Image Restoration

Jayanta Mukhopadhyay Dept. of CSE, IIT Kharagpur

Image smoothing / enhancement: Gaussian Filtering

- Low pass filtering
 - Gaussian filter
 - Freq. / Spatial domain

- More complex filters
 - Using difference of Gaussian
 - LPF, BPF, HPF

$$H(u,v) = A_1 e^{-\frac{4\pi^2(u^2+v^2)\sigma_1^2}{2}} - A_2 e^{-\frac{4\pi^2(u^2+v^2)\sigma_2^2}{2}}$$

DoG in spatial domain, too!

$$h(m,n) = \frac{A_1}{4\pi\sigma_1^2} e^{-\frac{(m^2+n^2)}{2\sigma_1^2}} - \frac{A_2}{4\pi\sigma_2^2} e^{-\frac{(m^2+n^2)}{2\sigma_2^2}}$$

Filtering in 1-D the transform domain

- Freq. Shifting $DFT(f(n)e^{j2\pi\frac{k_0}{N}n}) = F(\langle k k_0 \rangle_N)$
- Phase Shifting $IDFT(F(k)e^{-j2\pi \frac{k}{N}n_0}) = f(\langle n n_0 \rangle_N)$

 Use sufficient 0 padding at the both end to make circular convolution equivalent to linear convolution

H(k)

 $\rightarrow \quad G(k) = H(k) \ F(k)$

• To take care of boundary effect.

F(k) —

- The length of f(n) and h(n) should be the same.
- H(k) usually provided as symmetric about the center.
 - 0th freq. at the N/2 th element.
- Center F(k) as $F_c(k)$ by multiplying f(n) with (-1)ⁿ \leftarrow ($k_0 = N/2$)

Obtain $G(k) = H(k) \cdot F_c(k)$

Multiply G(k) by (-1)^k and perform IDFT to get g(n). \leftarrow ($n_0 = N/2$)

Low pass filters

- Ideal LPF
 - H(u,v) = 1, if $D(u,v) \le D_0$
 - = 0, Otherwise
- Use centered freq. transform:
 - $D(u,v) = [(u M/2)^2 + (v N/2)^2]^{1/2}$
- Make DFT of image also centered
- Perform filtering
- Not very practical
 - Blurring and ringing effect prominent!
 - Sharp discontinuity in frequency response!
 - Impulse response in the form of a Sinc function.

Butterworth Low Pass Filters

Homomorphic filtering

- Let f(x,y)=i(x,y) r(x,y)
 - i(x,y): Illumination variation
 - Slow / Low frequency
 - r(x,y): reflectance variation
 - High / High frequency
- Make additive component in the log domain
- Apply filtering by suppressing low frequencies and enhancing high frequencies.
 - Dynamic range compression coupled with contrast enhancement

Back to the original domain by exponentiation.

Homomorphic filtering

- A typical example $H(u, v) = (\gamma_H \gamma_L) \left[1 e^{-c \frac{D(u, v)^2}{D_0^2}} \right] + \gamma_L$
 - γ_L<1, γ_H>1

Homomorphic filtering: Typical example

• Simultaneous dynamic range compression and contrast enhancement

Band reject filters (BRF)

BPF=1-BRF

• Ideal
$$H(u,v) = \begin{cases} 0 & -\frac{W}{2} + D_0 \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & 0 \end{cases}$$
 Otherwise

Cut-off frequency

• Butterworth
$$H(u, v) = \frac{1}{1 + \left[\frac{W.D(u, v)}{D^2(u, v) - D_0^2}\right]^{2n}}$$

• Gaussian $H(u, v) = 1 - e^{-\left[\frac{D^2(u, v) - D_0^2}{wD(u, v)}\right]^2}$

Used for removing periodic noise.

Notch filters

- A notch filter rejects or passes frequencies in a predefined frequency about the center of the frequency rectangle.
- Zero phase shift filter should be symmetric about the origin.
 - If there exists a notch at center (u₀,v₀), there must be a notch at (-u₀,-v₀).
 - A general form:

$$H_{NR}(u,v) = \prod_{k=1}^{q} H_k(u,v) H_{-k}(u,v)$$

• e.g. using Butterworth HPFs

1

HPF with center at (u_k, v_k) or (u_{-k}, v_{-k})

$$H_k(u,v) = \frac{1}{1 + \left[\frac{D_{0k}}{D_k(u,v)}\right]^{2n}} \qquad D_k(u,v) = \left[\left(u - \frac{M}{2} - u_k\right)^2 + \left(v - \frac{N}{2} - v_k\right)^2\right]^{\frac{1}{2}}$$

 $\kappa - 1$

A degradation model and restoration

- Degradation function:
 - Identity (No degradation), Linear filter (Motion Blur), Transformation of a functional value
- Noise model
 - White, Gaussian, Rayleigh,

f(x,y)Degradation
function H(.)

If H(.) is the identity function, the task is simply noise cleaning.

- Linear degradation model. g(x,y) = h(x,y) * f(x,y) + n(x,y)
- To design a restoration filter w(x,y)
 - such that w(x,y)*g(x,y) = f_a(x,y) close to f(x,y).
- To minimize

n(x, y)

W(.) W(.) Objective function in Freq. domain? $E(||F(u,v) - F_a(u,v)||^2)$

filters

Restoration in the absence of noise

$g(x,y) = h(x,y) * f(x,y) \iff G(u,v) = H(u,v) F(u,v)$

- Inverse filtering: W(u,v) = 1/H(u,v)
 - Problem with zeros and low values in H(u,v)
- Minimize $E(||F(u,v) F_a(u,v)||^2)$

 $= E(||F(u,v) - W(u,v) H(u,v) F(u,v) ||^{2})$

Restoration in the absence of noise

- Power Spectrum of the image: $S_f(u,v) = ||F(u,v)||^2 = F^*(u,v)F(u,v)$
- To minimize $E_w = E(||F(u,v) W(u,v) H(u,v) F(u,v) ||^2)$

For convenience, F(u,v) written as F and the same for all others.

 $E_{w} = ||F||^{2} - (W^{*}H^{*} + WH)||F||^{2} + ||W||^{2}||H||^{2}||F||^{2}$

$$\frac{\partial E_{w}}{\partial W(u,v)} = 0 \quad \Longrightarrow \quad -HS_{f} + W^{*} ||H||^{2}S_{f} = 0 \quad \Longrightarrow \quad W = H^{*}/||H||^{2} = 1/H$$

$$Pretending W^{*}$$

$$Constant for W$$
Inverse filtering!
Inverse f

Restoration in the presence of noise $F_{a}(u, v)$

G(u,v)=H(u,v)F(u,v)+N(u,v)

- Power Spectrum of the original image: $S_f = ||F||^2 = F^*F$
- Power Spectrum of the noisy image: $S_g = ||G||^2 = G^*G$
 - $S_g = ||H||^2 ||F||^2 + H^*F^*N + HFN^* + ||N||^2$
- As noise assumes to be uncorrelated: E(F*N)=E(N*F)=0
- Hence, $S_g = ||H||^2 ||F||^2 + ||N||^2 = ||H||^2 S_f + S_n$
- To minimize $E_w = E(||F WG||^2)$ $W = (H^*S_f)/(||H||^2S_f + S_n)$
 - $E_w = E(||F||^2 FW^*G^* WGF^* + ||W||^2 ||G||^2)$
 - = $E(||F||^2 FW^*G^* WHF^*F WF^*N + ||W||^2 ||G||^2)$

 $\frac{\partial E_w}{\partial W(u,v)} = 0 \implies -HS_f + W^* (||H||^2 S_f + S_n) = 0$

• Solution in frequency domain: $W = (H^*S_f)/(||H||^2S_f + S_n)$

$$W = \frac{H^*}{\|H\|^2 + K} \qquad W = \frac{H^*}{\|H\|^2 + \frac{S_n}{S_f}}$$
Noise to Signal Ratio $M = \frac{1}{H} \frac{\|H\|^2}{\|H\|^2 + K}$ Weighted Inverse filter

- Model degradation:
 - Design / derive h(x,y)
- Model Noise
 - Identify PDF and estimate parameters
- Derive W or w(x,y)
- Apply filtering: $f_a(x,y) = w(x,y) * g(x,y)$

Degradation of a defocused image

- Defocused image: The projected point is not sharp.
- e.g. The projection forms a circle of radius r.
 - Spatial resolution along x: Δx and y: Δy

N: Total number of pixels within the circle

h(i,j)

h(i , j)= 1/N, (i.
$$\Delta x$$
)²+(j. Δy)² ≤ r
= 0 Otherwise

Degradation due to motion blur

- Motion blur: Movement of camera, Movement of object.
 - e.g. The camera moving with a velocity v_x in the direction of x
 - Exposure time: t
 - Spatial resolution along x: Δx
 - Number of pixels covered in a shot due to movement: N=(v_xt) / Δx

```
\begin{array}{ll} h(i,j) = 1/N, & -(N-1) \leq i \leq 0 \\ & = 0 & Otheriwse \end{array}
```


Degradation model for a general planar rigid body motion

- Time varying translational motion vector : $x_0(t) i + y_0(t) j$
- Duration of exposure: T
 - Shutter opening and closing takes place instantaneously
- Blurred image *g(x,y)* given by:

$$g(x,y) = \int_0^T f(x - x_0(t), y - y_0(t)) dt$$

Fourier transform of g(x,y):

$$G(u,v) = \int_0^T F(u,v) e^{-j2\pi(ux_0(t)+vy_0(t))} dt$$

Degradation model for a general planar rigid body motion

$$g(x,y) = \int_0^T f(x - x_0(t), y - y_0(t)) dt$$

$$G(u,v) = \int_0^T F(u,v) e^{-j2\pi(ux_0(t)+vy_0(t))} dt$$

$$G(u, v) = F(u, v) \left[\int_{0}^{T} e^{-j2\pi (ux_{0}(t) + vy_{0}(t))} dt \right]$$

$$H(u, v)$$

Motion blur special cases

• Uniform linear motion in horizontal direction:

•
$$x_0(t) = at/T$$
, and $y_0(t) = 0$

$$H(u,v) = \int_0^T e^{-j2\pi (ux_0(t) + vy_0(t))} dt$$

$$H(u,v) = \int_0^T e^{-j2\pi\left(\frac{uat}{T}\right)} dt$$

$$=\frac{T}{\pi u a}\sin(\pi u a)e^{-j\pi u a}$$

Motion blur special cases

- Uniform linear motion in a plane:
 - $x_0(t) = at/T$, and $y_0(t) = bt/T$

$$H(u,v) = \int_0^T e^{-j2\pi (ux_0(t) + vy_0(t))} dt$$

$$H(u,v) = \int_0^T e^{-j2\pi \left(\frac{uat}{T} + \frac{vbt}{T}\right)} dt$$

 $=\frac{T}{\pi(ua+vb)}\sin(\pi(ua+vb))e^{-j\pi(ua+vb)}$

Atmospheric degradation model (Hufnagel & Stanley (1964)) $H(u,v) = e^{-k(u^2+v^2)^{\frac{5}{6}}}$

- *k* is a constant that depends on the turbulence.
- Almost the form of a Gaussian function
 - LPF

How do you relate them in discrete domain?

Use normalized frequency: k/N for sequence of length N.

Variance is the measure of noise power.

Noise models

White noise with a pdf has the same power at every freq.

• Gaussian:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$$
mean = μ var = σ^{2}
• Rayleigh:

$$p(x) = \begin{cases} \frac{2}{b}(x-a)e^{-\frac{(x-a)^{2}}{b}} \text{ for } x \ge a \\ 0 & \text{ for } x < a \end{cases}$$

$$p(x) = \begin{cases} \frac{a^{b}x^{b-1}}{(b-1)!}e^{-ax} \text{ for } x \ge 0 \\ 0 & \text{ for } x < a \end{cases}$$
• Erlang
(Gamma):

$$mean = \frac{b}{a} \text{ var } = \frac{b}{a^{2}} \end{cases}$$

Noise models

• Exponential:

$$mean = \frac{1}{a} \quad var = \frac{1}{a^2}$$

$$p(x) = \begin{cases} ae^{-ax} & for \ x \ge 0 \\ 0 & for \ x < 0 \end{cases}$$
• Uniform:

$$p(x) = \begin{cases} \frac{1}{b-a} & for \ a \le x \le b \\ 0 & Otherwise \end{cases}$$

$$var = \frac{(b-a)^2}{12}$$
• Impulse (Salt
and Pepper):

$$p(x) = \begin{cases} P_a & for \ x = a \\ P_b & for \ x = b \\ 0 & Otherwise \end{cases}$$

 Impulse (Salt and Pepper): **Bipolar impulse**

Estimation of noise

- Study relatively flat (constant) region and study the histogram.
- The shape of histogram may indicate appropriate PDF to be chosen.
- Compute mean and variance of the flat region.
- Relate to them to the parameters of the distribution. (Optional)
- Make robust estimation of variance (by sampling and estimation using the central limit theorem)
- Use variance for the noise power at every
 frequency (modeling as white noise)

Noise removal: linear and nonlinear filters exploiting local statistics

• Arithmetic mean.

$$\frac{1}{N} \sum_{i=0}^{N-1} x_i$$
$$\left(\prod_{i=0}^{N-1} x_i\right)^{\frac{1}{N}}$$

- Geometric mean.
- Harmonic mean.

$$\frac{1}{N}\sum_{i=0}^{N-1}\frac{1}{x_i}$$

1

• Contraharmonic $\sum_{i=1}^{N} \frac{\sum x_i^{Q+1}}{\sum x_i^Q}$

an. *Q*: Order of filter *Q*= 0 (A.M.), *Q*= -1 (H.M.)

- Order Statistics.
 - Median
 - Max
 - Min
 - Mid-point
 - Average of Max and Min.
 - Alpha-trimmed mean
 - Mean excluding top (d/2) and bottom (d/2) in the rank order.

Adaptive filter for restoration

- Exploit local statistics
 - Local mean: μ Local variance: σ^2
 - Local noise variance: η²
 - Pixel value: g(x,y)
- Desirable
 - If $\eta^2 = 0$ return g(x,y)
 - If σ^2 high return close to g(x,y)
 - If $\eta^2 = \sigma^2$ return local mean μ
- Adaptive expression

$$f_a(x,y) = g(x,y) - \frac{\eta^2}{\sigma^2}(g(x,y) - \boldsymbol{\mu})$$

28

Constrained least squares filtering

- Limitations of Wiener Filtering:
 - Power spectra of the undegraded image and noise required to be known.
 - Based on minimizing a statistical criterion.
 - Optimization in average sense
- Problem statement reformulated for taking care of individual image separately.
 - Criteria set from filtering in spatial domain
 - But solution obtained in the frequency domain

Constrained least squares filtering in Spatial domain

- Consider degraded and undegraded image in the form of a derasterized vector
 - g and f of length N, respectively.
- Let the degradation filter response given by a vector
 - h of length N
- The noise at each point expressed by a vector
 - η of length N
- The convolution operation can be expressed by a matrix operation as follows:
 - $g=Hf+\eta$

• **H** is a matrix of dimension NxN

Optimization problem

Residual difference

 Minimize a smoothness criteria C (measured as sum of squares of Laplacians) subject to keeping noise at a desired level

$$C = \sum_{x=0}^{P-1} \sum_{y=0}^{Q-1} [\nabla^2 f(x, y)]^2$$

Subject to the constraint

$$\|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2 = \|\boldsymbol{\eta}\|^2$$

 $abs(\|\mathbf{g} - \mathbf{Hf}\|^2 - \|\mathbf{\eta}\|^2) < a^2$

A small positive value

or

Frequency domain solution

$$F(u, v) = \frac{H^*(u, v)}{|H(u, v)|^2 + \gamma |L(u, v)|^2} G(u, v)$$

- γ : a parameter, may be chosen iteratively such that the residual difference < a^2
- L(u,v) is the Fourier Transform of the Laplacian operator l(x,y)

$$f(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Summary

- Filtering for noise removal
- Degradation model
- Weiner (LSE) filter
 - to model degradation filter and noise, and then obtain the LSE filter.
 - Apply Weiner filter on degraded image to restore it.
- Modeling motion blur and defocusing.
- Noise model
- Use of various local statistics for removing noise.
- Adaptive filter exploiting local statistics and variance of noise.

Constrained least squares filters

Thank You

