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Abstract— In this work we propose a fast al-
gorithm for retinex computation of a video se-
quence. Using traditional multi-scale retinex com-
putation one may process each frame of the video
sequence individually. But this requires large com-
putation time as it involves convolution of indi-
vidual frames with large Gaussian masks. To re-
duce the computation time, we have performed con-
volution over a single frame and used these values
for the subsequent frames. We have observed the
results are similar with those obtained by the in-
dividual frame processing. However, the results
greatly deteriorate when the scene-changes occur
in the video sequence. Hence we have also detected
the scene changes and made the process adaptive.
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I. INTRODUCTION

In recent years a lot of interests has been shown
in using the retinex theory for color enhancement
and for obtaining color constancy. Retinex com-
putation based on the center/surround model pro-
posed by E.H. Land [1] has been used for color
enhancement by several researchers [2] [3] [4] [5].
Recently Jobson, Rahman and Woodell [2] have
developed computation techniques for color en-
hancement. Initially they used Single Scale Ret-
inex (SSR) for achieving color constancy. Later
they used Multi Scale Retinex (MSR) [3] which
provides superior results to those obtained by SSR.
They have also performed a post processing of
the retinex computed images for obtaining good
color rendition. This operation is termed by them
as color restoration filtering (CRF). One can eas-
ily see that the same method could easily be ex-
tended for video enhancement by processing indi-
vidual frames using the same algorithm. However
the computation overhead is large as each frame
requires convolution operations with large Gaus-
sian masks. In our work we have proposed a
fast algorithm for computing the retinex values

for a video sequence. To reduce the computa-

tion, we have performed convolution over a single
frame and used those values for the subsequent
frames. We have observed the results are sim-
ilar with those obtained by the individual frame
processings. However, the results greatly deteri-
orate when the scene-changes occur in the video
sequence. Hence we have also detected the scene
changes and made the process adaptive.
work we have also modified the retinex computa-
tion methodology as adopted by Jobson et al. Here
for convolving an image with a Gaussian mask, the
image 1s subjected to an isotropic diffusion pro-
cess. We have also replaced the logarithmic func-
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tion by a sigmoidal function. It has been observed
that in our case no color restoration operation is
required. This also greatly improves the speed of
the algorithm.

II. RETINEX COMPUTATION

Consider a color image having pixel values in
three spectral bands. Let us denote each spec-
tral band as I;,1 = 1,2,3. The pixel value for the
ith spectral band at (z,y) location is denoted as
I;(z,y). The single scale retinex is given by the
following expression [2]

Ri(z,y) = log(li(z,y)) — log(G(z,y) * ]Z-(x,y)() )
1

where R;(z,y) is the retinex output for the ith
spectral band at the (z,y) pixel location in the
image space. It may be noted that ‘*’ denotes
the convolution operation in the above expression.
G/(z,y) is the surround function which is a 2D
Gaussian mask with the standard deviation ¢ (uni-
form in both the principal directions). The MSR
output is then given by the weighted sum of the
outputs of the several different SSR outputs using
Gaussian masks of different values of o. Jobson
et al [3] have used three surround functions and
given equal weightage to each of them for retinex
computation. Typically the values of ¢’s taken by



them are 15 ,80 and 250. As MSR computation
produced a grayish appearance of the processed
images, Jobson et al [3] have used a color restor-
ation function(CRF) as a post processing of the
retinex computation. Finally the values are trans-
lated and scaled to be brought under the display-
able range of the display device.

I1T. TsoTrOPIC DIFFUSION AND REPLACEMENT
OF LLOGARITHMIC FUNCTION BY A
SIGMOIDAL FUNCTION

An image is convolved with a Gaussian mask
(space surrounding function G(z,y) in MSR com-
putation) when it is fed as an initial input to the
solution of the 2D heat diffusion equation. For a
spectral band [; this may be written as:
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where w is a constant (2)

The well known discrete formulation of this
equation 1s given below:

2y = 19(2,y) +w. (I
+I“<x+1 y)+ f”(m y—

-I—I()(x y+1)— *[Z(t

The above equation shows that as the number of
iterations increases the amount of smoothing will
increase. In fact at the nth iteration, the resulting
image is same as the convolved one with a Gaus-
sian mask of an equivalent o of v/2.n.
also be noted that for the convergence of the above
equation the value of w should lie in between 0
and 0.25 [6]. Typically at w = 0.25 the equation
assumes the following simple form:

It may
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+]2-(t)(x, y—1)+ [ﬁ-(t)(:v, y+1))
(1
Given these formulations one is capable of con-
tinuously varying the o of the surrounding function
in MSR and accumulate the resulting retinex val-

ues after each iteration of the diffusion process.
We have obtained similar results as obtained
previously [3] by applying similar color restora-

tion operations with a different set of values for

the respective parameters. In our case we have
kept the value of N as 10000. For lower values of
N, the processed image appear more grayish and
less bright. However, we have noticed that even
if we increase the number of iteration to a great
extent (say N=30000), the results do not improve
much. We also propose here to replace the log-
arithmic function by a sigmoidal function, which
takes the following form:

1

Sigmord(z) = (1 + e(=(=+6)/T))

(5)

Here the parameters 6 and T denote the
threshold and the scale for setting up of the ac-
tivation level of the sigmoid function. The value
of the threshold is taken as 128 where as scale has
been fixed at 100 in our computations. We have
observed that the use of sigmoidal function elimin-
ates the necessity of color restoration operation. So
the modified retinex computational model is given
below:

Ri(z,y) = L3N (Sigmoid(1)(z,y))-

Sigmoid(I7 (z,y))) (6)

In the above equation N is the total number of
iterations and ]2-(0)(;c, y) is the original pixel value
of the ith spectral band at (z,y) pixel location.
However as we find that it is not necessary to
consider each and every iteration for accumulating
retinex values, we have accumulated these values
after a fixed interval (typically, 50 iterations in our
implementation). The average of the accumulated
values provide R; for each spectral band.

IV. FasT RETINEX COMPUTATION FOR VIDEO
SEQUENCES

Let I;(z,y, k) denote the pixel value for ith spec-
tral component at the location (z,y) for the kth
frame in the sequence. Our objective is to compute
the retinex value for each and individual frame to
achieve the color constancy. It may be observed
that for a single static frame the retinex computa-
tion is performed in three stages. The first stage
deals with the formation of the surround and here
this is done through the 2D heat diffusion equa-
tion, the second part is the excitation stage where
we are using sigmoidal function instead of logar-
ithmic function and finally the retinex computation
stage or integration stage. It was found that the



computation of the surround takes about 85% of
the computation time in our processing. Hence in
order to speed up the computation, the temporal
redundancy of the video sequence is made use of in
the computation of the diffusion layer. We propose
to carry out diffusion only through the first frame
and subsequently the respective diffused pixel val-
ues are used in the successive frames. We have also
observed that instead of the first frame one may
consider the middle frame as the base for the ret-
inex computation. The performance is improved
for the later strategy. That is why in our imple-
mentation we have considered the middle frame
(i.e. %th frame) as our base frame in the compu-
tation.

One may consider different strategies for defin-
ing the group of frames for which retinex compu-
tation is performed based on the diffusion over a
single frame (which is also included in the group).
These groups can be pre partitioned by a fixed
number of frames or they may be formed by de-
tecting the scene changes so that each video seg-
ment form a group. The first one is referred here
as fived frame strategy and while the later one as
adaptive strategy. It may be noted that we have
used the Twin Comparison method [7] for detect-
ing the scene changes.

Figure 1. Average computation time vs. Number of frames

V. RESULTS

We have carried out our experimentation’s on
a Silicon Graphics Platform (Octane with MIPS
R10000 processor, 175 MHz clock, 128 MB RAM
and TRIX 64 release 6.4 OS). Individual frames
are of sizes of 240 x 180 pixels. It is interesting to
note that the computation time reduces to a great
extent (almost hyperbolically) as we increase the
number of frames in our group (refer Figure 1).
But if there is any scene change the quality of the
retinex constructed images are degraded greatly.
This we can observe in the Figure 2. Here we have
plotted the root mean square (RMS) error between
the retinex images formed by individual processing
and the group processing respectively. It may be
noted that the results of Figure 2 are obtained by
processing a movie clip named as “CAVE.AVI”
(obtained from hitp://www.compuware.com) from
its 26th frame to 125th frame. We can also ob-
serve the improvement in the quality if we ad-
aptively form the groups by detecting the scene

changes (Figure 2). It may be noted that the over-
head of scene change detection is negligible com-
pared to the computation of the diffused pixel val-
ues. A typical example of retinex processed im-
ages are given in Figure 3 (a) to (d). The results
of individually processed retinex images and those
obtained from adaptive grouping strategy are al-
most similar. But, the later one takes significantly
less time (almost one third of the individually pro-
cessed one) for processing.

Timein sec

6501
605.08

6004
5504
5004
4504

4001
34156

213.44

188.68
2001+

1501~ 124.26

11392 10051
93.32

[ ]

1frame 2frames 4frames 5frames 10frames 17frames 30frames 47frames

1001+

5014+

RMS error

Torsnglegioup
60.00 or groups of 10 frames

For adaptive grouping

Frame No.
40 60 80 100 120

Figure 2. RMS error vs. Processing Strategies



(a) original

(d) Processed with adaptive grouping
Figure 3. A Typical Example of Retinex Processing

VI. CONCLUSION

In our work we have demonstrated how the
retinex computation for the video sequences can
be enhanced exploiting the temporal redundancy
present in the sequence. Here we have processed
a group of frames instead of individual processing.
We have observed that similar results are obtained
even in the case of group processing. But it has
the advantage of reducing the computation time to
a great extent which is typically one third of the
time taken for the individual processing.
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