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i Data dimension

= Consider a set of data points S={x.| x; in R"}.
= The dimension of the space R" is n.
= Does it mean dimension of the set S also n?
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i Principal component analysis

= Consider a set of data points S={x.| x; in R"}.
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i Principal component analysis

= Consider a set of data points S={x.| x; in R"}.
The dimension of the space R" is n.
= Does it mean dimension of the set S also n?

Yl Principal component
O analysis (PCA) finds the
minimum dimensional

/ y4 B

\VX' subspace for representing
’ data.
\/ > X

S could be represented as a set of points on a 2D space (R?).
Computes a new set of orthogonal axes.
o Coordinate transformation



Maximizing variance of a

i component

Consider a feature vector: X= (Xl,xz, X,).

1

Variance of x.: var(x, ) —_Z(Xu ~X.)

Dominant component:

J=1

= Component with maximum variance.

PCA maximizes variance of the dominant component.

Consider W=(w,w,,...w,) @ unit vector.

Consider the mean of feature vectors: S

For every X, translated to the mean vector compute the
component along W. = (X; —S).wW

Find W which maximizes varlance of y/'s.



Maximizing variance of a
i component

» A set of data points: S={X=(x;,X,;,...X,)| X; in R"}.
« Mean vector of S:

Y
Yo

hAN

X"-S

X, —S

Xy—S

S =(X,,X,,X.)

- X"WwW

1

: .. 1, T
» Compute W which maximizes:gY'Y = < (X™w) X™w

Such that ||[WTW]|=1

U



Maximizing variance of a
component

= Compute W which maximizes:

e\
WT%W Such that |[WTW]||=1

N
. . 1
Covariance matrix (C): Cy = NZ(X“‘ — %) (x5 — X))

1=1

To maximize: I;agrange multiplier
L(W) = WIcw —A(WTw - 1)
oL T
- 0= WW=1 Eigen vector of C
oL

W =0 =2CW-2AW =0 =>CW/§)\W
Maximum eigen value



i Principal components

Covariance matrix (C): Cp = _Z(X‘k — Xi) (x4 — X))

= Dominant principal component
= Eigen vector corresponding to maximum eigen value of C.

= The set of eigen vectors corresponding to decreasing
eigen values provide the principal components.
« Ev={e,,e,, ... €,} with corresponding eigen values in
increasing order.
M =A==
= All vectors are normalized.



i Principal components

= | th principal component:
.~ Mean of data points

yi = (X—9).¢;

= Dimension Reduction: Ignore eigenvectors of small
eigen values.

= Suppose all the eigen vectors till k th eigen value retained
for representing data.

= Y=(v,.,¥» --., i) IS k-dimensional representation of data.



i Dimension Reduction

Y=(X-95).e; X—S).ez,..,(X—S5).ey)
= k dimensional vector
= K <n

= Total Variance of data: v = 2( E(Xu X;))

)

= Variance is the sum of eigen values.  _ 27‘1
j=1

= Ratio of sum of k eigen values to total sum (variance of
data): fraction of variance accounted for.

n
Rz _ j=k+1 }\]

\Y%



i PCA-Algorithm

= Input: A set of data points: S={X;=(X;;,Xpj,...Xy;)| X; in R"}.
= Output: A set of k eigen vectors: E,={ej,e,,...,e}

1.

2.

3.

4,

Compute mean of data points.
Translate all data points to their mean.
Compute covariance matrix of the set.

Compute eigen vetcors and eigen values (in increasing
order).

Choose k such that the fraction of variance accounted for is
more than a threshold.

Use those k-components for representing any data point.



i Example

= Data : {( 5/ 3/ 2)/ (41 6/ O)l (31 '71 14)/ (21 5/ 3)/
(31 13/ '6)}

= Perform PCA and if applicable, reduce the
dimension of data.




i Example (contd.)

5 4 3 2 3° _ 34
X=[3 6 -7 5 13 S=| 4
2 0 14 3 —6. 2.6
- 16 6 -4 —14 -4
X=X-S=|-1 2 —11 1 9
-6 —26 114 4 —-86.
1 '1.04 -2  —.84]
C==XXT C=|-2 416 —-41.4
5 84 —414 4224




iExampIe (contd.)

C =

Total variance: Trace(C)=1.04+41.6+42.24=84.88
A/Svum of eigen

values

Eigen values of C: (83.3238, 1.5562, 0)

1.04
—.2

|—.84

—.2 —.34 ]
41.6 —41.4
—41.4 42.24.

Respective eigen vectors:

€1 =

—.0055
—.7043
7099

€r =

—.8165
413 e; =

4034

—.5774
—.5774
.—.5774



Example (contd.)

espective eigen vectors:

—.0055 —.8165 —.5774
e = |—-.7043 e, =| 413 e3 = | —-.5774
.7099 4034 .—.5774

—.0055 -.8165 -—-.5774
B=[e1 ez e3]=[-7043 413 —.5774
7099 4034 —5774

2696  —1.9615 | o
392576 —0.7128 Points lying in the plane:

0

0
XT.B=| 15.8421 03825 0| X+Y+Z=10
—-4126  1.7175 0
—12.4415 0.5742 0

~ Redundant dimension



i Coordinate transformation

5 Normal to plane (e3)




i Application of PCA

= Data compression

= Provides optimum set of orthonormal basis vectors for a
set of data points.

= Data dependent.

= Basis vectors also called as ‘Karhunen-Loeve’ basis, and
the transform called ‘Karhunen-Loeve Transform’
(KLT).

= Type-2 DCT basis vectors are approximately the eigen
vectors of a 2-D matrix with (j,k) the entries as rlil,

Covariance matrix for a useful class of signals, where r is the
measure of correlation between adjacent samples and a value
near to 1.



i Application of PCA

= Decorrelating components

= Color images in RGB space highly correlated.

= By performing PCA with different blocks of color images a color
transformation matrix obtained, useful for segmentation.

(R+G+B)/3, R-B, (2G-R-B)/2
= Multispectral, hyperspectral and ultraspectral remote
sensing images.
= Multispectral — 10’s of bands
= Hyperspectral — 100’s of bands
= Ultraspectral - 1000’s of bands

= PCA required to highlight decorrelated information.

Y.I. Ohta, T. Kanade, and T. Sakai, “Color information for region
segmentation”, Computer Graphics and Image Processing, 13, 222-241,



PCA components of a
* hyperspectral image

Band PCA 1 Band PCA 2
e

Band PCA 3 Band PCA 4 Band PCA 5

After
component 20,
not much
details are
available.

Removal of
data
redundancy.

Courtesy: Li et al, "A New Subspace Approach for Supervised Hyperspectral Image
Classification”, 2011 IEEE International Geoscience and Remote Sensing Symposium.

Band PCA 18 Band PCA 19 Band PCA 20




i Application of PCA

= Factor analysis.

= Highlights decorrelated factors.
= Useful for classification.

« For example, eigen faces for representing
human faces.

= Performs PCA on a large set of images of human
faces cropped to the same size.

= Any arbitrary face expressed as linear combination of
them.

= Coefficients of linear combination represent an
arbitrary face.



* PCA: Eigen faces

http://en.wikipedia.org/wiki/Image:Eigenfaces.png



iAppIication of PCA

= Classification / High level processing

» Using the representation derived by factor
analysis or component analysis.

PCA
basis
vectors

Factor
analysis

Classification




i Fisher linear discriminant

= For the purpose of classification, dimensional
reduction using PCA may not work.

= It captures the direction of maximum variance for
a data set.

« For labelled data sets, it does not capture the
direction of maximum separation between the
groups of data points of differing labels.

Well separated
but not along

0 0
L 0 the direction of
Direction for V%\O T% Oj) / orincipal
/—/%-’/ N

principal
component. component.,




i Fisher linear discriminant

= Consider a set of data points S={x| x; in R"}.
= N, points in class w;.
= N, points in class w..
= Say, N;+ N,=N (total data points).
= Consider a line with direction u.
= Projection of data x. on u: y=xTu
= One dimensional subspace representing data.



Separation between projected
i data of different classes

= m;= mean of data points in w,.
= m,= mean of data points in w..
= Projection of means:

= my,=m;'u \ A / OO
= A measure of separation: L —l D

m,, m

= Does not consider variance of data.



A better measure of
iseparation

o Normalized by a factor proportional to vy O
class variances. 0
o Scatter of data belonging to class C: | Dk—
m

, , m
4 = E (y — m$)\

/ yeC Mean
Class Variance x Number of samples

DZ
= Measure of separation: J(W = jerr

Scatter of class w1l

) Scatter of
“— class w2

Scatter of projected

= To obtain u maximizing J(u).  samples should be small.



i Scatter matrix

= Scatter matrix for samples of class C in
original space :

S¢ = Z(X —m¢) (x —mg)’

xeC



Within the class Scatter matrix

Scatter matrixes for
class wl and w2.

!
Within the class scatter matrix: S_=S,+S,

=y (y-my)'= ), (WTx—umy) (uTx—uTm,)’
/ yeW1 XeW; @

T
uSyu D uTx—my) (x—my)

ﬁ [? X € Wy

UT( Z (x—my) (x— m1)T)u

XEW]_

—> sf+s5=ulS,u



Between the class scatter

i matrix

Between the class scatter matrix;:  Means Ole anyZ

Sg = (m; — my)(m; — mz)T

D? = (mys —myz)” > (uTmy —uTm;)(@"my — uTm,)"
U

ulSgu <= u'(m; —my)(m; —m,)Tu

Rewriting optimization function
D2 ul'Sgu
- _ ) =
To maximize J(w) 1)) —> (W TS wu




D TSBu
To maximize J(w) = (s2 + 52) :> J(w) = uTSyu

u should be such that Sw' Sgu = Au

Should be invertible Eléen value problem.

Ssu has the eigen vecéor along (m,-m,)

(ml'mz)(fnrmz)Tl}l =k (m;-m,)

"k

> u=Sy!(m-m,)




i Example

= Data points:
= X;={(5, 3, 2), (4, 6,0), (3, -7, 14)}
= X2={(-2-517), (3-13 10), (-4 -2 16)}
= Perform LDA and get the optimum direction.
Check separability in the line of projection.

= Perform PCA on the whole data set ignoring
class information and get the dominant
principal direction. Check the separability of
projected points on it.



Example (contd.)

5 4 3 —2 3 —4
s LDA: x1=|3 6 -7| x2=|-5 -13 —2]
2 0 14 17 10 16
-1 2 10 —12
meanl = mean2 = [—6.67| S1=[10 9266 —102.67]
533 14.33 —12 —102.67 114.67
26 —41 25
S1 = (X1 —meanl)(X1 — mean1)T S2=|-41 64.67 39-67]
—25 39.67 28.66
28 -31  -37
SW=51+52 Sw=[—31 157.33 —63\
—37 —63  143.33

» 3.2070
u=SW~'(meanl —mean2) | —|_1195?

1.2904



i Example (contd.)

- 3.2070
= LDA: Separability u = [—1.1952]
1.2904

Y1 =X1Tu

Y1 =119.99

19.31

<> Well separated.
9.55]

22.2 ]

Y2 = X2Tu

Y2 =16.99

5.43




Example (contd.)

5 4 3 -2 3 —4 . [15
m PCA: x=[3 6 -7 -5 -13 —2] S=l—3]
2 0 14 17 10 16 9.83

1092 4 —17.42

c=[ 4  39.67 —27]

~17.42 =27  44.14

Eigen values: 72.96, 20.29, 1.47
Eigen vectors:

~0.25 —.52 —0.82
e1=[—0.63] e;=|.73| e3=|[-027

0.74



i Example (contd.)

= PCA: Separability e, = l—gég]
0.74
—1.65]
71 = X].Te1 71 =|—4.76
113.98.

Overlapping.
(16.18]

72 =X2%e; 72 =148
114.05.




Sparse Representation:
i Problem Statement

= Consider a dictionary of N elementary n-D
vectors known as atoms.
« D={d|i=1,2,. N}, N>n

= Consider any arbitrary vector n-D vector X.

= Compute the best linear approximation using
a subset of D as basis vectors.

= The number of atoms should be minimum.
= Reconstruction should be as close as possible.

dj(:‘SCD




Exact / Approximate
i Representation

s Exact reconstruction.

X = Z Cljdj |S|Sn

dj(:‘SCD

= Keeping the number of atoms fixed
(say, m).

dj(:'SCD




i Sparse Approximation

= The problem of approximating a signal
with the best linear combination of
elements from a redundant dictionary.

« Optimal / Near optimal representation
= Fast computation

= Optimal dictionary (joint optimization
problem)

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



i Sparse approximation

= Minimize the approximation error using L,
norm using m terms.

Dictionary  p={q) i=1,2,..N}, N>n
Optimization task Line?r combination

mn - 2, e

Fixed no. of atoms.  Data vector

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



i Reconstruction given S

S = {dil,diz, cee ) dim} cD

Construct matrix B from S with the columns
as elements of S.

 [dildy) - Z

Dimension: nxm "y @

= |d;,1d;,| ... |d; | 2 How to get the best
X BY ’ . approximation for m
9ml Y elements ?

Y = (BTB)"1BTX



i Approaches

= TWO major approaches
= Orthogonal Matching pursuit (OMP)
= Basis pursuit (BP)



OMP

= An iterative greedy algorithm

= Selects at each step the dictionary element best
correlated with the residual part of the input vector.

= produces a new approximant by projecting the
residual onto the dictionary elements that have
already been selected.

= extends the trivial greedy algorithm that succeeds
for an orthonormal system.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



BP

A more sophisticated approach that replaces
the original sparse approximation problem by
a linear programming problem.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



D={d]|i=1,2,. N}, N>n

Matching o
pursuit T 7 2,

Minimize the approximation error using L, horm
using m terms.

Residue (r,) Approximate representation (a,)
Initialization ry=X a,=0
At k th step:
[ = argr_nax(rk_l, dj)
Ay = ak—Jl + (r—1, d;*)d;>
e =X — ag > Tk = Tgoq — (Tk—1, di*)d;

MP may select the same atom multiple times.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



D={d]|i=1,2,. N}, N>n

OMP min min X = ) e,

dik(:'S

= Minimize the approximation error using L, norm using
m terms.

Initialization 7y=X a,=0  S,={}

At k th step: This minimization can be
i* = argmax(ry_1, d;) performed incrementally
g with standard least-squares
Sk = Sk-1 U {d;+} , 9
techniques.
{ar} ={Cr£€1}1n X — Z apd;,

4 cs, OMP selects an atom only
“ 2 once, as the residual is always
e =X — Z apd;,

orthogonal to selected set.
dik(:'Sk

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



D={d|i=1,2,.,N},N>n
i BP

= Minimize the approximation error using L,
norm.

= A convex function, hence can be minimized in
polynomial time.

N N
min z la,| Subjectto X = z ay dp
{ak} - k=1

There exists different approaches to solve
this problem.

Joel A. Tropp, , Greed is Good: Algorithmic Results for Sparse Approximation, IEEE TRANSACTIONS ON INFORMATION THEORY, 50 (10), 2004, 2231-2242.



i Ex.1

= Consider the following set of basis vectors.

_1 _ _i’
G|y |
1 V2 S
- ; \/28
1 V2 S
31 Lol L+e-

(a) Show that they form an orthonormal set of basis vectors.
(b) Decompose a vector [1 2 3]T as a linear combination of
the above set.



- 1 1 _i‘

B | e

| | L

5| ¥ |7

Ans. 1(a) R I 1 I
31 Lol Lve-

= Take any pair of vectors and perform
the dot product, it would be zero.

= Magnitude of these vectors is 1.

= Hence, a set of orthonormal basis
vectors.




Ans. 1(b)




iEx.Z

= Consider a dictionary in a 3-D space consisting of
following atoms:

{{fr11],[1-1 1] [-1-1 1", [-1 1 1]}
Derive the best representation of the vector [1 2 3]

using 2 atoms of the above dictionary following
orthogonal matching pursuit (OMP).



i Ans.

1st selection of an atom:
<[123]7,[111]">= 6 and maximum.
= Therefore, r,=[12 3]™-6[11 1]"
=[-5-4 -3]T
= 2" selection: <[-5 -4 -3]7, [-1 -1 1]™>=6 and maximum.

= Therefore, a,= x.[1 1 1]+ y.[-1 -1 1]" LSE solution
approximating [1 2 3]".

/A
RN . T
£ I H LA W O
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i Learning a dictionary

= Given a set of data points
X={x,|i=1,2,...,N, x, in R"}, what should
be a dictionary D of K atoms so that it

would provide best possible sparse
representation for each member of the

set.



i Motivation

= Use of dictionaries adaptive to specific
classes of signals or data of interest.

= Application specific.
= Dictionaries learned from exemplars

with sparse representation property
ensured.



i Problem statement

nXN—X =
KxXN— Y =

[x; %5 ... xy] X;€ER"
[dl dz dK] diERn
ly1 y2 - YNl y;eR"

= [0 obtain a sparse Y in RX such that

= X=DY, or X~ DY

Various Sparsity constraints:

myinllyllo subject to x = Dy

min||y||, subject to ||x — Dy||, < €
y

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322




K-SVD: Forming dictionary for
i sparse representation

= Given a set of training signals {x }._ ",
to obtain the dictionary of K elements
that leads to the best possible
representations for each member in
this set with strict sparsity constraints.

Various Sparsity constraints:

myinllyllo subject to x = Dy

min||y||, subject to ||x — Dy||, < €
y

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322




i K-SVD

s Generalizes K-means clustering problem.
1. Choose a dictionary of K atoms.
>. Obtain sparse representation.
3. Update dictionary atoms.
+.  Repeat steps 2 and 3 till convergence.

= K-means clustering: Extreme sparse
representation of a signal by a single atom only.

= K-SVD: A sparse linear combination of K atoms.

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



iK-means clustering

s Given a set of atoms D={d }¥

= Assign the training examples {x }. ¥ to their nearest
neighbor in D.
= Usually L, norm used.

= Given the assignment update D to better fit the
examples.
= Update mean of each partition of assignment.

s Start with any initial set of distinct atoms.

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



K-means clustering: A code book
iwith extreme sparse representation

s The code book: D={d.}¥=[d, d, ... dr ] «x

= The training examples: [X ] .v={x;}.-"

= Extreme sparse vector: e=[00..010...0]"
= Only jth term is 1 of K-dim. vector.

s Sparse representation: Y=[y, v, ... vl

= where y;is one of &/s . Frobenius norm
= Optimization problem Minimize || X - DY||2F/

s y=e, If ||x-d ||, IS minimum among all atoms.

= Update atoms: 4= Mean ({x; | y;=¢;}), for all ;.

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322




KSVD: Generalization of K-means
lJustering

s The code book: D={d.;} X=[d, d, ... dr ] 4
= The training examples: [X ] .={x}.-/"
s Sparse representation: Y=[y, y, ... vxlexy

= Where y; provides linear combination of maximum 7,
nonzero terms.

= Optimization problem:
= Minimize ||[X—DY [|% subjectto ||y,][q < Ty, foralli.

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322



Minimize || X - DY ||% subject
to |[|yillg < T, foralli

Rewriting optimization function

m )/, jthrow of Y. Consider effect of
, minimizing w.r.t. £ th
2 K J row of Y associated with
X DY”F_”X j=1dyr| code vector d, keeping
ﬁ other terms fixed.
z q _ d, vk Perform SVD: E,=UDV"
JyT kYT and take columns of U
\ Ji" F and 7 for max singular
value (say D(1,1)).

1t Column of U: d,

But the column vector D(1,1) x 15t column of V: y*
f

may not be sparse.

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322

Ek



K-SVD: Enforcing (- 2 o) - ot

sparsity yi.: j th row of Y.

Performing SVD K
times for K atoms
in each iteration.

Choose only samples from X which have a
nonzero component along d,.

Form reduced £, (denoted £, ;) and y*.by yk..
Perform SVD of E,, to get 4, and y*..

Update 4, and y*..

Repeat for all d's and obtain updated D and Y.
Repeat till convergence

Michal Aharon, Michael Elad, and Alfred Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006, 4311-4322
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i The algorithm

= Input: X={x,;|i=1,2,....,N}, x; in R".
s Output: D={d,|i=1,2,..,K}, d. in R". Y={y.|i=1,2,..,N}, y, in RX,
= Form an initial dictionary of K atoms.

= K-means clustering.

= Obtain an initial sparse representation Y using any
pursuit algorithm.
= OMP

= [terate for updating j th atom and sparse
representation associated with this atom (; th row of
Y).




i Applications

= Compression.
= Denoising
= Deblurring

= Super-resolution
=« Mapping of learned dictionaries

= Inpainting



Summary

ension reduction techniques

= Principal Component Analysis
= Data represented in minimal subspace.
= Involves coordinate transformation.

= Chooses a direction maximizing variance of dominant
component.

= Decorrelating data across different dimensions.
= Fisher’s Linear Discriminant

= Data projected on an 1-D subspace.

= Appropriate for classification using a linear
discriminant function.



i Summary

= Sparse representation

= Pursuit algorithms
= Matching pursuit
= Orthogonal matching pursuit.
= Basis pursuit

= Dictionary learning and sparse
representation.

= K- SVD



