Digital Image: Representation and Acquisition

Jayanta Mukhopadhyay Dept. of CSE, IIT Kharagpur

How images are represented in a computer?

123 147 141 137 134 130 127 122 121 121 119 114 113 110

126 150 148 148 143 143 141 135 135 134 127 126 123 123

A 2D Array of integers

Color images

Standard File Formats: TIFF, BMP, GIF, PGM, PPM, JPEG, DICOM,

Image File

Image formation in optical camera

Rules of projection

Perspective projection

Image points formed by intersection of the ray from a point P passing through the center of projection O with the image

Other imaging principle: Xray imaging

Parallel projection

Image points formed by intersection of parallel rays with the image plane.

Other imaging principle: Ultra-Sound Imaging

Rx

Tx

Range

Scan radially / translating Tx-Rx along a direction.

What is an image?

- Impression of the physical world.
- Spatial distribution of a measurable quantity, encoding the geometry and material properties of objects.

Radiometric factors of image formation

applications

Visual Information Processing

- Visual information enters the primary visual cortex via the lateral geniculate nucleus
 - smaller pathways also exist
 - a pathway to the superior colliculus (SC).

Adapted from slides by Steve Seitz.

taitravenab.blogspot.com

The Eye: A Camera!

Adapted from slides by Steve Seitz.

Rods, Cones and Synapse

Rods: Low illumination scene Cone: Color perception Trichromacy theory Color opponency G-RB-(G+R)Color constancy

https://commons.wikimedia.org/wiki/File:Rods_Cones_Synapse.sv

Density of rods and cones

Rods and cones are *non-uniformly* distributed on the retina

- Rods responsible for intensity, cones responsible for color
- Fovea Small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods).

Less visual acuity in the periphery–many rods wired to the same neuron

Rod / Cone sensitivity

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10¹² hertz and that has a radiant intensity in that direction of 683 watt per steradian.

As cone vision is not activated in low illumination, we are unable to read.

Adapted from slides by A. Efros

- Entire spectrum (of reflected energy from an object or energy of an illuminant) represented by 3 numbers.
- Even different spectra may have same representation and thus indistinguishable.
 - such spectra called **metamers.**

Adapted from slides by Steve Seitz.

What is Color?

- A psychological property of our visual experiences when we look at objects and lights.
 - Not a physical property of those objects or lights.
 - The result of interaction between physical light in the environment and our visual system.

- Can be represented by 3 numbers.
 - Trichromatic Theory
 - Color rendition as a Mixture of three primary colors

Grassman's Laws

- Color matching appears to be linear.
- If two test lights can be matched with the same set of weights, then they match each other:
 - If $A = u_1P_1 + u_2P_2 + u_3P_3$ and $B = u_1P_1 + u_2P_2 + u_3P_3$. Then A = B.
- If we mix two test lights, then mixing the matches will match the result:
 - If $A = u_1P_1 + u_2P_2 + u_3P_3$ and $B = v_1P_1 + v_2P_2 + v_3P_3$. Then $A+B = (u_1+v_1)P_1 + (u_2+v_2)P_2 + (u_3+v_3)P_3$.
- If we scale the test light, then the matches get scaled
 by the same amount:

If $A = u_1P_1 + u_2P_2 + u_3P_3$, then $kA = (ku_1)P_1 + (ku_2)P_2 + (ku_3)P_3$.

Adapted from W. Freeman

Linear color spaces of

mixing two lights produces colors that lie along a straight line in color space.

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it.
- *Matching functions*: weights required to match singlewavelength light sources.

mixing three lights produces colors that lie within the triangle they define in color space.

Adapted from W. Freeman

Standardizing color experience

- To understand which spectra produce the same color sensation under similar viewing conditions.
- Color matching experiments.

Source: W. Freeman

Source: W. Freeman

Source: W. Freeman

Using color matching functions to predict the matches for a new spectral signal

A monochromatic light of λ_i wavelength will be matched by the amounts $c_1(\lambda_i), c_2(\lambda_i), c_3(\lambda_i)$ of each primary.

And any spectral signal can be thought of as a linear combination of very many monochromatic lights, with the linear coefficient given by the spectral power at each wavelength.

$$\vec{t} = \begin{pmatrix} t(\lambda_1) \\ \vdots \\ t(\lambda_N) \end{pmatrix}$$

Using color matching functions to predict the primary match to a new spectral signal

Store the color matching functions in the rows of the matrix, *C*

$$C = \begin{pmatrix} c_1(\lambda_1) & \cdots & c_1(\lambda_N) \\ c_2(\lambda_1) & \cdots & c_2(\lambda_N) \\ c_3(\lambda_1) & \cdots & c_3(\lambda_N) \end{pmatrix}$$

Let the new spectral signal be described by $\vec{t} =$ the vector *t*.

 $\vec{e} = C\vec{t}$

Then the amounts of each primary needed to match t are:

The components e_1 , e_2 , e_3 describe the color of t. If you have some other spectral signal, s, and s matches t perceptually, then e_1 , e_2 , e_3 , will also match s (by Grassman's Laws)

Additive and subtractive colors

FIGURE 6.4 Primary and secondary colors of light and pigments. (Courtesy of the General Electric Co., Lamp Business Division.)

Adapted from Gonzales and Woods

Linear color spaces: RGB

- Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors).
- *Subtractive matching* required for some wavelengths.

RGB matching functions

RGB model

- Additive model.
- An image consists of 3 bands, one for each primary color.
- Appropriate for image displays.

CMY model

- Cyan-Magenta-Yellow is a subtractive model which is good to model absorption of colors.
- Appropriate for paper printing.

Inks: Cyan=White-Red, Magenta=White-Green, Yellow=White-Blue.

Adapted from Octavia Camps, Penn State

CIE chromaticity model

- The Commission Internationale de l'Eclairage (estd. 1931) defined 3 standard primaries: X, Y, Z that can be added to form all visible colors.
- Y was chosen so that its color matching function matches the sum of the 3 human cone responses.

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.6067 & 0.1736 & 0.2001 \\ 0.2988 & 0.5868 & 0.1143 \\ 0.0000 & 0.0661 & 1.1149 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.9107 & -0.5326 & -0.2883 \\ -0.9843 & 1.9984 & -0.0283 \\ 0.0583 & -0.1185 & 0.8986 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

CIE XYZ: Linear color space

- Primaries are imaginary, but matching functions are everywhere positive
- 2D visualization: draw (x,y), where

$$x = X/(X+Y+Z)$$

$$y = Y/(X+Y+Z)$$

Matching functions

http://en.wikipedia.org/wiki/CIE_1931_color_space

CIE chromaticity model

 x, y, z normalize X, Y, Z such that

x + y + z = 1.

 Actually only x and y are needed because

z = 1 - x - y.

• Pure colors are at the curved boundary.

White is (1/3, 1/3, 1/3).

Spectral locus of monochromatic lights and the heated black-bodies

Computer Vision - A Modern Approach Color Slides by D.A. Forsyth

Uniform color spaces

- Differences in x,y coordinates do not reflect perceptual color differences.
- CIE u'v' is a projective transform of x,y to make the ellipses more uniform.

McAdam ellipses: Just noticeable differences in color

Adapted from Linda Shapiro, U of Washington

CIE Lab (L*a*b) model

- One luminance channel (L*) and two color channels (a* and b*).
- In this model, the color differences which we perceive correspond to Euclidean distances in CIE Lab.
- The *a* axis extends from green (*a*) to red (+*a*) and the *b* axis from *b** = *b* blue (-*b*) to yellow (+*b*). The brightness (*L*) increases from *X_n*, *Y_n* a the bottom to the top of the 3D referent model://en.wikipedia.org/wiki/Lab_color_space

 X_n , Y_n and Z_n are the reference white in XYZ space.

YIQ model

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.532 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Have better compression properties.
- Luminance Y is encoded using more bits than chrominance values I and Q (humans are more sensitive to Y than I and Q).
- Luminance used by black/white TVs.

All 3 values used by color TVs.

YCbCr space

- Have better compression properties. Used in image and video compression schemes.
- Y represents the luminance, and Cb and Cr are chrominance parts.
- Not a linear transformation, affine.
- Cb and Cr translated to bring them within the range of 0 to 240 assuming ranges of R, G and B are 0 to 255.

Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)

Adapted from Linda Shapiro, U of Washington

HSV model

- HSV: Hue, saturation, value are non-linear functions of RGB.
- Hue relations are naturally expressed in a circle.

$$I = \frac{(R+G+B)}{3}$$

$$S = 1 - \frac{\min(R,G,B)}{I}$$

$$H = \cos^{-1} \left\{ \frac{1/2[(R-G)+(R-B)]}{\sqrt{[(R-G)^2 + (R-B)(G-B)]}} \right\} \text{ if } B < G$$

$$H = 360 - \cos^{-1} \left\{ \frac{1/2[(R-G)+(R-B)]}{\sqrt{[(R-G)^2 + (R-B)(G-B)]}} \right\} \text{ if } B > G$$
46

Adapted from Octavia Camps, Penn State

HSV model

- Uniform: equal (small) steps give the same perceived color changes.
- Hue is encoded as an angle (0 to 2π).
- Saturation is the distance to the vertical axis (0 to 1).
- Intensity is the height along the vertical axis (0 to 1).

Opponent Color Processing

- The color opponent process: A theory proposed on perception of color by processing signals from cones and rods in an antagonistic manner.
- Overlapping spectral zone of three types of cones (L for long, M for medium and S for short).
- The visual system considered to record differences between the responses of cones, rather than each type of cone's individual response.
 - People don't perceive reddish-greens, or bluish-yellows.

Opponent Color Processing

• The opponent process theory accounts for mechanisms that receive and process information from cones.

By Googolplexbyte - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25539422

Opponent Color Processing

 Three opponent channels: Red vs. Green, (G-R) Blue vs. Yellow, (B-Y) or (B-(R+G)) and Black vs. White, (Luminance: e.g. (R+G+B)/3).

$$\begin{bmatrix} Y\\Cb-128\\Cr-128 \end{bmatrix} = \begin{bmatrix} 0.256 & 0.502 & 0.098\\-0.148 & -0.290 & 0.438\\0.438 & -0.366 & -0.071 \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix}$$

Y-Cb'-Cr' follows opponent color space representation.

Summary

• Images are formed by projection.

- through sensing reflected energy from the respective surface point.
- spectral sensitivity of sensor determines the color of the component.

• Human perception of color follows trichromacy law.

 Three types of cones in our retina with spectral responses in different zones of optical band

• Color is captured in the RGB color space.

- Not suitable for direct interpretation of color components such as Hue and Saturation.
- Not all colors are representable in positive half of RGB color space.
- CIE Chromaticity Chart provides color matching functions.

• expresses in 2-D normalized x-y chromaticity space.

Various other color spaces used for processing.

Thank You

