A Connectionist Approach for Color Image Segmentation

V.V.Vinod{ Santanu Chaudhury}{t Jayanta Mukherjee} S.Ghoset

{Dept. of Computer Sc. & Engg., Indian Institute of Technology, Kharagpur, India — 721302
{Dept. of Electronics & Elect. Commn. Engg., Indian Institute of Technology, Kharagpur, India — 721302
${Dept. of Electrical Engg., Indian Institute of Technology, Delhi, India —~ 110016

Abstract In this paper a connectionist clustering strat-
egy is presented for segmenting color images. First
the local peaks in the 3-D R,G,B histogram are located.
Then using these as the prototypes other patterns are
classified to one of them. The prototype selection and
classification networks have been analyzed. The proto-
type selection method employs only neuronal dynamics
and therefore is faster than ezisting clustering neural
networks. The classification network takes into account
the distribution of the data and hence is less prone to
misclassifications. Ezperimental results obtained by ap-
plying the network for segmenting one color image is
presented.

Keywords Segmentation, Clustering, Mode Separa-
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I INTRODUCTION

Color segmentation is the process of grouping to-
gether image pixels based on their color values. Earlier
works employed statistical methods for color segmen-
tation using prior knowledge. However, in situations
where the statistical properties are not known a priori,
clustering techniques have to be employed. Most of the
traditional clustering algorithms require the number of
clusters and/or the clustering criterion to be specified
beforehand. This information is rarely available a pri-
ori. Histogram based mode separation techniques have
the capability to autonomously detect the number of
clusters and would apply well in such situations. In
this paper we propose a neural network strategy for
color segmentation by a process similar to mode sepa-
ration.

A number of clustering techniques based on his-
togram analysis have been proposed for color segmen-
tation [1, 2, 3). However, it has been shown that known
techniques for modal analysis of histograms face dif-
ficulties when the histogram is characterized by ex-
tremely unequal peaks and broad or flat valleys [4]. In
the case.of color images the histogram is 3-dimensional
and as a result modal analysis techniques are faced by a
number of extra difficulties. The valley detection meth-
ods employed for clustering 1-D histograms, either do
not become applicable or become computationally very
expensive. Therefore, in general, the projections of the
histogram onto lower dimensional spaces are considered
and the modes so obtained are then combined using
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some criterion. For example in [1] the clusters are de-
tected by finding the modes in the coordinate projec-
tions of the L*,H°,C* histogram and then separating
them using the Fischer linear discriminant. The algo-
rithm depends heavily on the presence of decisive modes
in the 1-D histograms. In the absence of such modes the
method selects a new set of features and proceeds. How-
ever, the feature selection process is computationally
very intensive and results in a large amount of overall
computation time. All 3-D clustering methods based on
lower dimensional projections are faced with this draw-
back. It may be ogserved that, though modes may be
absent in the 1-D projections, they will be present in
the 3-D histogram. Mode separation in the 3-D his-
togram itself will be more direct and efficient. Recently
J o?iron et al. [5] have proposed a minimum volume ellip-
soid based clustering technique. This method, however,
does not work on the 3-D histogram, but on a set of non
continuous points and extracts the clusters sequentially.

Connectionist clustering methods such as self-
organizing feature maps [6] and ART models [7] pro-
vide alternate clustering strategies [18] These models,
except ART, require the number of clusters to be speci-
fied beforehand. And all these networks employ weight
learning and is therefore slow. With respect to the his-
togram the prototypes of the clusters will be the local
peaks. Fast neural networks employing only neuronal
dynamics have been proposed for detecting multiple lo-
cal peakséQ, 10]. We propose to detect the prototypes
in the R,G,B histogram by such a network. A brief
outline of the network is given in section II.

Another aspect of clustering is the process of classi-
fying the patterns to one of the prototypes. Existing
neural networks classifying patterns to the nearest pro-
totype. Consequently contiguous regions may be split
into different clusters. It would be desirable to main-
tain clusters as contiguous regions. Nearest neighbour
classification will result in large errors when the clus-
ters are of varying sizes and shapes. In order to avoid
such difficulties an efficient classification strategy would
have to take into account the histogram distribution in
addition to the distance. We propose a classification
network which takes into account these aspects. The
detailed design and analysis of the network is given in
section III. Experimental results obtained by segment-
ing the image of a natural object is presented in sec-
tion IV.
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Figure 1: Schematic propagation of activations in a 1-D
classification network

The parameters ¢; and ¢y determine the tradeoff be-
tween nearest neighbour classification and strictly fol-
lowing the frequency distribution. A higher (lower)
value of c; will associate a higher (lower) weightage
to the distance between the prototype and the pat-
tern. A higher (lower) value of ¢c; will associate a higher
(lower) weightage to the distribution between the pro-
totype and the pattern. For well-formed modes, where
the number of cells with low frequency counts are less
and placed apart, a lower value of c; will lead to bet-
ter results. On the other hand, if the modes have large
number of closely spaced zero valued cells in them, then
a larger value of c; is suggested.

B Analysis of the Network

The accumulator layer implements the process of
evaluating the classification criterion. We focus on an
accumulator neuron corresponding to a prototype and
briefly discuss the properties of the classification net-
work. In the context of the discretized pattern space
represented by the histogram, two cells are considered
to be in a contiguous region if there exists a path be-
tween them through other cells each with a nonzero
frequency count. Such a path is essentially a path in
the network through which the activation propagates
from one neuron to another. The number of neurons in
a path forms the length of the path. We analyze the
factors considered by the network while classifying a
given pattern. The study is presented with respect to a
gn.e fdimensional histogram so as to keep the discussion

rief.

Figure 1 schematically shows the propagation of ac-

tivations along a path of length 5 from a neuron Ag to
a prototype neuron As. Since connections among ac-
cumulator neurons are only to immediate neighbours,
this is the shortest path from Ay to As. No activation
from Ag will reach As until the fifth iteration. Let w;
denote the quantity ¢y + czh;.

Figure 1(a) shows the activation reaching As at t =
5
ag = W) W2.W3.We. W5 = Hw,-
i=1

This expression may be generalized for any path of
length [ as

It may be seen that in the ideal case where every pat-
tern is contiguous to exactly one prototype and ¢; =0,
classification can be done using this value. The prod-
uct term will be nonzero only for that prototype with
which the pattern is contiguous. However, due to non-
idealities, ¢; # 0 and therefore the product term may
have low nonzero activation for more than one proto-
type. The product will be of significant value only if
all the w; are of high value, i.e., all cells in the path
have high frequency counts. If the activation of the
prototype is sufficiently high then classification is done.
Otherwise, further properties of this path (and other
paths) will have to be utilized. In the next iteration
the network considers all paths of length 6.

The activation along the path from Ag to A; in the
6! iteration will include that shown in figure 1(a) and
all paths of the form shown in figure 1(b). The former is
the result of clamping the activation of neuron Agy. The
latter is the contribution of paths of length 6. There will
be four such paths. The total activation along all these
paths is obtained as

5 4
af = Hw.-(l + Zw.-)
i=1 i=1

In the above expression, the summation is the new term
introduced. As a result, the earlier measure is now
weighted with the total frequency count along the path.
It may be observed that the summation will have a low
value if there are more valleys and a higher value other-
wise. This term may be viewed as counting the number
of valleys.

The activations added to the above in the 7** iter-
ation are shown in figure 1(c). Including these o is
obtained as:

5 4 4
of = JJw+Y wi+d wi+
i=1 i=1 i=1
3 3
Z wiw; + Z?w;w.-.,.l)
i=1,7>i41 i=1
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II PROTOTYPE SELECTION

The prototype selection network has two layers of
neurons called accumulator layer and decision layer.
Each layer has one neuron corresponding to each his-
togram cell. Interconnections are present among neigh-
bouring neurons in the accumulator layer. Each neuron
in the accumulator layer is connected to the correspond-
ing neuron in the decision layer. The decision layer
decides a prototype and inhibits other neurons in the
neighbourhood of the prototype. For detecting the pro-
totypes, the histogram values are given as inputs to the
accumulator layer neuron and the network is updated
synchronously. The network detects the prototypes by
adaptive smoothing and adaptive thresholding. That
is, the smoothing kernels and thresholds applied for de-
tecting prototypes depend on the shape and size of the
mode. Consequently the performance is not degraded
by the presence of modes of widely varying sizes and
shapes. The network is also capable of detecting pro-
totypes in large regions with uniform distribution. The
detailed architecture and analysis of the network may
be found in {10, 11].

III THE CLASSIFICATION NETWORK

The classification network consists of two layers, each
layer having one neuron corresponding to each his-
tosram cell. One of the layers is visible and the other
hidden. The visible layer shall be referred to as the ac-
cumulator layer and the hidden layer shall be called the
decision layer. Let A;j; and Djji respectively denote
the accumulator layer neuron and decision layer neu-
ron corresponding to the cell (i, 4, k) of the histogram.
The activation of Ayj: after the t*P synchronous iter-
ation of the network shall be denoted by af;;. Also,
in subsequent discussions, neurons in the neighbour-
hood of A;j: shall mean the neurons corresponding to
cells neighbouring (i, j, kL. The histogram count of cell
(4,3, k) shall be denoted by h;;;.

A The Network Architecture

When presented with a pattern to be classified, the
network should try to find the closest prototype which
can gather sufficient strength from the pattern. The
network starts with minimal length paths and itera-
tively increases the length. For this each neuron is con-
nected to neurons in its immediate neighbourhood. Let
N;jr denote the neurons in the immediate neighbour-
hood of A;ji.

{Gmn)l #i,j#mk#n
and I -i|=1,|m—-j|=1,In—k|=1)}

Nijg =

The activations received by a neuron are proportional
to its frequency count. This ensures that propagation
across ceﬁs with lower frequency counts are less com-
pared to that across cells with larger frequency counts.
However, in order to allow classification of patterns not
contiguous with any prototype a small positive constant
is added to the frequency values of the cells. It may be
observed that we are interested in paths starting from
a given pattern and ending at the prototype. Hence

propagation across a prototype is not needed. The in-
terconnection weights from A;j; to Aimn may now be
written as

W(Aijk y Almn) =

¢+ C2h1mn if (1: j) k) € Nimn
and A;ji Aimn are not prototypes
c1 + c2hij fi=landj=mandk=n
and A;ji Aimn are not prototypes
1 if Aimn 18 a prototype
0 otherwise

where ¢; and ¢, are constants such that ¢; + ¢2hin, <
1.0. This restriction is in order to ensure that the acti-
vation decreases as the distance of the prototype from
the pattern increases.

The activation function of the accumulator neurons
ifz>1

is chosen as
1
fa(z)=¢ -1 ifz<-1
z otherwise

With the above interconnections, every prototype start-
ing from the one nearest to the given pattern will iter-
atively accumulate activation from its neighbourhood.
The decision layer accepts an accumulator layer neu-
ron gaining sufficient activation as the correct proto-
type and inhibits others. For this purpose, only those
decision layer neurons which correspond to the proto-
types are relevant. Such decision layer neurons receive
unit weighted interconnections from the corresponding
accumulator layer neuron. The threshold ¢ of the deci-
sion layer neurons are fixed at a level close to the maxi-
mum value attainable by an accumulator layer neuron.
The connections from the decision layer neurons (cor-
responding to the prototypes) to the accumulator layer
neurons are set up as

_J —oo ifiZlorj#mork#n
W(Dije, Atmn) '{ oo  otherwise

1
where oo stands for a large positive number. A higg
gain sigmoid function f3(-) is used as the activation
function of the decision layer neurons. When the ac-
tivation of an accumulator neuron corresponding to a
prototype exceeds the threshold, the corresponding de-
cision layer neuron will get an activation near 1. The
pattern is then classified to this prototype.

Consider a pattern mapping onto the neuron A;;;.
For classifying this pattern the neuron A;j; is clamped
at +1.0 and the network is updated synchronously.
Each neuron Aimn, € Njji will receive activation pro-
portional to ¢; + ¢2hjm,. By iteratively accumulating
the activations, the neurons will increase in activation.
When a prototype acquires activation greater than the
threshold, the corresponding decision layer neuron be-
comes active. The high positive weight from the deci-
sion layer will sustain the winner accumulator neuron.
The large negative weight will cause all other neurons
to be strongly inhibited. The pattern is then classified
with this prototype.
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In this expression a number of extra terms are intro-
duced. The terms w;w; for j > i are essentially detect-
ing the presence of two valleys. It may be noted that
the term ) w; may be of same value due to the pres-
ence of one deep valley or two valleys of half the depth.
In this iteration the network is now explicitly looking
for two distinct valleys. The effect of the last sum-
mation is to detect adjacent cells with low frequency
counts. In other words, the number of valleys of width
2 are being used this time to differentiate the two proto-
types. It may be noted that this term is given a higher
weightage than the previous ones. Hence the presence
(absence) of adjacent valleys are more important for
the network than the presence (absence) of non adja-
cent valleys. The other term introduced is 3~ w?, which
is augmenting the effect of >~ w;. However, since all
w; < 1, the former will have a low value compared to
the latter and may be ignored.

The expression for the activation along the path at
the 8** iteration may be written as

5 4 3
o = a;+Hw.~(wa+ Z w.mu}—{—

i=1 i=1 i=1,j>4
3 3
2 w?wj + Z wiw; w,,)
i=1,j>i i=1,5>6,k>j

The term Y~ w; wJ? may be ignored compared to the term

w;w; present in the expression for of. It only serves
to slightly add on to the effect of the latter term. The
quality of the path being considered is the same, namely
presence (absence) of two distinct valleys. On similar
grounds, the first and the third summations also can
be ignored. The third term is the product of 3 distinct
frequency values. As in the previous case, the network
is looking for the presence of 3 valleys, consecutive as
well as disjoint.

Another factor playing an important role in the clas-
sification scheme is the distance. Since the network con-
siders paths of increasing sizes, this factor is automat-
ically accounted for while classifying. For example, in
the 8t* iteration, the activation accumulated at Ag from
Ap will consist of the product term only. Whereas, for
As the product term has been enhanced by the various
factors discussed above. Since all these factors are pos-
itive, the activation accumulated along a path increase
with the number of iterations. It is possible to strike
a balance between the distance and the other measures
discussed above. This factor may be controlled by vary-
ing ¢, for small effects and varying the neighbourhood
for gross effects. In general, for a prototype at a dis-
tance ! from the pattern, we see that in the (¢ + I)**
iteration, the network considers

o the valleys of width up to ¢
o the presence/absence of t distinct valleys

e the contiguity of the path as a whole
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¢ the distance between the pattern and prototype

v

The above discussion has been done with respect to
a 1-D histogram. In the case of the three dimensional
R,G,B histogram, in addition to the width and depth
the area and volume of the valleys will also be taken
into account.

IV  Results

In this section we present the results obtained by
applying the proposed strategy to segment the image
of a natural object. The 3-D R,G,B, histogram of the
image was used as input to the network. The range of
each color component (0 to 255) was divided into 25
equal sized cells for constructing the histogram. The
histogram values were scaled to lie in the range [0.0,0.4]
(i.e. h = 0.4). This scaling was dictated by the proto-
type selection network.

The activation function fi(-) was chosen as:

1

fa(@) = T (=109)

A discussion regarding the choice of parameters for the
prototype selection network may be found in {11]. The
classification network was employed with ¢; = 0.5 and
¢z = 1.25. The threshold of decision layer neurons was
chosen as 0.9.

Figure 2(a) shows the 256 x 256 image of a flower
vase with flowers. The segmented image is give in 2(b).
The network correctly detected all the different colored
regions of the image. The original image had smooth
variations of colors resulting in spread out modes with-
out clear demarcations. In spite of this, the network
correctly segmented the image. The number of iter-
ations required for detecting the prototypes was 200.
The average number of iterations required for classify-
ing the image pixels was 4.7 per histogram cell with
nonzero frequency count.

V Conclusion

In this paper we have presented a connectionist clus-
tering strategy for color image segmentation. The clus-
ters are extracted directly from the R,G,B histogram.
Consequently the method works better than other
strategies employing lower dimensional projections of
the histograms. The prototype selection method em-
ploys only neuronal dynamics and therefore is faster
than existing clustering neural networks. The proposed
approach classifies patterns based on the distribution of
the data unlike other clustering neural networks which
perform nearest neighbour classification. Therefore it
is less prone to misclassifications.
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(b)

Figure 2: Flower vase. (a) original image. (b) seg-
mented image
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