters.

forward/inference

-

backward /learning & dg,\ql

SSED

Pz 3%& 3%0: 1‘)6
O

L

21
Long, Shelhamer, and Darrell, “Fully Convolutional Networ%s for Semantic Segmentation”, CVPR 2015

Semantic Segmentation
i (Encoder-Decoder)

Encoder

= [akes an input image and generates a high-dimensional
feature vector

sAggregate features at multiple levels
Decoder

= [akes a high-dimensional feature vector and generates a
semantic segmentation mask

sDecode features aggregated by encoder at multiple levels.

sSemantically project the discriminative features (lower
resolution) learnt by the encoder onto the pixel space
(higher resolution) to get a dense classification.

Semantic Segmentation
(Encoder-Decoder)

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image B Conv + Batch Normalisation + ReLU | Segmentation
I Pooling I Upsampling Softmax

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, Vijay Badrinarayanan, et al. PAMI, 2017

Semantic Segmentation
i (Decoder): Various options

¢ Output

VGG GoogleNet ResNet

U-Net architecture

= Computation in two successive stages.
= Contracting path and expansive path.
= Contraction by downsampling
= Expansion by upsampling.
= Contractive path: repeated application of two
3x3 convolutions each followed by
= a rectified linear unit (ReLU), and
= a 2X2 max pooling operation with stride 2.

= At each downsampling double the number of feature
channels.

U-Net: Convolutional Networks for Biomedical Image Segmentationm, Olaf Ronneberger, Philipp
Fischer, Thomas Brox, https://arxiv.org/abs/1505.04597

U-Net architecture

= | he expansive path: repeated upsampling of the
feature map followed

= by a 2x2 convolution (“up-convolution™) that halves the
number of feature channels,

= a concatenation with the correspondingly cropped feature
map from the contracting path, and

= two 3x3 convolutions, each followed by a RelLU.

= The cropping is necessary due to the loss of border
pixels in every convolution.

U-Net: Convolutional Networks for Biomedical Image Segmentationm, Olaf Ronneberger, Philipp
Fischer, Thomas Brox, https://arxiv.org/abs/1505.04597

i U-Net architecture

= At the final layer a 1x1 convolution used to map

each 64-component feature vector to the desired
number of classes.

= In total the network has 23 convolutional layers.

= Data augmentation needed to make the network
robust to transformation and noise contamination.

=« Simulated deformation on training images.

U-Net: Convolutional Networks for Biomedical Image Segmentationm, Olaf Ronneberger, Philipp
Fischer, Thomas Brox, https://arxiv.org/abs/1505.04597

U-Net architecture

1 64 64

128 64 64 2

input
image
tile

output
segmentation
map

¥

» | >

L4
¥

392 x 392
X
388 x 388

572 x 572
570 x 570
568 x 568

' 128 128

2802

o

N
©
N

2842

' 256 256

>

Ol ~
A3
AL R .—c

= copy and crop

‘g[ltml'gl =» CONnv 3x3, RelLU

512 512

¥ max pool 2x2

4 up-conv 2x2
= conv 1x1

U-Net: Convolutional Networks for Biomedical Image Segmentationm, Olaf Ronneberger, Philipp
Fischer, Thomas Brox, https://arxiv.org/abs/1505.04597

Ground truth
(Manual)

Yellow border
Color parts:
Segmented results

iRecurrent Neural Networksy

B Conventional NN (including CNN):

y B Feed forward, No feedback.

T B Fixed size input and output.
B Fixed number of layers

] B Recurrent Neural Networks

X B Feedback from output of a neuron.

X

B Sequences in the input, the output, or in the most general
case both.

B Equivalent to unfolded feedforward network of infinite
number of layers.

Recurrent Neural Networks: A
i few Applications

B Semantic labelling of a sequence
B Classification with the input as a sequence.
B Prediction in a sequence

B using previous video frames to inform the
understanding of the present frame.

M a language model tries to predict the next word
based on the previous ones.

= Sequence translation / generation
= Input a sequence and output a sequence.

Recurrent Neural Networks

+

Recurrent networks introduce cycles and a notion of time.

One-step delay

« They are designed to process sequences of data x4, ..., x,,
and can produce sequences of outputs y;, ..., V-

Courtesy: John Canny, UC Berkley.

iUnroIIing of RNN

Number of stages in
unrolling depends on the
input sequence length.

One-step delay

Yo
hy

V1

=
=

Courtesy: John Canny, UC Berkley.

iUnroIIing of RNN

Yo Usually drawn as:
—
!) hy
V1

. hy

j . e 1 X2
—>
h, Learning algorithm: Back

X0
X1
X2
(\’ propagation through time (BPTT)

Courtesy: John Canny, UC Berkley.

Recurrent Neural Networks

-i‘ally want to predict a vector at some time
steps

= Process a sequence of vectors x by applying
a recurrence formula at every time step.

hy|= fW ‘ht—la 5’3t

new state / old state

Input vector at
some time step

some function
with parameters W X

Yt = Whyht

The same function and the same set of parameters are used at
every time step.

iRecurrent Neural Networks

hy = fW(ht—la fL’t)

y
ht — tanh(Whhht_1 + Wazhxt) */W
hh
W,

Yt = Whyht

X

Recurrent Neural Network: An
Xxample

Vocabulary: [h,e,l,0] target chars: ‘¢’ b L o
1.0 0.5 0.1 0.2
2.2 03 0.5 -1.5
o output layer ’ i _
Example training o o I 5
sequence: T T T TW hy
“hello” :
0.3 1.0 0.1 -0.3
hidden layer | -0.1 » 0.3 > -05 W—hrl 0.9

hy = ta'nh(Whhht—l 1+ tha;t) 0.9 0.1 0.3 0.7

R A 2
1 0 0 0

: 0 1 0 0

input layer 0 0 1 1
0 0 0 0

input Chars- uhu ueu ulu ulu

Predicting next character of a word.

Courtesy: Andrej Karpathy

Examples of Recurrent Neural
Networks

one to one one to many many to one many to many many to many

1 3 4

Each rectangle is a vector and arrows represent functions (e.g.

matrix multiply).
Input vectors are in red, output vectors are in blue and green

vectors hold the RNN's state

Courtesy: Andrej Karpathy

Examples of Recurrent Neural
Networks

one to one one to many many to one many to many many to many

1. Standard mode of processing without RNN, from fixed-sized
input to fixed-sized output (e.g. image classification).

2. Sequence output (e.g. image captioning takes an image and
outputs a sentence of words).

Courtesy: Andrej Karpathy

Examples of Recurrent Neural
Networks

one to one one to many many to one many to many many to many

1 2 3 4 5

Sequence input (e.g. sentiment analysis where a given sentence
is classified as expressing positive or negative sentiment).
Sequence input and sequence output (e.g. Machine Translation:
an RNN reads a sentence in English and then outputs a sentence
in French).

Synced sequence input and output (e.g. video classification

where we wish to label each frame of the video). Courtesy: Andrej Karpathy

Recurrent Neural Networks

*Multiple Object Recognition with
Visual Attention, Ba et al.

*DRAW: A Recurrent Neural Network For Ima%e Generation,

Courtesy: Andrej Karpathy

Gregor et al.

ﬁ Image Captionipg.lrrent Neural Network

“straw” “hat” END
Yt
Whh Woh
hi
I CNN,, Whi
—] = B Whe
i
Lt
START “straw” “hat”

Convolutional Neural Network

* Show and Tell: A Neural Image Caption Generator, Vinyals et al.

con
conv-64
maxpool

conv-128

I

conv-128

[conv-256

F

 conv-256

i

[

conv-512

(

" conv-512

t

- conv-512
- conv-512

t

maxpool

b a
g
(=2

b n
(=2}

X |

. conv-64

conv-64

- maxpool

\ - conv-128

- conv-128

maxpool

~ conv-256

~ conv-256

- maxpool

- conv-512

- conv-512

__maxpool

.' conv-512

| conv-5'12”

y0
T before:
h = tanh(Wxh * x + Whh * h)
h0
now:
T h = tanh(Wxh * x + Whh * h + Wih * v)

<STA
RT>

<START>

conv-64

conv-64

maxpool

conv-128

- conv-128

maxpool

conv-2§§

_ conv-256

_maxpool _

- conv-512

conv-512

maxpool

- conv-512
- conv-512

<

yo —J v1i

—~~ Y2

L T\

\ sample
<END> token

hO | hi

h2

amplgimpter finish.

[1

T

x0

RT>

<STA straw

hat

<START>

Image Sentence Datasets

aman riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

» this dirt bike rider is smiling and raising his fist in triumph. .
a man riding a bicycle while pumping his fist in the air. M | CI’OSOft C O C O
a mountain biker pumps his fist |n celebration. [TSU n g_ W Lln e t a I 2 0 1 4]

e B WY L3N

currently:
~120K images
~5 sentences each

Summary

= Deep architecture works in the same
principle of artificial neural network.

= A large number of hidden layers.
= A large number of weights.

= Convolution Neural Network (CNN)

= Learns filter weights.
= Sharing of weights.

= Two types of layers
= Convolutional and Pooling Layers

= [wo stages
= Feature extraction
« Classification

Summary

g N Variations
= RESNET

= Processes residual errors

= RCNN

= Region proposal network
= Object localization

» Fully connected CNN
=« Image segmentation

= Recurrent Neural Network (RNN)
= Feedback loop.
= Processing a sequence

