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Abstract

Though medial axis transform (MAT) is well known for
object representation, its use in different kinds of compu-
tations remains unexplored till date. One of the main rea-
sons is the popularity of other spatial representations such
as quad-tree in 2D and octree in 3D for better data com-
pression and ordered storage and retrieval facility etc. In
this paper an algorithm has been proposed for computa-
tion of normals at the boundaries of 2D objects based on
their medial axis transforms. In this technique, there is no
requirement of linking boundary points during the compu-
tation compared to other existing techniques. The added
advantage in the computation is that the computation can
be restricted purely in the integer domain.

I. INTRODUCTION

Medial axis transform (MAT) for 2-D and 3-D binary im-
ages data have been introduced by Rosenfeld and Pfaltz [1].
As the maximal blocks of MAT are also termed as ‘circles’
in 2D and ‘spheres’ in 3D the representation is also called
as medial circle representation (MCR) in 2D and as me-
dial sphere representation (MSR) in 3D. It has been shown
that using generalized octagonal distances[2] good MCR
(as approximations to Euclidean Circles) can be obtained
for binary images. The representation is found to be use-
ful for the computation of linear geometric transformations
like translation, rotation and scaling[3] and computation of
cross-sections for three-dimensional objects [4]. Interest-
ingly, such computations are difficult to perform using hi-
erarchical schemes like quad-tree or octree which are other
popular alternatives for representing binary data. Medial
axis transforms have also been used in discrete shading
techniques [5] for rendering 3D objects and it is found that
the quality of the rendered images are better than those
obtained from other spatial representations such as voxel
and octree.

In this paper, the computation of normals at boundary
points of a 2D binary object from MCR has been discussed.

Similar methodology can be extended in 3D also. But,
as this method is computationally intensive and it gives
only a rough estimate of the normals, the present work is
restricted to 2D only. In 3D, instead of computing normals,
similar concept has been used for discrete shading which
has been reported elsewhere [5].

In [6] we have discussed about Medial Circle Represen-
tation using Octagonal Distances. We follow the same
conventions for representing an octagonal distance (by a
neighborhood sequence of type 1 (4-neighborhood) or type
2 (8-neighborhood) ). For example an octagonal distance
denoted by {1,2} implies the metric defined by the neigh-
borhood sequence of type 1 and type 2 (alternately). The
computation of distance transform with an octagonal dis-
tance and the computation of the vertices of the medial
circles (which are found to be convex polygons) defined by
the respective distance function are also discussed in that

paper [6].

II. COMPUTATION OF NORMALS

The principle behind the computation of normals at the
boundaries of 2D objects can be explained with the help
of Figure 1. Let P be a point on the contour of a 2D
object. Let M be the medial circle touching the contour
at P and let the center of M be O.. Then PO, forms the
inward normal at point P. The same concept could easily
be extended in 3D where inward surface normal at any
boundary point is expressed by the vector drawn from that
point to the center of touching medial sphere. However in
the present work the experimentations have been carried
out in 2D only. The proposed technique requires the list of
boundary points of 2D object and the list of medial circles
to represent the object.

There are distinct characteristics of this technique in
comparison with the existing analytical techniques for com-
puting normal at a boundary point (by regression method
[7] around its neighboring point etc.). These are as follows:

1. In an analytical technique, contour tracing is per-
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Fig. 1. Schematic diagram for normal computation

formed for determining the adjacent neighboring
boundary points. This is also required to determine
whether the normal is inward or outward. The pro-
posed technique does not require any such contour fol-
lowing.

2. In the proposed technique the whole computation can

be performed in integer domain.

It may be noted that there are also techniques for comput-
ing tangents (an equivalent of normal computation) of the
digital curves in the discrete domain. In the seventies (of
the last century) these techniques were proposed by sev-
eral researchers, more notably by Rosenfeld and Johnston
[8] and Bennet and MacDonald [9]. However all these tech-
niques require the contour tracing prior to computing the
tangents (as well as normals) at the points in the digital
curve. The techniques also heavily suffer from the compu-
tation errors due to local perturbation in the neighboring
points. The proposed technique captures the global shape
information in a better way in the form of the touching
medial circles totally contained in the pattern.

In the following section, the algorithm for computing
normal at contour points of a 2D binary object is presented.
Experiments are carried out to judge the quality of normal
computation which has been discussed in the subsequent
section.

A. Algorithm for Normal Computation

Let C be the set of contour points of a 2D object and
M be the set of medial circles representing the object. The
algorithm for computing normals at each boundary point
is presented below:

Algorithm : Normal-Computation

Input : C, M
Output : Normals at the boundary points.
Begin

For each boundary point p € C, perform the fol-
lowing operations.
Step 1: Find the set of medial circles S
close to p such that
Vs € Sa | d(paos) —Ts |< E9

(a)

Fig. 2. Normal computation at the contour points for the
image circle for B={1,1,2} (a) Dense normal map, (b)
Sparse normal map

where Ejy is the threshold for declaring s
close to p and o5 and r, are the cen-
ter and radius of the medial circle s.
d(p,0s) is the distance function used
in MCR.

Step 2: Normal at P is expressed by the
unit vector along _7\7,, , where

NP = EVSES(WS)

End (Normal-Computation)

The above algorithm works in two stages. First a set of
medial circles close to the boundary point is formed. It is
known that for each boundary point there exists at least
one medial circle which touches that point. In the next
stage, the resultant normal vector is computed from the
set of nearer medial circles.

B. Ezxperimental Results

Experimentations have been carried out to judge the
quality of the resulting normal vector obtained by the pro-
posed technique against the true analytical values of the
normals at the respective boundary points. For this pur-
pose three regular 2D objects have been considered - a
circle, a rectangle, and a square. Figure 2(a) shows the
normals computed at the contour points of the circle by
using digital distances for B = {1,1,2}. Note that normals
at all the contour points can be computed by this tech-
nique. To make the visual presentation better, the sparse
normal map on the contour ( at some selective points) is
presented in the Figure 2(b). The value of Ej is kept 1 in
this case.

To show the effect of different MCRs ( with different
digital octagonal distance) Figure 3 typically presents (a
sparse normal map) the normal computation of circle for
all the digital distances whose length of neighborhood se-
quences B is less than or equal to 4.

Next aim of the experiment has been to provide a quanti-
tative measure for judging the quality of the normal com-
putation. In Figure 4 analytical normal maps have been
shown for circle, square and rectangle respectively. Let 7,
be the computed value of the unit normal vector at a point
p € C using the proposed technique. Let m, be the ana-
lytical value of unit normal vector at a point p € C' (refer



Fig. 3. Normal computation for an image CIRCLE using
digital circles for different distance functions

(a) for B={1}, (b) for B={1,1,1,2}, (c¢) for B={1,1,2}, (d)

for B={1,2}, (e) for B={1,2,2}, (f) for B={1,2,2,2}, (g) for

B={2}
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Fig. 4. Analytical normal maps: (a) for circle, (b) for
rectangle, (¢) for square

Fig. 5. Computation of errors between analytical and com-
puted normals

Figure 5). For example, for a circle of radius R with center
at (z¢,yc), M, at a point p(z,y) is expressed as
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where || . || denote the magnitude of the corresponding
vector. Then an error measure F,, has been defined here

as
En = Z |7ty -1y [ /| C

VpeCl

If the proposed technique is unable to compute 7, at any
point P € C, then the contribution at that point towards
the error measure (F,) is not considered and subsequently
the point p is excluded from the set C.

In the Table I the errors are computed for normal com-
putation using MCR with digital distances. It can be ob-
served that B={1,1,2}, B={1,2} and B={1,1,1,2} perform
well in comparison with other distances.

The technique has been used for normal computation of
different binary images. The normal maps are shown in

Figure 6 using digital octagonal distance for B = {1,1,2}.



TABLE I
PERCENTAGE NORMAL COMPUTATIONAL ERRORS USING
MCR WITH DIGITAL METRIC (FOR Ep=1)

B Circle | Rectangle | Square
{1} 4.28 0.73 0.48
{1,1,1,2} | 0.99 1.70 1.27
{1,1,2} 0.38 2.59 2.04
{1,2} 0.23 4.97 4.38
{1,2,2} 1.03 7.69 6.74
{1,2,2,2} | 1.65 8.85 7.75
{2} 3.33 1,2.18 11.89

()

Fig. 6. Normal maps of different images using digital oc-
tagonal distance B = {1,1,2}

III. CONCLUSION

In this paper we have shown how medial axis transforms
(MATS) of binary images can be effectively used for com-
puting the normals along the boundary points of 2D ob-
jects. This is another interesting example of the applica-
tion of MAT for computing the image features. It may
be noted, earlier we have also reported other applications
such as the linear transformations of binary objects [3],
discrete shading [5] and computation of cross-sections [4]
of 3D objects. We have further illustrated that the theo-
retical performance of the digital distance as shown in [2]
[6] do match in the practical experiments. The method
could be used easily in detecting corners and segmenting
the boundary curves of the 2D objects.
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