Design, Simulation and Synthesis of an ASIC for Fractal Image Coding

S.K. Bhunia, S.K. Ghosh, P. Kumar, P.P. Das, J. Mukherjee
Department of Computer Science and Engg.
Indian Institute of Technology, Kharagpur
Kharagpur -721302, INDIA
som,jay @cse.iitkgp.ernet.in

Abstract

In recent years, fractal encoding of image (using Iterated
Function Systems) has emerged as a potent technique in the
field of image compression. This method has comparable
or sometimes better performance as compared to most oth-
ers, specially, with respect to quality of reconstructed image
and compression ratio. But most fractal encoding methods
are very slow that prevent them from realtime processing of
images. Since fractal encoding methods have ample data
parallelism and spatial/temporal recurrence, there is lot of
scope for designing efficient VLSI architectures for them.
In this paper, we have selected a suitable encoding scheme
and designed the VLSI architecture for it. The proposed ar-
chitecture has been simulated and synthesized, using Veri-
log and Synergy of Cadence Design Tools. The architecture
employs principles of pipelining and parellelism to enhance
performance with respect to speed of compression. Simula-
tion and synthesis results show good time performance for
the proposed chip.

1. Introduction

A number of different image compression schemes have
been developed till date. They can be broadly classified into
two categories : lossless or error-free compression (like bit-
plane encoding or variable length encoding) and lossy com-
pression (like transform based coding) methods. The cur-
rently popular JPEG! image compression method is based
on Discrete Cosine Transform (DCT) and is now an inter-
national standard.

In addition there have been two exciting developments
over the past few years : Wavelet based encoding and com-
pression based on Fractal geometry [S]. In Wavelet based
encoding the image data is decorrelated by Wavelet Trans-
form, the resulting transform coefficients are then quantized

1 Joint Photographic Expert Group

0-7695-0013-7/99 $10.00 © 1999 IEEE

and coded. On the other hand, Fractal Image Compression
(FIC) method is based on the concept of Partitioned Iterated
Funtion System(PIFS) [4] [3] that models an image as the
attractor of a PIFS. Most of the fractal encoding schemes are
inherently computation intensive and results in poor com-
pression speed.

While there has been extensive research to enhance the
encoding speed of fractal schemes - mostly based on some
‘classification’ of image segments [1], there is no known at-
tempt to find an efficient hardware implementation for any
fractal encoding scheme. Moreover since most fractal en-
coding schemes have ample data parallelism inherent in the
algorithm there is enough possibility to exploit them to en-
hance encoding speed and throughput.

Starting with this motivation we have come up with a
high-speed parallel VLSI architechure for a fractal encoding
method [2]. The architechure exploits the principle of par-
allelism and pipelining to make the encoding process time
efficient. In the course of our work, we initially dealt with
a parallel nonpipelined architecture - designing and verify-
ing the same and thereafter modified it for pipelined imple-
mentation keeping the parallelism intact. The pipelined ar-
chitecture gave considerable speedup with little increase in
hardware complexity.

The architechure is designed to be implemented in a
single chip. It is a special purpose chip or ASIC (Applica-
tion Specific Integrated Circuit) and has the distinct advant-
ages of simplicity, lower production cost and higher reliab-
ility.

Both the architectures have been simulated using Verilog
Hardware Description Language (HDL) and synthesized us-
ing Synergy. The simulation results show a significant im-
provement in speed of encoding. We believe, a more ef-
ficient architecture for fractal encoding comparable in per-
formance to the available JPEG chips will be possible in fu-
ture.

h

127 International Conference on VLSI Design — January 1999

2. Overview of Fractal Image Encoding

In fractal compression an image is encoded as the at-
tractor of an iterated function system. It is based on the ob-
servation that natural images are partially self-transformable
[4]. They contain ‘affine redundancy’ in the sense that a
block in the image (called range) can be derived from an-
other block of the same image (called domain) by some af-
fine transformation. The image is encoded as the union of
best-fitting affine transformation and the corresponding im-
age domain blocks for all segments consisting of the image
support. In all fractal encoding methods the encoding pro-
cess starts with partitioning of the image into a set of non-
overlapping segments(range blocks) and then for each range
block an image block (domain block) with different resol-
ution is searched that gives the best affine mapping to the
range segment. Compression is achieved by encoding the
domain and the affine transformation for each range block.
The speed of compression primarily depends on the effi-
ciency of search for suitable domain for a range block.
Here we have adopted an ASIC Design for speedy compres-
sion using FIC by suitably casting it into a pipelined parallel
hardware architecture.

Before discussing the ASIC Design, a brief overview of
the basic algorithm is given below:

2.1. The Base Algorithm

Algorithm Base FIC
Inpur: A 2" x 2" Image.
Output ; Stream of fractal coded doublets.

1. Partition the image into a set of non-overlapping square range
(R) blocks, each of size R_Size X R_Size and containing
N = R_Size® pixels. Mark all the ranges in R uncovered.

2. Partition the image into a set of overlapping square domain
(D) blocks and each of size double that of a range with lattice
spacing .

3. While there is uncoveredrange R; in R do

(a) Pick the range R; and mark it covered.
(b) Mark all the domains in DD unexplored.
(c) While there is unexplored domain D; in D

i. Pick the domain D; and mark it explored.

ii. Shrink the domain to the size of range by aver-
aging four (2x2) adjacent pixel values.

iii. Perform eight spatial transformations of the do-
main. These are identity, rotation by 90°, 180°
and 270° and flips about horizontal, vertical, di-
agonal and antidiagonal axes.

iv. For K4 = Lower to Upper do

545

A. For all spatial transformations,
Compute

K = K4 Step_Stze

N
Dl = (@ + KOP

k=1

O]

1

E= N @

where rr € Ri,di € Transformed D

If (E < Thresh) store the domain, the
quantized value of K (that is, K4), and the
spatial transformation in the output.

Go to Step 3. /* A match for the present
range is found. Goto next range.*/

else continue (goto(c)). /* Pick up next do-
main D; */

(d) If after all domains in D are explored and none with
E < Thresh is found then, store the domain, KX 4 and
the transformation which give the minimum error.

2.1.1. Optimum Value of K and Error Com-
putation

The K is grey value offset quantized in
steps of Step_Size. The expression for optimum value of
K can be obtained by setting %‘}E{ =0,as:

1 N N
K’o = N[Z ri — Zd,]
i=1 i=1

Note that d;’s here are dependent on the spatial transforma-
tionused, yet) ; d; is an invariant. Therefore optimal value
of K is the same for all spatial transforms. The error now
turns out to be as follows:

3

N
Terml = Z(r‘ —-d)? @
=1
N N
Term2:K"*(K"*N_Q*(Zri_zdi)) ®)
=1 i=1
E = (Terml + Term2)/N (6)

K, is quantized by dividing it by Step_.Size.

In the modified algorithm we compute T'erm2 once for
all spatial transformation s after computing the optimal off-
set K, and for each transformation we compute T'erm1 sep-
arately.

3. The VLSI Architecture

The overall system architecture of the ASIC for the selec-
ted fractal encoding scheme is given in Fig. 1. The hardware
organization shown in the architecture reflects the sequence

of computations in the encoding process. The critical part of
this computation is the strategy for domain access, perform-
ing eight transformation in parallel and error computation.

Interleaved Memory Module

Address Generation
Module
Kd Computation Modulc. h
H

Term? Computation Module

Module

Eight Term | Computation]

Eight Final Ervor Computation,

To Ouput Stream

Figure 1. The Overall System Structure

3.1. Details of Implementation

The block diagram of the whole ASIC is shown in Fig. 2.
Most of the modules have been implemented in the gate
level. The memory containing the image is external to the
chip. The control unit has not been shown in the system ar-
chitecture.

3.1.1. Address Generation Module (A)

Fig. 2 shows this module with its three submodules : one
for generating address for the computation of initial image
averages (Av-Addr), one for address generation for the range
pixels (R-Addr), and the other for generating the domain
pixel addresses (D-Addr).

3.1.2. Initial Image Computation Module

(B)

The computation of averages of fixed size blocks is done
in following three sequential steps (Fig. 2) : (i) a high speed
adder is used to sum all the pixel values of the block, (ii) the
average is determined by shifting the sum right by appro-
priate distance. (iii) the average value is quantized by right
shifting the average value.

546

3.1.3. Range Access Module (C)

This module (Fig. 2) performs two simple tasks: i) stor-
ing the range pixels in registers and ii) computing the sum-
mation of the pixel values.

3.1.4. Domain Average and Transformation

Module (D)

This module consists of three major submodules (Fig. 2).
The first submodule computes the average value of each
2x2 subsquare. It has again two components - an adder and
a shift register. The second submodule consists of the lo-
gic required to compute y ._, d;. Since the domains over-
lap, while accessing a new domain only the portion of it
which does not overlap with the previous domain need to
be fetched, reducing the number of memory accesses. The
third submodule of the domain average and transformation
module consists of the eight spatial transformation units.

3.1.5. Error Computation Module

This module does computation work and comprises of
five submodules (Fig. 2), namely, K Computation Module
(E), T'erm2 Computation Module (F), T'erm1 Computation
Module (G), M in_Terml Computation Module (H) and Fi-
nal Error Computation Module (H).

4. Simulation and Synthesis Results

The proposed ASIC has been modelled using Verilog
Hardware Description Language. The correctness of the
chip was verified by simulating its behavior using Verilog-
XL simulator. After obtaining satisfactory results, the logic
synthesis has been carried using Synergy synthesizer.

We experimented with 64 x 64 images. The original and
reconstructed images are shown in Fig. 3 and the PSNR?,
compression ratio (obtained after a post-processing not im-
plemented in hardware) and encoding times are listed in
Table 1 . The results obtained from logic synthesis are sum-
marized in Table 2. The Cell Area is shown in 10712 sq m.
The total area is 4102855.98 X 10~12 sq m. This will re-
quire a square of side 2.03 mm. The encoding times for the
simulation are obtained in number of clock cycles, which is
then converted to seconds assuming 50 MHz clock rate.

5. Concluding Remark
The proposed architecture has been designed using Ver-

ilog Hardware Description Language and has been simu-
lated and synthesized. The entire architecture contains few

2PSNR is defined as the ratio of the maximum image power to the dif-
ference image power as expressed in dB and the compression ratio is per-
centage reduction in image size over the original image size.

Table 1. Results in terms of Quality, Speed
and Compression

Image PSNR | Compression | Encoding Time

{ (db) (%) (sec)
aero_decimated | 27.14 88.9 0.12
bird_decimated | 16.98 86.4 032
train_decimated | 22.45 87.3 0.26
aerofragment | 32.16 87.6 0.18
bird_fragment 32.12 87.8 0.30
train_fragment | 28.56 88.0 0.41

Table 2. Gate Count and Area
Cell Type Total Count | Total Area
(10712 sq.m.)
ADDER 120 1200000.00
SUBSTRACTOR 94 940000.00
OPEN COLLECTOR 1260 402647.68
FLIP FLOP 1123 922181.76
INVERTER 939 146033.28
MULTIPLEXER 399 186157.44
NAND 1006 230437.12
NOR 304 75398.72
“ TOTAL [5245 l 4102855.98 ”

major hardware components like some high speed adders,
eight array multipliers, few shift registers, multiplexers and
comparators. So it can be realized in a single VLSI chip.
The proposed chip is meant to run at a clock speed of about
50 MHz.

References

[1] A.Jacquin. Fractal image coding : A review. Proceedings of
the IEEE, pages 1451-1465, October 1993.

[2] K. Hwang. Computer Architecture - Principles, Architectures
and Design. John Wiley and Sons.

[31 A.Jacquin. A Fractal Theory of Iterated Markov Operators
with Applications to Digital Image Coding. PhD Dissertation,
Gorgia Institute of Technology, Atlanta, 1989.

[4] L. H. M. Bamnsley. Fractal Image Compression. A K. Peters,
1992.

[5) Y.Fisher. Fractal Image Compression - Theory and Applica-
tions. Springler-Verlag, 1994.

Figure 2. Block Diagram of the Chip

Figure 3. (a) Full Images (b) Image Fragments
- Original and Decoded

547

