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Abstract

In this paper we present a discrete shading tech-
nique using Medial Sphere Representation (MSR)[1]
of 8D binary image data based on digital generalized
octagonal distances. QOur method is computationally
attractive as it does not require the explicit computa-
tion of surface normals. We have compared our results
with images rendered from vozel and octree reprenta-
tions while using analytical surface rendered images as
bench marks. The quality of rendering by our method
is certainly superior to those of obtained from wvozel
and octree representation.

1 Introduction

In various applications of medical imaging, image
processing, solid modeling, 3D simulation and scien-
tific visualization, three dimensional objects are rep-
resented in a 3D binary matrix, where occupancy of
each unit object volume cell (or voxel) is described.
The shape of the voxels is taken to be a cube and thus
this model is popularly known as cuberille model[2].
Visualization of 3D objects represented in this form is
one of the major challenges today. For achieving this,
it is not only sufficient to project the object surface
points as visible from the viewing direction on to a 2D
screen, but shading is also required to provide the crit-
ical depth cues. In general, shading involves compu-
tation of the intensity (brightness) value that reaches
the viewer’s eye from each visible surface-point. The
intensity value may be computed by different shading
models taking into account the surface normal, the
characteristics of the objects surfaces, distance from
the viewer’s position and the light sources[3].

In this paper, we discuss shading of 3D voxel ob-
jects which is referred to as discrete shading[4]. In
conventional shading techniques, object surfaces are
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composed of polygonal meshes or mathematical sur-
faces which describe surface normals with high degree
of accuracy at each surface point. In contrast, in the
discrete shading technique, the object’s actual surfaces
and their normals are unknown and must be recovered
from the voxel information. In the cuberille model, a
voxel has six faces with normals in the directions of the
primary axes and atmost three faces are visible from
a viewing direction. Based on these facts, various dis-
crete shading techniques have been developed. The
major contentions of these work are to keep the com-
putation time for recording surface normals as less as
possible and to increase the accuracy of the computa-
tion of surface normals. There lies a trade-of between
these two objectives as the increase in the degree of ac-
curacy of extraction requires more computation. How-
ever the techniques are finally judged by the quality of
produced images of known 3D geometric objects (voxel
form) compared (visually) with the benchmark images
(produced by conventional rendering techniques such
as Gouraud’s shading[5], Phong’s shading [6] from the
mathematical description of these surfaces). Some of
the reported techniques of discrete shading in cuber-
ille environment are: constant shading[3], distance-
only(depth-only) shading[7][8], Image-based contex-
tual shading[9], Normal-based contextual shading[2],
congradient shading[10] etc. It is easy to observe that
cuberille environment suits octree encoding of voxel
data as the octree technique represents the object vol-
umes by a set of disjoint cubes of different sizes. Hence
similar methodologies have been adopted for discrete
shading of octree encoded data[11].

The advantage of using octree encoded data is the
reduction in the volume of the data to be processed
(less number of cubes to be rendered). But the dis-
advantage lies in the extra effort required for comput-



ing the neighboring volume elements of a voxel that
is required for more accurate computation of surface
normals.

In this paper, we focuss our attention to discrete
shading on a non-cuberille environment, called the me-
dial sphere representation(MSR)[12][13] of a 3D ob-
ject. The advantage of MSR not only lies in data
reduction but also in representing surface normals in
more number of directions exploiting the geometry of
medial spheres.

2 Medial Sphere Representation using
Octagonal Distance

In 2D, binary images could be represented by Me-
dial Axis Transform (MAT), which is also called as
Medial Circle Representation (MCR). MAT consists
of a set of center and radii of the maximal block of
the image 3. Here every center is located half-way
between the boundary on either side. Hence the col-
lection of all these centers forms a sort of spine for the
object and is called the medial axis. The computa-
tion of medial axis requires the distance transforma-
tion. Distance transform converts the binary image
¥ consisting of object pixels(1) and background pix-
els(0), into an image where all pixels have a value cor-
responding to the distance of the nearest background
pixel. For defining various digital distances in 2-D,
different neighborhood sequences for path definitions
have been used[14] [15]. The commonly used neighbor-
hood sequences are 4-neighborhood (city block) and
8-neighborhood(chessboard). It is observed that nei-
ther cityblock nor chessboard distance is close to the
Fuclidean distance. 3D extension of MCR is known
as Medial Sphere Representation(MSR), which de-
scribes a 3D object by the set of centers and radii
of medial spheres. Similar to the 2D images, the dis-
tance maps are also used in 3D images. Commonly
known distance functions in 3D use 6-neighbors(face
neighbor), 18-neighbors (face and edge neighbor) and
26-neighbors(face, edge and vertex neighbor). It
is interesting to note that the shape of the medial
spheres varies if we choose different neighborhood
sequences[13] for forming the distance map. In our
shading algorithm we shall render each medial sphere
individually and the combined effect of all the ren-
dered spheres produces the desired image of the 3D
object considering the fact that the graphics environ-
ment provides z-buffering hardware feature. The com-
putation gets reduced as the shading of a sphere does
not require the computation of normals by scanning
the neighborhoods of any voxel. Rather, for any point,
the vector from the center of the sphere to that point,

gives the desired normal direction. Hence it is impor-
tant to know the shape of the digital medial spheres
for different octagonal distances in 3D, which could
be shown as convex polytopes. These have been dis-
cussed elsewhere[12]. However a brief introduction of
3D octagonal distances are given below.
2.1 Octagonal Distances in 3D

In 3D digital space Z3, three types of neighbor-
hoods have been identified. They are face neighbor-
hood (type 1), edge neighborhood (type 2) and ver-
tex neighborhood (type 3). The neighborhood se-
quences of length upto 3 are {1}, {1,1,2}, {1,1,3},
(1,2}, {1,2,2}, {1,2.3}, {13}, {1.3,3}, {2}, {2.2.3},
{2,3}, {2,3,3}, {3}. It is found [16] that the dis-
tance function defined by neighborhood sequence B
is a metric if B is sorted. Hence all the neighborhood
sequences mentioned above are metric. The computa-
tions of the vertices of these digital spheres, which are
convex polytopes in shape, are discussed in [12].

3 Shading of 3D Objects

For the purposes of comparative study on shad-
ing, we have considered three different representations,
MSR, octree and voxel data for rendering.

Using MSR: In this technique, we have considered
the input as an MSR of a 3D object. Each me-
dial sphere is rendered independently aided by the
z-buffering features of the graphics hardware environ-
ment. Hence hidden surface elimination is automati-
cally performed by the graphics workstation. To ren-
der a medial sphere the vertex of the polytopes are
computed and the normal at a vertex has been taken
as the direction of the vector drawn from the center of
the sphere to that vertex. This normal has been used
to compute the intensity value at that point by using
simple shading model [3]. The faces of the polytope
are then shaded by Gouraud’s interpolation technique
[5] using the intensity values computed at the vertices
forming a face.

Using voxel and Octree representations :

A voxel or a leaf node of octree is of cubic shape.
Hence each face of this cube is rendered and the com-
bined effect produces shaded image of the 3D object.
To render a face of the cube, the intensity at each ver-
tex of the cube is computed by applying the same
shading model followed by Gouraud’s interpolation
technique. The normals at the vertices are drawn from
the center of the cube.

Surface Rendering:

In this paper, we have considered only known 3D geo-
metric objects such as sphere, cylinder and cone. We
have applied the same shading model to render the
boundary surfaces (from analytical model) of these




objects. These images are taken as benchmark images
and are compared with the discretely shaded images
both visually as well as quantitatively by computing
a correlation measure between these images.

It is interesting to note here that MSR description
of a 3D object may consist of several medial spheres
of small radii ( < 3) lying near the boundary of the
object. Even if we ignore the shading of these spheres,
the appearance of the shaded image does not degrade
and in fact with our quantitative measure (described
in the next section), the quality has been shown to im-
prove in most of the cases. Hence in our study we have
also considered shading of Truncated MSR (TMSR) of
a 3D object. In TMSR spheres of smaller sizes are ig-
nored.

3.1 Measure on Relative performance of
discrete shading over different repre-
sentation schemes

We have carried out experiments to study the rel-
ative performance of discrete shading techniques. For
this, same shading model has been used for producing
the images of the 3D objects from different represen-
tation on the same position of projection screen using
identical coordinate convention. We have used differ-
ent representation schemes such as voxel, octree and

MSR. For MSR, we have considered different digital

octagonal distances. The benchmark image is pro-

vided by the surface rendered image.

Correlation Measure:

Let the benchmark image be denoted as I(4,5),i =

1,2,...,M,and j = 1,2,..., M. Let the discretely ren-

dered image be denoted as (i, j),i = 1,2, ..., M, and

j =1,2,..., M. Then we have used simple correlation

measures as follows:

e (Covariance of I, and I;) a
" (s.dof I x s.d of I)

~—

We have considered background pixel as dark(0)
and in the computation of r, if we get I;(i,j) =
I4(i,j) = 0 at any point (i,j), we have ignored them,
(i.e., for each occurance of such case, the value of M?
is decreased by 1 and the total number of object pixels
(N) also adjusted accordingly. This removes the bi-
asing in the correlation measure to its higher value as
both the images will have a large number of common
background pixel. It may be noted that the value of r
will lies between -1 and +1, with 1 indicating strong
correlation. Naturally the value nearing zero implies
poor correlation.

Another measure used to find the relation between
the benchmark image and the shaded image from MSR

is the Signal to Noise Ration (SNR). SNR,,s is de-
fined as

SNRyms = i 2 ) (2)
M i S i W(i, ) — 14, )2

4 Experimental Results

A set of shaded images obtained by rendering the
sphere from its MSR of different reprsentative dis-
tances has been illustrated in Figure 1. In this case,
the light direction is taken as (-1, -1, 0) (consider-
ing the vector from (1,1,0) to (0,0,0) in 3D coordinate
space). In Figure 2 shaded cylinders using different
representation schemes have been shown. The quality
of shaded images using MSR is certainly better than
those of voxel and octree reprsented ones.

Figure 1: Shaded images of the sphere from MSR of
different digital distance functions for the light direc-
tion (-1,-1,0)

Table 1 describes the correlation and SNR, for dif-
ferent representations of different objects for light di-
rection (-1,-1,0). To reduce the effect of light direction



Figure 2: Comparison of shaded images for Cylinder
computed from various representations and MSRs of
different octagonal distances.

Table 1: Correlation(r) and SNR between the bench-
mark images and the rendered images obtained from
MSR,octree and voxel data for light direction (-1,-1,0).

H [ Sphere I Cylinder I Cone i
B | T [ SNR_ || T [ SNR r [ SNR_ ||
1 0.606 2.395 0.297 1.871 0.827 3.125
112 0.801 3.554 0.595 2.699 0.805 3.207
113 0.877 5.206 0.655 3.424 0.868 5.04
12 0.822 3.704 0.596 2.731 0.795 3.157
122 0.795 3.445 0.561 2.565 0.772 3.064
123 0.866 4.533 0.475 2.616 0.827 4.178
13 0.861 4.695 0.512 2.785 0.856 5.173
133 0.839 4.198 0.471 2.601 0.800 4.414
2 0.696 2.469 0.505 2.197 0.654 2.336
223 0.759 2.846 0.419 2.121 0.655 2.479
23 0.747 2.793 0.418 2.133 0.708 2.848
233 0.740 2.722 0.394 2.067 0.673 2.665
3 0.705 2.528 0.347 1.997 0.690 2.841
Octree 0.405 2.504 0.133 2.182 0.371 2.34
Voxel 0.313 2.165 0.108 1.572 0.361 1.718

in the correlation measure, we have obtained correla-
tions for different light directions (such as (-1,0,0),(0,-
170)5(())0;'1))(05'1)'1)5('1a05'1))('15'170) and ('15'17'1))
and the averages of them are shown in Table 2. From
Tables 1 and 2 we observe that quality of rendered im-
ages improves if we use MSR rather than voxel or oc-
tree representation of 3D objects. Even in MSR some
octagonal distances such as {113},{123},{13} give bet-
ter results compared to the rest(see also Figure 1).

Besides quality, another advantage of this scheme
is that it does not require explicit normal computa-
tion. Even it does not require extra storage for coding
the normals at the boundary points. The size of the
data is also less. The major bottleneck of the system
is the use of z-buffering which slows the speed. MSR
is not a presorted data structure. In voxel represen-
tation and octree representation many rendering tech-
niques have effectively used these features for speeding
up the computation and avoiding z-buffering compu-
tation. But one can prepartition medial spheres into
several groups so that parallel rendering tasks could
be employed independently on those groups which will
speed up the operation.

It is observed from the set of medial spheres that
some of the spheres have small radii values. These
small spheres are situated at the boundary points.
Elimination of such small spheres (the representation
is called as truncated MSR or TMSR) results in reduc-
tion in storage requirement as well as in smoothing the
object. Due to the smoothing, the correlation is im-
proved and is shown in Table 3. It could be noted



Table 2: Average Correlation(r) and SNR between the
benchmark images and the rendered images obtained
from MSR, octree and voxel data averaged for different

light directions

((-1,0,0), (0,—1,0), (ana‘l)a (07‘17‘1)7 (—1,0,—1), (—1,—1,0) and

Table 3: Correlation(r) and SNR between the bench-
mark images and the rendered images obtained from
truncated MSR for different light directions and com-

pared with ordinary MSR

(-1,-1,-1)) Cylinder Cone

I [ Sphere I Cylinder I Cone I MSR i TMSR MSR i TMSR

[ B [ r [ SNR || r [ SNR || r ] SNR | B r [ SNR [| r [ SNR r [SNR [ r [ SNR
1 0.635 2.800 0.490 2.643 0.611 3.487 1 0.49 2.64 0.49 2.55 0.61 3.49 0.63 3.49
112 0.844 4.485 0.720 | 3.646 0.689 4.415 112 | 0.72 | 3.65 0.72 | 3.61 0.69 | 4.41 0.69 | 4.30
113 0.889 | 5.565 0.771 | 3.871 0.724 4.983 113 | 0.77 3.87 0.77 3.88 0.72 4.98 0.73 4.82
12 0.865 4.895 0.744 3.764 0.713 5.017 12 0.74 3.76 0.75 3.71 0.71 5.02 0.72 4.80
122 0.858 4,771 0.745 3.513 0.716 5.085 122 0.74 3.51 0.74 3.46 0.72 5.08 0.71 4.75
123 0.897 5.758 0.728 3.413 0.747 5.932 123 0.73 3.41 0.73 3.38 0.75 5.93 0.75 5.48
13 0.878 5.120 0.728 3.385 0.737 5.386 13 0.73 3.38 0.74 3.42 0.74 5.39 0.74 5.13
133 0.852 4.469 0.710 3.175 0.713 4,725 133 0.71 3.17 0.71 3.18 0.71 4.72 0.71 4.46
2 0.765 3.550 0.705 2.898 0.635 3.962 2 0.70 2.90 0.72 2.91 0.63 3.96 0.64 3.57
223 0.761 3.663 0.663 2.696 0.663 4.425 223 0.66 2.70 0.68 2.69 0.66 4.42 0.67 3.95
23 0.747 3.467 0.662 2.662 0.657 4.167 23 0.66 2.66 0.68 2.66 0.66 4.17 0.65 3.70
233 0.730 3.252 0.639 2.557 0.637 3.752 233 0.64 2.56 0.66 2.57 0.64 3.75 0.63 3.39
3 0.632 2.847 0.601 2.479 0.575 3.338 3 0.60 2.48 0.63 2.65 0.57 3.34 0.58 3.00
Octree 0.235 2.417 0.325 2.207 0.202 2.662
Voxel 0.289 1.944 0.238 1.819 0.249 2.172

that with TMSR for sphere, the correlation is almost
similar to that of MSR case (for many of the distance
functions), since all the medial spheres in MSR are of
radii greater than the threshold value. Hence there
is no improvement in the correlation measure in such
cases. However for the cylinder, the correlation is im-
proved from 0.70 to 0.72 by using TMSR for distance
function {2} and from 0.60 to 0.63 for the distance
function {3}. Similarly for cone, the correlation is im-
proved from 0.61 to 0.63 for the distance function {1}
(Please refer Table 2 and 3). It may however, be noted
that truncation has hardly any effect for distances that
produce good shading effect.

5 Conclusion

In this paper we have presented a shading technique
using MSR, which does not require explicit computa-
tion of surface normals. We have also studied on the
suitability of a set of generalized octagonal distance
for this purpose and found that {113},{13},{123} dis-
tances perform well in this regard. On comparison
with the shaded images obtained by octree and voxel
representation under similar conditions it has been
observed that MSR performs better in most of the
cases (irrespective of the use of any 3D octagonal dis-
tance). Another interesting observation is that use
of Truncated Medial Sphere Representation (TMSR)
improves the quality of shading in some cases as it
smoothens the appearance of the shaded surface. It is
interesting to note also that TMSR, occupies less stor-
age space as it prunes many spheres of smaller radii

lying on the boundary.
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