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Abstract

In digital color imaging, color filter arrays (CFAs)
are obtained from single chip cameras in the form of
sampled spectral components (red, green and blue) in
an interleaved fashion. Color demosaicing is the pro-
cess of interpolating these color filter arrays (CFAs)
into the dense pizel maps for each spectral component.
There are different interpolation techniques for color
demosaicing operations. These approaches have their
limitations regarding the improvement of the quality
of the images. They perform poorly in recovering the
edges of the images. In this work we have applied
Markov Random Field (MRF) processing over these
roughly interpolated images to improve the quality of
the reconstruction. We have observed that the process-
ing improves the image quality in many cases. The
edges of the reconstructed images are significantly en-
hanced using MRF processing.

1 Introduction

Single-chip cameras [1] [2] for color imaging use
color filter arrays (CFAs) to obtain sampled red, green
and blue pixel data (or luminance and chrominance
signals) in an interleaved fashion. There are different
checker-board patterns [1] [2] for obtaining color filter
arrays (CFAs). In our work we have used the Bayer
pattern [3] in the CFA. The Bayer pattern is shown in
Figure 1. In the figure the sampled color components
are denoted by R (for red), G (for green) and B (for
blue). Once sampled color pixel data in the CFAs are
available, the sparse pixel values are required to be
interpolated for obtaining dense pixel maps in all the
three spectral components.

The process of interpolating these sparse data into
the dense pixel maps is referred to the literature as
color interpolation or color demosaicing. In the early
years (late eighties and early nineties), one of the ma-
jor concerns of this interpolation task was to keep the
hardware cost as well as the computation time as small
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Figure 1: The Bayer pattern.

as possible. This is to make the digital color imag-
ing (for both still and video images) cost-effective and
technologically viable. Hence the early methods were
based on low storage requirement and simple compu-
tations. In the present work, efforts are made to im-
prove the quality of the interpolated images obtained
by the existing techniques. The process may be con-
sidered as the post-operation on the roughly interpo-
lated images obtained from the single-chip cameras.

2 Comparisons among different tech-
niques

Different color demosaicing algorithms are available
in the literature. The simplest technique for color in-
terpolation is to replicate the known spectral compo-
nent [4] [1] from the neighbors of a pixel. The perfor-
mance greatly improves, if one computes with more
than one neighbors having same spectral components
in the CFA. In bilinear interpolation techniques the
average of such neighboring values is computed. There
are also techniques which compute weighted averages
of the neighboring spectral components, specified in
the CFA [5]. For example, B-Spline bi-cubic polyno-
mials [6] are used for determining these weights.

In other approaches, the color demosaicing algo-
rithms are mainly designed on the following two prin-
ciples:

1. interpolation with the pixels lying with the low
gradient directions [7] [8].



2. use of the homogeneity of the cross-ratios of dif-

ferent spectral components around a small neigh-
borhood [9], [10].

Kimmel [11] also proposed an algorithm by weight-
ing the cross-ratios with the gradient information
around the neighborhood of a pixel.

In another variation, instead of considering only
horizontal and vertical gradients, gradients in different
directions are used in the interpolation process. The
directions where the gradient values are less are used
in interpolation.

In our work, we have compared these techniques by
finding out the PSNR’s (Peak Signal To Noise Ratio)
with respect to the original images. We have used
the Bayer pattern (refer Figure 1) for obtaining the
Color Filtered Array (CFA). As the PSNR’s do not
always reflect the quality of the images in terms of
edge reconstructions, we have used another measure
PESNR, (Peak Edge Signal to Noise Ratio) for reflect-
ing how edges are recovered in the interpolated im-
ages. Let Is(z,y),s = 1,2,3 be the spectral compo-
nents of the benchmark images of size M x N and
I(z,y),s = 1,2,3 be the respective reconstructed
spectral components. Then PSNR and PESNR are
defined below:
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For defining PESNR we have used the binary edge
map of an image, which is computed from the gradient
image of the CFA. In an edge map e(x,y) of an image,
if the value at a pixel location is 1 it shows the presence
of edge pixels and otherwise the value is 0. Then,
PESNR is defined as:
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In our experimentation we have used following in-
terpolation techniques.

PESNR = 20xlog(

1. Bilinear Interpolation Techniques (BI) [2]
2. B-Spline Interpolation (BSPI) [6]

3. Interpolation by Averaging Red and Blue Hues
(ARBH)[9]

4. Laplacian Corrected Edge Correlated Interpola-
tion Techniques (LCEC) [12]

Table 1: PSNR of Different Interpolation Tech-

niques
Tmages BI | BSPI | ARBH | EDCRAC | LCEC | VNGD
Tena 2824 | 2548 | 25.27 2557 | 29.45 | 29.02
Peppers | 29.45 | 21.52 | 24.47 25.31 | 27.24 | 26.94
Mandrill | 21.00 | 20.09 | 21.48 2171 | 21.91 | 23.79
T'mahal | 23.38 | 20.02 | 24.76 25.67 | 25.36 | 26.47
L’house | 25.09 | 22.47 | 27.27 30.61 | 30.48 | 31.46
Sails 27.14 | 23.93 | 28.74 31.36 | 31.00 | 31.81
Statue 27.85 | 23.86 | 29.66 31.90 | 32.21 | 34.08
Window | 26.84 | 22.81 | 29.39 32.93 | 33.09 | 33.62
Flower 22.59 | 18.55 | 22.85 24.24 | 24.96 | 24.58
Bmw 21.68 | 18.87 | 21.73 22.27 | 22.51 | 21.76

Table 2: PESNR of Different Interpolation

Techniques
Tmages BI | BSPI | ARBH | EDCRAC | LCEC | VNGD
Tena 32.93 | 30.16 | 33.36 2048 | 33.12 33.10
Peppers | 11.51 | 10.66 | 10.33 11.75 | 12,10 | 12.13
Mandrill | 22.09 | 21.71 | 21.98 20.25 | 23.05 | 22.55
T'mahal | 19.55 | 17.32 | 22.33 20.02 | 21.34 | 23.08
L’house | 19.61 | 18.91 | 18.57 17.39 | 20.53 | 20.04
Sails 18.33 | 16.04 | 18.35 23.92 | 24.60 | 22.95
Statue 12.91 | 12.44 | 11.88 13.48 | 13.70 | 13.79
Window | 15.17 | 11.78 | 18.52 24.42 | 24.09 21.13
Flower 18.61 | 14.12 | 21.71 22.63 | 25.11 | 26.60
Bmw 22.01 | 13.46 | 25.12 20.30 | 28.74 | 31.09

5. Edge Directed Cross-Ratio Averaging and Cor-
rections (EDCRAC)[11]

6. Interpolation with the values lying in Variable

Number of Gradient Directions (VNGD)

We have used acronyms against each technique, which
will be used in our subsequent discussions.

The PSNR and the PESNR values obtained by dif-
ferent techniques are presented in the Tables 1 and 2.
We found that the quality of reconstruction from the
VNGD method is very good and often the best among
all the techniques considered here (refer Table 1 and
2). We have also noted the computation times for dif-
ferent interpolation techniques. We found that bilin-
ear (BI), ARBH and LCEC are computationally more
efficient than the other methods such as BSPI, ED-
CRAC and VNGD. Out of these last three the VNGD
is the slowest one. Interestingly the LCEC method is
both computationally efficient and perform very close
to the VNGD in terms of quality of reconstruction. In
some cases the performance of the LCEC is the best
among all the techniques used in our experimentation.



3 Markov Random Field (MRF): Pre-
liminaries

Let X = X,,s € S denote a family of random vari-
ables indexed by site s. Let Q denote the space for all
possible configurations of X. In the present context,
X, assumes the pixel values for any spectral compo-
nent from a finite set of B (=256, in our case) levels
at location s € S over an M x N lattice such that
S ={(4,7)]1 <i < M,1 <j < N} Letus define
G = {Gs|s € S} as a General Neighborhood System of
S as follows ,

Definition 1: G is a General Neighborhood System
if it satisfies the following properties:

1. GsC S
2. s¢ G,
3.Vs,reS,se G, &redG;

The sites r € G are called the neighbors of s. There
are different neighborhood structures over S. In the
present context, over a lattice of M x N the nth order
neighborhood of s(= (i, 7)) is defined below:

Definition 2: An nth order neighborhood (™ (s)
of s is defined as: 7™ (s) = {r|d(s,r) < n,r # s},
where d(.) is a distance function.

In our work we have considered the Chess-board
Distance for the neighborhood definition and we have
restricted ourselves to the first order neighborhood
system. The pair (S, Q) is called a graph.

Let us now define the Markov Random Field (MRF)
as follows:

Definition 3. X is a MRF with respect to the general
neighborhood system G if

1. P(X =w) >0,Yw e N

2. P(Xs = z4| X, = zp,r #5,YVr € 5) = P(Xs =
zs| X, = z,.,Vr € Gy)

where P(.) and P(.|.) denote the probabilities and con-
ditional probabilities respectively.

The interesting part of MRF processing is that both
the probability distribution of X and conditional prob-
ability distributions P(X,|X,,Vr € S,r # s) follow
Gibbs Distribution [13] which is of the following form:

Definition 4. A Gibbs Distribution with respect
to a graph (S,G) is a probability distribution 7 on
configuration Q such that: w(w) = E_U;)/T, where Z
is a normalizing constant and T is the temperature. U
is called the energy function.

As Z is the normalizing constant it follows that:

Z = Syyeqe VT (3)

The energy function U takes the following form:
Uw) = ZeecVe(w) (4)

where V.(.) is the potential function defined over
cliqgues C, as defined below:

Definition 5: A Clique c € C is defined as a sub-
set of S such that every pair of distinct sites in ¢ are
neighbors. A single site s is also defined as a clique.

In restoring or interpolating the images, one may
consider the Bayesian approach [13] by maximizing
the a posteriori probability. The MRF modeling is
suited to this approach as the functional forms of the
probability distributions are known to us.

4 MRF processing for Color Demo-
saicing

Before going into the description of MRF process-
ing, first we will define a few notations and terminolo-
gies which are used in our description. We denote the
red, green and spectral components of a color image
as I5(4,5),1 <i < M,1<j <N fors=1,2and
3 respectively. We obtain a CFA using color masking
functions which are defined below.

Let

fi(i,5) = 1if mask at (4,j) is red
= 0 Otherwise

Similarly, f2(4,j) and f5(i, j) are defined for green and
blue masks respectively. It may be noted that the
mask functions are mutually exclusive which implies:

¥ fs(6,5) =1 (5)

Using these color masks we can obtain Color Filter
Array (CFA) as follows:

c(i,§) = B3, (fs (i, 4) L (i, 5)) (6)

The CFA’s are subjected to color interpolation tech-
nique to reconstruct back the images as I;(4,j), for
s = 1,2 and 3. Initially we will have an interpolated
image i (4,7),s = 1,2 and 3 using any one of the
algorithms mentioned previously. These initial esti-
mates are subjected to the MRF processing for further
enhancement of the images.
4.1 The maximum a posteriori (MAP)
estimation approach

In our case we will consider the application of MRF
modeling in maximizing the a posteriori probability of
the interpolated image. A detailed discussion of this
approach has been made in [14]. We will consider the

observed image as the Igo)(i,j),l <i<M1<j<



N,1 < s < 3, which have been obtained by any one
of the existing interpolation technique (say by bilinear
interpolation method). We assume here that an addi-
tive Gaussian noise corrupts the true spectral compo-
nents I;(i,7) to produce the resulting observed image

0 (i,7). Hence they are related as follows:

10, §) = I,(i, §) + n(i, §) (7)

In the above equation n(i, j) follows a Gaussian dis-
tribution N(0,0(¢,7)). We also assume that n(i,j)’s
are spatially and spectrally uncorrelated. Hence the
form of the energy function to be minimized here
for maximizing the a posteriori probability using the
MRF model is given below (see [14] for a detailed dis-
cussion):

(LG, 5) = 11 (i, 5))°
202 (i, j)
(8)

U(w) = zDCEC’ch(W) + EVSEViEVj

4.2 The Energy Model

MRF processing is heavily dependent on the energy
model. In the energy model the desirable features of
the images should be enhanced. We have considered
mainly two factors while minimizing the energy. They
are stated below.

1. The interpolated image should be smooth. This
implies that the deviation of pixel values around
its neighborhood should be small.

2. The cross-ratios remain more or less same around
its neighborhood.

The energy model used in our work is the linear com-
bination of the above two factors. In addition to the
above factors, another constraint is imposed in the in-
terpolated images, by which the values of the CFA’s
for a spectral component remain unchanged. The
other aspect of the energy model is its dependence on
gradient or edge information in the CFA’s. We pro-
pose a Gaussian weight-age model for enhancing the
factors along low gradient directions as follows:

(e(4,5)—E3_ (£5(i,3).Is (i+m,j+n))2
1 _ s=1

<I>(z+m,]+n) = T(ij)e 20 (4,5)

9)
The (i, j) of the Gaussian mask is a function of the
minimum gradient value (absolute difference between
two neighboring pixel values). In our work we have
considered the following function for the o (i, j).

.o _ . c(i+m,j+n)—c(i—m,j—n
0—(17]) - m'm{ o 2\/7)7124_(”2 ) } + Othresh

V(m,n) € n1(0,0)

(10)

The value of o¢presh is taken as 10. It may be noted
here that for estimating the o(¢,j) we have assumed
that the gradients of the spectral components are cor-
related. We have used the same estimate for estimat-
ing the strength of the noise contamination (n(i, 7))
at (i, 7) for each spectral component. Now we present
the local energy model at any pixel by the following

expressions:
For the smoothness criterion:
Utm(,g) = Tho Tho B {1 - f:(i,9).
(i +m,j+n).
(Is(iaj) - IS(Z + m7j + n))2}
(11)
For the constancy of cross-ratios:
U (i,j) = Sho ,Sh_ T {1 = fs(i, )
@ +m,j+n).
(Is(iﬂj) _ I (i+m,j+n) )2}
C(’i,j) E;?:lft (iaj)Ii (Z+m’.7+”)
(12)

Hence the local energy model is the linear combination
of the above two terms and an additional term for
restoring the image from the additive Gaussian noise
(refer equation 8):

Uli,j) = pUS™(i,j5)+ AU®) (i, j)
S (1= fuli, ) QeGSO G0y
(13)
It is interesting to note that the term (1 — fs(i,7))
puts the constraint of ignoring any change in the true
value of the respective spectral component at (4, j) di-
rectly obtained from the CFA. In our implementation,
the constrained has been forced by not updating the
respective spectral component. It may be noted that
the global energy function is the sum of the local energy
functions i.e.,

U =3viZv;U(i, ) (14)

As we have mentioned earlier, we have restricted our-
selves to the first order MRF modeling only, the value

of p in our experimentations is taken as 1.
4.3 The Energy Minimization using
Stochastic Relaxation

We have used simulated annealing technique for
minimizing the energy to maximize the a posterior:
probability. The simulated annealing algorithm is well
discussed and described in text books [15] and tech-
nical papers [13]. In our work we have started with
an initial temperature as 1. It has been observed that
the higher values do not improve the result. We iter-
ate the process till we reach at a small temperature
taken as 10730, As Gaussian and Gibbsian sampling



Table 3: Gain/Loss in PSNR measures from
IMRF processing (MAP approaches) on ini-
tial images obtained by different Interpolation

Table 4: Gain/Loss in PESNR measures from
IMRF processing (MAP approaches) on ini-
tial images obtained by different Interpolation

Techniques Techniques
Tmages BI | BSPI | ARBH | EDCRAC | LOEC | VNGD Tmages BI | BSPI | ARBH | EDCRAC | LOEC | VNGD
Cena 0.70 | 2.10 2.64 2.54 0.43 0.59 Lena 0.77 | 1.9 0.59 331 0.45 0.40
Peppers | 1.41 | 2.59 2.22 2.16 0.61 0.74 Peppers | 1.16 | 1.09 1.69 1.57 1.00 1.06
Mandrill | 0.33 | 0.77 0.98 0.89 0.65 .099 Mandrill | 0.39 | 0.55 0.75 1.74 | -0.19 -0.02
T'mahal | 2.00 | 1.90 1.91 1.75 1.66 1.05 T'mahal | 4.80 | 2.24 4.60 4.14 4.79 3.72
L’house | 1.34 | 1.69 1.30 0.62 0.19 -0.32 L’house | 0.76 | -0.21 0.81 2.08 | -0.01 0.30
Sails 1.76 | 2.20 2.06 0.41 0.40 0.28 Sails 351 | 2.85 3.25 1.54 0.23 0.24
Statue 1.76 | 2.66 1.95 0.79 0.47 -0.52 Statue 0.91 | 1.94 0.90 0.94 0.51 0.49
Window | 2.39 | 2.67 2.77 0.83 0.37 -0.04 Window | 4.31 | 5.49 3.35 0.96 0.99 0.76
Flower 1.97 | 2.15 1.92 1.13 0.75 0.61 Flower | 6.22 | 1.04 7.91 3.78 6.09 5.99
Bmw 0.97 | 1.50 1.05 0.65 0.48 0.49 Bmw 3.64 | 0.26 5.19 3.61 2.14 1.36

[13] take longer time, we have used uniform sampling
in our experimentations. We have also adopted two
different approaches for the energy minimization pro-
cess. In one approach, all the red, green and blue
values are simultaneously updated if they satisfy the
Metropolis Acceptance [16] criterion. We denote this
approach as simultaneous MRF processing (SMRF).
On the other hand, we have also considered the energy
minimization of green, red and blue spectral compo-
nents independently one after another. This approach
is referred to as individual MRF' processing (IMRF).
As we have noticed that the performance with SMRF
processing is always poorer than that with the IMRF
processing, here we present only the results with the
IMRF processing.

5 Experimentation

We present here the respective gains or losses in the
PSNR and the PESNR values in the Tables 3 and 4.
One can observe that in most of the cases there are
gains in the PSNR as well as in the PESNR values.
One may also note that for the interpolation tech-
niques yielding relatively lower values of PSNR and
PESNR (such as BI, BSPI and ARBH), the gains are
substantial. On the other hand for other techniques
the gains are relatively less and in some cases they are
marginal. However for some images such as Tajmahal,
Peppers, Flower and Bmw, though the increases in the
PSNR values are small, the PESNR values have been
improved significantly.

To closely observe the improvements in recon-
structed images we have given a typical examples near
the edges for the image Tajmahal (Figure 2(a)). In
Figure 2(e) one may observe that the edges are im-
proved by applying the IMRF processing over the ini-
tial estimates obtained by the VNGD technique.

It may be noted that MRF processing is compu-
tationally intensive. It imposes roughly an additional
overhead of 3 milli-seconds per pixel in the computa-
tion time under the same computational environment.

6 Conclusion

In this work we have applied MRF processing for
color demosaicing to improve the quality of the recon-
struction. We have first studied the relative perfor-
mances of different exisiting demosaicing algorithms.
We have observed that out of the chosen techniques
the VNGD and the LCEC perform better than oth-
ers. Interestingly, the LCEC takes much less time than
the VNGD. We have observed that the edges of the
reconstructed images are significantly enhanced using
MRF processing. A quantitative measure denoted as
PESNR is used here to present the relative perfor-
mances in the edge reconstructions by various tech-
niques. In some cases there are substantial gains (by
5 to 7 dB) in the PESNR values, though the PSNR
values are marginally improved.
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Figure 2: (a) Original (b) VNGD (c¢) IMRF-VNGD
(d) VNGD Reconstructed (¢)IMRF-VNGD Recon-
structed



