Deep neural architecture and
applications (part II)

!'_ Week 12: Lectures 56-57

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: K. Sairam

!'_ Convolutional Neural Network

Convolution Layer

32Xx32x3 image

32

32

Filters always extend the full
/ depth of the input volume

5x5x3 filter (kernel)

/S

Il Convolve the filter
with the image
i.e. "slide over the
image spatially,
computing dot

L ~7/

products”.

Convolution Layer

«— 32X32X3 image x

5x5x3 filter w
P

1 number:
>@‘/the result of taking a dot product

between the filter and a small
5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot

i duct + bi
3 Locality! produc ias)
whz +b

Objects tend to have a local
spatial support.

Con

volution Layer

B

32x32x3 image
5x5x3 filter

‘y

>

——0

convolve (slide) over all

32

spatial locations

Translation Invariance!

object appearance is

activation
map /
A

1

independent of location

Weight sharing!

28

Convolution Layer

32x32x3 image

5x5x3 filter
=

i >

convolve (slide) over all
spatial locations

32

Consider a second, green filter.

L

activation
map

28

Convolution Layer (CONV)

activation maps

Y

>
Convolution Layer

32 6 # CONV A

3 6

For example, if we had 6 5x5x3 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image” of size 28x28x6!

Features of CONV

Locality:

= Objects tend to have a local spatial support
Translation invariance:

= Object appearance is independent of location

Weight sharing
= units connected to different locations have the same
weights
= equivalently, each unit is applied to all locations
= weights of filters are invariant.

Each unit output of filter is connected to a local
rectangular area in the input.
= — Receptive Field

i Non-Linear Layer

= Increase the nonlinearity of the entire
architecture without affecting the
receptive fields of the convolution layer.

» Commonly used in CNN is RelLU.

i Convolutional Neural Networks (CNN)

32

32

—
CONV,
RelLU
e.g. 6
5x5x3
filters

6

28

28

—
CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24

A CNN is a sequence of convolution layers and

nonlinearities.

Parameters involved in
i convolution layer

nput Volume size W, x H; x D4
= No. of filters K with size F, x F,, x D; convolved
with stride (S,,,S;)-
= Input zero padded by (P,, P,,) on both sides.
s Output volume size W, x H, x D,?
= W, =(W,-F, +2P,)/S, + 1
« H,=(H;—-F, + 2P,)/S, + 1
[D2 —_ Dl
= Parameters ?
« (F, * F, * Dy) * Kweights + K biases
= d-th depth slice of output is the result of

convolution of d-th filter over the padded input
volume with a stride, then offset by d-th bias

224x224x64

112x112x64

pool —7
E—

Pooling Layer (POOL)

0 progressively reduce the spatial size of the
representation.

m to reduce the amount of parameters and computation in the
network.
= to control overfitting.

= Pooling partitions the input image into a set of non-
overlapping rectangles.

= For each such sub-region, outputs an aggregated value of
the features in that region.

= Maximum value (Max pooling)
= Average value (Average pooling)

m Operates over each activation map independently

Pooling Layer (POOL)

224x224x64
112x112x64
pool

Single depth slice

Jl1]1]2]4
max pool with 2x2 filters

516 |7 |8 | andstide? 6| 8

30210 BN

11234

Parameters involved in pooling

put Volume size W, x H; x D,
= Pool size F,, x F, with stride (S,,,S;,).

s Output volume size W, x H, x D,?
IW2=(W1_FW)/S+1

s Parameters ?
s O

= Uncommon to use zero-padding in
Pooling layers.

i Fully Connected Layer (FC)

s Contains neurons that connect to the
entire input volume

= as in ordinary Neural Networks.

= Input volume to FC layer can also be
treated as Deep Features.

= If the FC layer is a classifier, the input to
FC can also be treated as feature vector
representation for the sample.

iBatCh Normalization

= Normalizes input activation map to a layer by
considering its distribution over a batch of
training samples.

= To make Gaussian activation maps.

= Improves gradient flow through the network.
= Allows higher learning rates.

= Reduces the strong dependence on initialization.
= Acts as a form of regularization.

= Usually inserted after FC / CONV layers, and
before non-linearity.

i Batch Normalization (BN)

= Normalizes activation responses of a channel of
previous layer

= by subtracting mean of a responses of batch and
dividing it by their standard deviation.

= Transforms the resultant output operation by
scaling and translation by parameters a and b.
= learnt by the gradient descent algorithm.

= During test time running averages and s.d.’s of

activation maps used along with learnt
parameter « and b for each channel at a layer.

Drop out

= Randomly dropping out nodes of network (at
hidden / visible layers) during training.
= Temporarily removing it from the network, along with
all its incoming and outgoing connections.

= To regulate overfitting, more effective for smaller
dataset.

= Simulates learning sparse representation in hidden
layers.

= Implementation

= Retain output of a node with a probability p.

= Typically within [0.5,1] at hidden layers and [0.8,1] in visible
layers.

Learning weights with drop out

= Weights become larger due to drop out.
= Needs to be scaled at the end training.

= A simple heuristic.

= Outgoing weights of a unit retained with
probability p during training, multiplied by p at test
time.
= Scaling may be carried out during training
time at each weight update.

= NO need to rescale weight for the test network.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A Simple Way to Prevent
Neural Networks from Overfitting ,JMLR, 15(Jun):1929-1958, 2014.

!'_ CNN Architectures

| eNet

Gradient-based learning applied to document
recognition.

Architecture:
Input—-CONV—-POOL—-CONV—-POOL—-FC—FC

—QOutput
Number of parameters: 60k

Number of floating point operations per inference:
341k

Sigmoid used for non-linearity.

*Y. Lecun et al, Proceedings of the IEEE, 1998

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ps 16@5x
S2: f. maps

32x32
6@14x1

Full oonAection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection
Six 5*5 filters, 2*2 average Six 5*5 filters, 2*2 average
Stride 1 pooling, Stride 1 pooling,
Stride 2 Stride 2

*Y. Lecun et al, Proceedings of the IEEE, 1998

i AlexNet

= Uses Local Response Normalization (LRN)

Architecture:
Input—-CONV1—->MAXPOOL1—->NORM1—-CO
NV2—-MAXPOOL2—-NORM2
—CONV3—-CONV4—-CONV5—-MAXPOOL3
—FC6—-FC7—-FC8—Output

= # of Weights: 61M
= # of floating point oeprations: 724M
= RelU used for non-linearity

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012

i AlexNet

Max
pooling

27

27

128

g \dense

R 193
i’ e 2, 13
a Al
” i \ 137 gense
192 192 128 Max
Max pooling
pooling

dense

*Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks NIPS, 2012

i Parameters Count: AlexNet

= Input: 227x227x3 images

= First layer (CONV1): 96 11x11 filters applied at stride 4
s Q: what is the output volume size?

=« Along length and breadth: (227-11)/4+1 = 55

= Output volume [55x55x96]

s Q: What is the total number of parameters in this layer?
= Parameters: (11*11*3)*96 = 35K (Without bias)

= Parameters: (11*11*3)*96 + 96 (With bias)

= Second layer (POOL1): 3x3 filters applied at stride 2

= Q: what is the output volume size?

»« Along length and breadth: (55-3)/2+1 = 27

= Output volume: 27x27x96 (Input to POOL1 is output of CONV1)
s Q: what is the number of parameters in this layer?

= Parameters: 0

i ZFNet

= AlexNet but:
= CONV1: changed from (11x11 stride 4) to (7x7 stride 2)

= CONV3,4,5: instead of 384, 384, 256 filters use 512,
1024, 512

= ImageNet top 5 error: 16.4% — 11.7%

image size 224 110 26 13 13 13

filter size 7 ¢ 3 1 3
1 L384 V1 \3‘34
| stride 2 3x3 max -
L 4096 class
stride stri units softmax

Input Image
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

Smaller filter size, More filters.in layer.

i VGG

= Smaller filters, deeper layers

= 8 layers (AlexNet) — 13 layers
(VGG13) /16 layers (VGG16Net) / 19
layers (VGG19Net)

= Only 3x3 CONV stride 1, pad 1 and 2x2
MAX POOL stride 2

s 7.3% top 5 error in ILSVRC'14
= Weights: 138M & FLOPS: 15.5G

Deeper the layer, better accuracy.

*Simonyan et al., arXiv 2014, ICLR 2015

Tx512
1

x 1 x 4096 1 xl'x 1900

@ convolution+ReLU
U] max pooling

| fully connected+ReL.U

] softmax

y

Deeper the layer, better accuracy.

*Simonyan et al., arXiv 2014, ICLR 2015

i VGG

= Stack of three 3x3 conv (stride 1) layers
has as one /x/ conv
layer
= deeper with more non-linearities

= Fewer parameters: How"?
= 3%(32 C?) vs. (7% C?) for C channels per layer

GoogleNet

ONV Layers: 21 (depth), 57 (total)

Introduces inception modules.
= Concatenates output of filters of different sizes.

Fully Connected Layers: 1
Weights: 7.0M & FLOPS: 1.43G

Architecture: (9 Inception Modules)
INPUT—CONV1—POOL1—CONV2—CONV3—POOL2—INCEPTION1
—INCEPTION2—POOL3—INCEPTION3—INCEPTION4—INCEPTION5
—INCEPTION6—INCEPTION7—POOL4—INCEPTION8—INCEPTION9
—POOL5— —OUTPUT

ILSVRC’14 classification winner (6.7% top 5 error)

*Szegedy et al., arXiv 2014, CVPR 2015

1x1+1

MaxPoo

3Ix3+2(S}

*Szegedy et al., arXiv 2014, CVPR 2015

i Naive Inception Module

28x28x(128+192+96+256) = 28x28x672

Filter
concatenation

~1x1conv, | | 3x3conv, | | 5x5conv,

| 128 || 192 || o6 | | *3poo

Module input: Input
28x28x256

ResNet

Problems with deeper model

= causes overfitting
= harder to optimize, because of vanishing gradients.

= gradients die as we go deeper.

lterations lterations

Training error
Test error

*He et al., ResNet arxiv 2015

iResNet

sUse network layers to fit a residual mapping instead of
directly trying to fit a desired underlying mapping.

weight layer

F(x)) relu

weight layer

identity
X

H(x)=F(x)+x

ResNet

Total'depths of 34, 50, 101, or 152 layers architectures are also

@' \ﬂWW%NW?

i
ik

i o . fol ol fl [el
§'—u »tagu ugm g{

T came, B4, 12
38 coew. 312

]
‘.
2

[2 cane, 128

J
J

H

hn-;.xl |
oo 1 |

|

)

Sud e, 82

Tl e B4

ol e LR
'

s LR
£2

) ors 128
¥

L 8-‘-.!-' J

| MSoem>s |

L ”Ciﬂg

(oo)
i zee T

[e 26

-t

M7 e, 84,12
a3 o, 512, 2
a3 coew. 302

3

a'zicaucua!l cii‘lilil (aiig u
R e O O U i
U dogyd NENQNRS d 31
hH OB i I fi

*https://www.slideshare.net/SomnathBanerjeel7/lenet-to-resnet

i Other Networks

Network in Network (NIN)
= Wide Residual Networks

= Aggregated Residual Transformations for Deep Neural
Networks (ResNeXt)

s DenseNets

= SqueezeNet: AlexNet-level Accuracy With 50x Fewer
Parameters and <0.5Mb Model Size

= MobileNet (Depthwise Separable Convolutions)
= ShuffleNet (Grouped Convolutions)
= FractalNet: Ultra-Deep Neural Networks without Residuals

i Training steps:

- Preprocessing of training dataset.
= Normalize data.

=« Decorrelate data (Diagonal Covariance
Matrix).

= Whitening of data (Identity Covariance
Matrix).

= Subtract Mean.

i Training steps:

. Data augmentation.

= Horizontal Flips

= Random Crops on scaled input

= Color jitter

= Distortions

= Transformations

. Weight initialization

. Train the network by update of the weight
parameters.

i Few Training Tips

= Start with small regularization and find learning rate that
makes the loss go down.

= Can overfit very small portion of the training data.

= Train first few epochs with few samples to initiate the
hyper-parameters.

= If big gap between training accuracy and validation
accuracy, then it is overfitting.

= Try increase regularization.
= If no gap, then may increase model capacity.

i Transfer Learning

= NO need of a lot of a data to train a CNN.

= Pre-trained models can be initialized for
CNNs at the early stage of training.

*Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning

-

Train
on

Imag
eNet

FC-1000

FC-4096

FC-C
FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

2. Small
Dataset
(C

classes)

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Reinitiali
ze this
layer and
train

3. Bigger
dataset

= Freeze

these

FC-C

FC-4096

FC-4096

=

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Train these
layers

With bigger
dataset, train
more layers

Freeze
S—
these

Lower learning
rate

when fine-
tuning;

1/10 of original
LR

is good starting
Point.

