COLOR DEMOSAICING WITH CONSTRAINED BUFFERING

Jayanta Mukherjee
Michael S. Moore and Sanjit K. Mitra

Department of Computer Science & Engineering
Department of Electrical & Computer Engineering

Indian Institute of Technology
University of California

Kharagpur, INDIA, 721302
Santa Barbara, CA 93106-9560, USA

jay@cse.iitkgp.ernet.in
msmoore,mitra@iplab.ece.ucsb.edu

Abstract

In a single-chip digital color imaging sensor, a color filter array (CFA) is used to obtain sampled spectral components (red, green and blue) in an interleaved fashion. Color demosaicing is the process of interpolating these regularly spaced sampled values into a dense pixel map for each spectral component. In this paper we present two new color interpolation techniques with low buffer requirements for processing while developing color images with very good quality. We also present a comparative study with other interpolation techniques of similar buffer requirements.

1. Introduction

Single-sensor cameras [1], [2], for color image acquisition use color filter arrays (CFAs) to obtain sampled red, green and blue pixel data (or luminance and chrominance signals) in an interleaved fashion. To this end, different checkerboard patterns are used as color filter arrays [2]. The Bayer pattern CFA [3] (shown in Figure 1) is commonly employed and is considered in this paper. In Figure 1, the sampled color components are denoted by R (for red), G (for green) and B (for blue).

[image: image1.wmf])

,

(

)

,

(

)

,

(

)

,

(

)

,

,

(

b

g

a

g

b

b

g

a

a

g

g

b

a

Y

+

Y

×

Y

+

×

Y

=

F

=

x

From the sampled color pixel data, the missing color pixel values are interpolated to obtain dense pixel maps in all three spectral components. The process of interpolating the sparse data into dense pixel maps is commonly known as color interpolation or color demosaicing. One of the major concerns of this interpolation task is to minimize both the hardware cost and the computation time. This requirement makes digital color imaging (for both still and video images) cost-effective and technologically viable. Hence, the methods usually employed in practice are based on a low storage requirement (storing two or three rows of the captured image during scanning and processing) and simple computations (such as averaging [4], copying of neighboring pixels [1, 5, 6], convolving with a given mask [7], decisions based on simple comparisons [8], etc.). The challenge is to maximize the image quality with the available resources.

In the present work, we propose two new algorithms that work under the constraint of a low buffer requirement. The algorithms are designed with two principles in mind:

1. Interpolate with the pixels lying in the low gradient directions.

2. Use the homogeneity of the cross-ratios of different spectral components around a small neighborhood.

It may be noted that a number of the existing algorithms exploit one of these principles. Kimmel [9] also proposed an algorithm that weights the cross-ratios with the gradient information around the neighborhood of a pixel. However, Kimmels’ algorithm is complex and computationally intensive. In our methods, we have combined both strategies. We interpolate the green component by computing the weighted average of the neighboring pixels where the weights are inversely related to the gradients along those directions. We use the cross-ratio information for interpolating the red and blue components.

2. THE PROPOSED ALGORITHMS

Let us refer to the Figure 2(a) for interpolating the pixel value x, given its neighborhood pixel values (, (, and (. We will be using following function for computing the value at x:

[image: image12.png]

,
(1)

where the function
[image: image2.wmf])

(

×

Y

 is a weighting factor and is defined as:

[image: image3.wmf],

)

(

1

1

)

,

(

2

b

a

b

a

-

+

=

Y

(2)

[image: image10.png]

For the convenience of our discussion, from here onwards the pixel sites will be denoted with Greek symbol subscripts (barring the central pixel site where the interpolations are to be performed, which is denoted by x). The location subscripts will be attached to letters that denote the CFA color components. The color components are R (red), G (green) and B (blue). Hence the red, green and blue components at location (will be denoted as R(, G(, and B(, respectively.

2.1. Two Line Interpolation Algorithm

In this algorithm, we first interpolate the green pixels and then use the interpolated green pixels for interpolating other spectral components (i.e., red and blue pixels). The symbols used for representing the neighbors of a pixel are indicated in Figure 2(b). The algorithm only uses two lines of the sampled array. In this algorithm, the pixels are scanned from left to right and top to bottom. We assume that when computing a missing component at any pixel position, the values of all spectral components of the pixels in the previous row and the current row up to the current position have already been computed. To initialize the algorithm, all missing spectral components in the top row of an image must be computed using nearest neighbor replication.

In the proposed algorithm, we have also considered the fact that at the edge cross-ratio information should not be considered for interpolation. In earlier interpolation algorithms [4], the edges have not been taken into consideration and in many cases false colors appear near the edges after applying those algorithms. In addition, if the denominator in the cross-ratios is small, then the cross-ratio will be large, and noise will be enhanced. To avoid this problem, we have used two threshold parameters denoted by TE and TCR, respectively, to take care of these two factors. The values of TE and TCR were found by trial and error using a large number of images. They were assigned values of 200 and 50, respectively, in this paper.

Algorithm Two Line Interpolation
1. For green pixel interpolation of the missing green component at location x, there are two different neighboring arrangements (see Figures 3(a) and 3(b)). In both cases, the green spectral component at x is computed as follows:

[image: image4.wmf]2

)

,

,

(

)

,

,

(

d

e

b

g

b

a

G

G

G

G

G

G

G

x

F

+

F

=

.
(3)

[image: image11.png]

2. For red pixel interpolation, consider the following three cases:

Case I: Interpolating at x when Gx, R(and R(are directly obtained from the sampled array (see Figure 3(c)):

[image: image5.wmf].

)

,

(

)

,

(

)

,

(

)

,

(

else

,

)

,

(

)

,

(

)

)

,

(

)

,

(

(

)),

(

)

(

)

((

If

.

Let

2

x

x

x

x

x

x

x

G

R

x

G

R

x

x

x

CR

CR

E

x

G

G

x

G

G

G

G

G

G

R

G

G

R

R

G

G

G

G

G

G

G

G

G

R

T

G

T

G

T

G

G

a

e

a

a

e

e

a

e

a

e

e

a

a

a

e

e

a

e

Y

+

Y

Y

+

Y

×

=

Y

+

Y

×

Y

+

×

Y

×

=

>

Ù

>

Ù

<

Ñ

=

Ñ

×

-

Case II: Interpolating at x when Gx and R(are directly obtained from the sampled array (see Figure 3(d)).

[image: image6.wmf]).

,

,

(

else

,

)),

(

)

((

If

.

Let

g

b

a

b

b

b

b

R

R

R

R

G

R

G

R

T

G

T

G

G

G

G

x

x

x

CR

E

x

x

x

F

=

×

=

>

Ù

<

Ñ

-

=

Ñ

Case III: Interpolating at x when Bx, R(, and R(are directly obtained from the sampled array (see Figure 3(b)):

[image: image7.wmf].

)

,

(

)

,

(

)

,

(

)

,

(

else

,

)

,

(

)

,

(

)

)

,

(

)

,

(

(

)),

(

)

(

)

((

If

.

)

(

)

(

Let

2

2

x

x

x

x

x

x

x

G

R

x

G

R

x

x

x

CR

CR

E

x

x

x

x

G

G

G

G

G

G

R

G

G

R

R

G

G

G

G

G

G

G

G

G

R

T

G

T

G

T

G

G

G

G

G

G

d

g

d

d

g

g

d

g

d

g

d

g

a

b

d

d

g

g

Y

+

Y

Y

+

Y

×

=

Y

+

Y

×

Y

+

×

Y

×

=

>

Ù

>

Ù

<

Ñ

-

+

-

=

Ñ

×

3. For blue interpolation, computations are similar to the red interpolation scheme.

End Two Line Interpolation
2.2. Three Line Interpolation Algorithm

The three line interpolation algorithm is a direct extension of the previous algorithm. In this case, we also include the following row in the neighborhood. The information in the larger neighborhood is used to estimate the local gradients and to interpolate the missing spectral components.

3. COMPARATIVE EVALUATIONS
In [10], a brief review of some well-known color-interpolation techniques is presented. We have considered a few of these algorithms that use a similar neighborhood around each pixel for the purpose of comparison. This constraint restricts the buffer requirements to at most three lines (for each spectral component) during processing. Hence we have chosen a few representative techniques in our comparative study. They are denoted here as the two line interpolation technique (2L), bilinear interpolation techniques (BI), b-spline interpolation (BSPI) [11], interpolation by averaging red and blue hues (ARBH) [4], edge correlated interpolation techniques (ECI) [12], edge directed cross-ratio averaging and correction (EDCRAC) [9] and three line interpolation (3L). We use the abbreviated labels for each technique in our subsequent discussions. It should be noted that for the EDCRAC technique, Kimmel has further refined the result by carrying out an inverse diffusion process as a post-interpolation operation. This step is not included in our comparison.

3.1. Performance Measures

To compare the performance of the interpolation algorithms described here, we applied a simulation of the Bayer pattern CFA to a number of original color images. Next, full color images were generated from each of Bayer pattern arrays and the PSNR (Peak-Signal-to-Noise-Ratio) of these interpolated images were computed with respect to their original images. Since PSNR measures do not always reflect the quality of the images in terms of edge reconstruction, we have also used another measure, PESNR (Peak-Edge-Signal-to-Noise-Ratio) that reflects how edges are recovered in the interpolated images. Let Is(x,y), s = 1, 2, 3 be the spectral components of a benchmark image of size M x N and Is((x,y) be the respective reconstructed spectral components. Then PSNR is defined below:

[image: image8.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

¢

-

×

=

å

å

å

"

"

"

s

x

y

s

s

y

x

I

y

x

I

MN

PSNR

2

2

10

))

,

(

)

,

(

(

255

3

log

10

To define the PESNR, we used the binary edge map of an image, which is computed from the gradient image of the sampled array. In an edge map e(x,y) of an image, if the value at a pixel location is one, then an edge pixel is present. Otherwise the value is zero. Given the edge map, the PESNR is defined as:

[image: image9.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

¢

-

×

×

=

å

å

å

å

å

"

"

"

"

"

s

x

y

s

s

x

y

y

x

I

y

x

I

y

x

e

y

x

e

PESNR

2

2

10

))

,

(

)

,

(

(

)

,

(

)

,

(

3

255

log

10

3.2. Experimental Results

In Tables 1 and 2, we have tabulated the PSNR and PESNR values, respectively, obtained from different interpolation techniques. We have also measured the computation times for different interpolation techniques (see Table 3). The algorithms were implemented on a SUN Ultra Sparc-10 workstation in a UNIX environment. The processor is UltraSparcIIi with a 300 MHz clock. We cannot claim that all methods have been efficiently implemented. Unless there is a significant difference in the computation time one should not form absolute conclusions about the relative speed of computation. But clearly ARBH, ECI, 2L, 3L and BI are computationally more efficient than the other methods such as BSPI and EDCRAC. Out of these last three, the BSPI is the slowest interpolation technique. The quality of reconstruction is also found to be worse for this approach compared to the others. In Tables 1 and 2, the best performances are highlighted by bold numerals. In most cases, EDCRAC performs the best in terms of PSNR and PESNR. But the 3L algorithm closely approximates the performance of the EDCRAC technique and performs better than the other techniques (except the EDCRAC). The 3L technique is also found to be the best in terms of edge reconstruction (as indicated by the PESNR measure) in many cases. The advantage of 3L is that it requires significantly less computation than the EDCRAC. It is also observed that although the 2L requires only two lines in the memory buffer, in many cases it performs better than other three line interpolation algorithms such as BI, BSPI, ARBH and ECI. The computation time for 2L is also less than BI and BSPI and comparable to the ECI. However the ARBH is found to be the fastest algorithm in our implementation. Typical examples of interpolated images using the 2L and 3L interpolation techniques are shown in Figure 4.
4. ACKNOWLEDGMENTS

This work was supported in part by a University of California MICRO grant with matching support from Lucent Technologies, National Semiconductor Corporation, Tektronix Corporation, and Xerox Corporation.

5. References
[1] K. A. Parulski. Color filters and processing alternatives for one-chip cameras. IEEE Transactions on Electronic Devices, ED-32(8):1381-1389, Aug. 1985.

[2] Y. T. Tsai. Color image compression for single-chip cameras. IEEE Transaction on Electronic Devices, 38(5):1226-1232, 1991.

[3] B. E. Bayer. Color imaging array. (U.S. Patent 3971065), 1976.

[4] J. E. Adams. Interactions between color plane interpolation and other image processing functions in electronic photography. Proceedings of SPIE, 2416:144–151, 1995.

[5] T. Sakamoto, C. Nakanishi, and T. Hase. Software pixel interpolation for digital still cameras suitable for a 32-bit MCU. IEEE Transactions on Consumer Electronics, 44(4):1342-1352, Nov. 1998.

[6] H. Zen, T. Koizumi, H. Yamamoto, and I. Kimura. A new digital signal processor for progressive scan CCD. IEEE Transactions on Consumer Electronics, 44(2): 289 – 295, May 1998.

[7] R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustic, Speech and Signal Processing, ASSP-29: 1153–1160, 1981.

[8] D. R. Cok. Reconstruction of CCD images using template matching. Proc. of IS&T Annual Conference (ICPS), p. 380–385, 1994.

[9] R. Kimmel. Demosaicing : Image reconstruction from color CCD samples. IEEE Transactions on Image Processing, 8(9): 1221-1228, Sep. 1999.

[10] J. Mukherjee, R. Parthasarathi, and S. K. Goyal. Markov random field processing for color demosaicing. Pattern Recognition Letters to appear.

[11] H. S. Hou and H. C. Andrews. Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26: 508–517, 1978.

[12] J. F. Hamilton and E. J. Adams. Adaptive color plane interpolation in single color electronic camera. (US Patent 5629734), 1995.

R�
G�
R�
G�
�
G�
B�
G�
B�
�
R�
G�
R�
G�
�
G�
B�
G�
B�
�
Figure � SEQ Figure * ARABIC �1�: The Bayer pattern.

(�
(�
�
�
(�
(�
(�
�
(�
x�
�
�
(�
x�
(�
�
	(a)	(b)

Figure � SEQ Figure * ARABIC �2�: (a) Pixel prediction at x using three neighboring pixels. (b) Interpolation at x using a two-line buffered neighborhood.

B(�
G(�
B(�
�
R(�
G(�
R(�
�
G(�
B(�
G(�
�
G(�
R(�
G(�
�
G(�
Rx�
G(�
�
G(�
Bx�
G(�
�
R(�
Gx�
R(�
�
B(�
Gx�
B(�
�
	(a)	(b)	(c)	(d)

Figure � SEQ Figure * ARABIC �3�: Different neighborhood combinations for computing missing spectral components.

Table 1: PSNR of different interpolation methods.

Images�
2L�
BI�
BSPI�
ARBH�
EDCRAC�
ECI�
3L�
�
Lena�
27.0�
28.2�
25.4�
25.3�
25.6�
29.7�
28.6�
�
Peppers�
24.9�
29.5�
21.5�
24.5�
25.3�
25.6�
26.5�
�
Mandrill�
19.9�
21.0�
20.1�
21.5�
21.7�
20.7�
20.5�
�
Tajmahal�
24.0�
23.4�
20.0�
24.8�
25.7�
23.4�
24.7�
�
Lighthouse�
27.8�
25.1�
22.5�
27.3�
30.6�
25.4�
28.4�
�
Sails�
28.9�
27.1�
23.9�
28.7�
31.4�
27.4�
29.6�
�
Statue�
29.2�
27.9�
23.9�
29.7�
31.9�
28.0�
30.1�
�
Window�
28.9�
26.8�
22.8�
29.4�
32.9�
27.2�
30.6�
�
Flower�
22.2�
22.6�
18.6�
22.9�
24.2�
22.8�
23.7�
�
BMW�
21.0�
21.7�
18.9�
21.7�
22.3�
21.8�
21.8�
�
Table 2: PESNR of different interpolation methods

Images�
2L�
BI�
BSPI�
ARBH�
EDCRAC�
ECI�
3L�
�
Lena�
32.8�
32.9�
30.2�
33.4�
20.5�
32.7�
32.8�
�
Peppers�
11.3�
11.5�
10.7�
10.3�
11.7�
11.4�
12.7�
�
Mandrill�
22.1�
22.1�
21.7�
22.0�
20.3�
22.2�
22.3�
�
Tajmahal�
22.6�
19.6�
17.3�
22.3�
20.0�
19.6�
23.5�
�
Lighthouse�
17.9�
19.6�
18.9�
18.6�
17.4�
19.5�
19.1�
�
Sails�
18.9�
18.3�
16.0�
18.4�
23.9�
18.9�
19.5�
�
Statue�
12.9�
12.9�
12.4�
11.9�
13.5�
12.8�
13.1�
�
Window�
12.1�
15.2�
11.8�
18.5�
24.4�
15.6�
18.1�
�
Flower�
18.6�
18.6�
14.1�
21.7�
22.6�
19.3�
29.7�
�
BMW�
33.0�
22.0�
13.5�
25.1�
20.3�
22.5�
33.0�
�

Table 3: Computation time (in seconds) of different interpolation techniques.

Images�
2L�
BI�
BSPI�
ARBH�
EDCRAC�
ECI�
3L�
�
Lena�
4.30�
4.63�
11.77�
2.81�
9.7�
4.2�
4.79�
�
Peppers�
1.2�
1.27�
3.15�
0.77�
2.52�
1.14�
1.43�
�
Mandrill�
1.17�
1.26�
3.15�
0.77�
2.52�
1.14�
1.36�
�
Tajmahal�
1.10�
1.23�
3.36�
0.74�
2.44�
1.08�
1.25�
�
Lighthouse�
1.82�
1.88�
4.73�
1.14�
3.82�
1.69�
2.01�
�
Sails�
1.83�
1.98�
4.89�
1.15�
3.98�
1.72�
2.03�
�
Statue�
1.73�
1.87�
4.88�
1.12�
3.84�
1.66�
1.92�
�
Window�
1.76�
1.91�
4.88�
1.13�
4.27�
1.69�
2.02�
�
Flower�
0.68�
0.79�
1.97�
0.48�
1.66�
0.67�
0.75�
�
Bmw�
0.69�
1.13�
1.90�
0.57�
1.55�
0.95�
0.82�
�

	(a)	(b)

(c)

Figure 4: (a) Original, (b) 2L, and (c) 3L.

_1040049444.unknown

_1040050586.unknown

_1040051799.unknown

_1040053584.unknown

_1040050758.unknown

_1040050358.unknown

_1040045960.unknown

_1040045997.unknown

_1040045780.unknown

