

GRID ROUTING

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Introduction

- In the VLSI design cycle, routing follows cell placement.
- Once routing is completed, precise paths are defined on the layout surface, on which conductors carrying electrical signals are run.
- Routing takes up almost 30% of the design time, and a large percentage of layout area.
 - One main objective is to minimize the area required for routing.

Types of Routing?

- Given a set of blocks placed on a layout surface and defined pin locations:
 - Given a set of obstacles and a set of pins to connect, determine a solution to interconnect the pins on a single layer (GRID ROUTING).
 - Determine the approximate regions through which each interconnection net should pass (GLOBAL ROUTING).
 - For each routing region, complete the interconnection by assigning horizontal and vertical metal line segments on the layout surface (DETAILED ROUTING).

The General Routing Problem

- Given:
 - A set of blocks with pins on the boundaries.
 - A set of signal nets.
 - Locations of the blocks on the layout surface.
- Objective:
 - Find suitable paths on the available layout space, on which wires are run to connect the desired set of pins.
 - Minimize some given objective function, subject to given constraints.

+

- Types of constraints:
 - Minimum width of routing wires.
 - Minimum separation between adjacent wires.
 - Number of routing layers available.
 - Timing constraints.

GRID ROUTING

Basic Concept

- The layout surface is assumed to be made up of a rectangular array of grid cells.
- Some of the grid cells act as obstacles.
 - Blocks that are placed on the surface.
 - Some nets that are already laid out.
- Objective is to find out a single-layer path (sequence of grid cells) for connecting two points belonging to the same net.

- Two broad classes of grid routing algorithms:
 - 1. Maze routing algorithms.
 - 2. Line search algorithms.

Grid Routing Algorithms

- 1. Maze running algorithm
 - Lee's algorithm
 - Hadlock's algorithm
- 2. Line search algorithm
 - Mikami-Tabuchi's algorithm
 - Hightower's algorithm
- 3. Steiner tree algorithm

a

Maze Running Algorithms

- The entire routing surface is represented by a 2-D array of grid cells.
 - All pins, wires and edges of bounding boxes that enclose the blocks are aligned with respect to the grid lines.
 - The segments on which wires run are also aligned.
 - The size of grid cells is appropriately defined.
 - Wires belonging to different nets can be routed through adjacent cells without violating the width and spacing rules.
- Maze routers connect a single pair of points at a time.
 - By finding a sequence of adjacent cells from one point to the other.

Lee's Algorithm

- The most common maze routing algorithm.
- Characteristics:
 - If a path exists between a pair of points S and T, it is definitely found.
 - It always finds the shortest path.
 - Uses breadth-first search.
- Time and space complexities are O(N²) for a grid of dimension N×N.

11

Phase 1 of Lee's Algorithm

- Wave propagation phase
 - Iterative process.
 - During step i, non-blocking grid cells at Manhattan distance of i from grid cell S are all labeled with i.
 - Labeling continues until the target grid cell T is marked in step L.
 - L is the length of the shortest path.
 - The process fails if:
 - T is not reached and no new grid cells can be labeled during step i.
 - T is not reached and i equals M, some upper bound on the path length.

Phase 2 of Lee's Algorithm

- Retrace phase
 - Systematically backtrack from the target cell T back towards the source cell S.
 - If T was reached during step i, then at least one grid cell adjacent to it will be labeled i-1, and so on.
 - By tracing the numbered cells in descending order, we can reach S following the shortest path.
 - There is a choice of cells that can be made in general.
 - In practice, the rule of thumb is not to change the direction of retrace unless one has to do so.
 - Minimizes number of bends.

13

Phase 3 of Lee's Algorithm

- Label clearance
 - All labeled cells except those corresponding to the path just found are cleared.
 - Cells along the path are marked as obstacles.
 - Search complexity is as involved as the wave propagation step itself.

Phase 1 (i = 2)		Т								
				2	1	2				
					S	1	2			
				2	1	2				
IIT KHARAGPUR	IIT KHARAGPUR NPTEL ONLINE CERTIFICATION COURSES									

Phase 1 (i = 4)		Т							
							4		
				2	1	2	3		
			4		S	1	2		
		4	3	2	1	2	3		
·									
IIT KHARAGPUR	IIT KHARAGPUR NPTEL ONLINE CERTIFICATION COURSES								

							6	
Phase 1 (i = 6)		Т				6	5	
							4	
		6		2	1	2	3	
	6	5	4		S	1	2	
	5	4	3	2	1	2	3	
			ONLINE CATION COU					
IIT KHARAGPUR	21							

						7	6		
Phase 2 (RETRACE)		Т			7	6	5		
		7					4		
	7	6		2	1	2	3		
	6	5	4		S	1	2		
	5	4_	3	2	→ 1 ↑	2	3		
·									
IIT KHARAGPUR	IIT KHARAGPUR NPTEL ONLINE CERTIFICATION COURSES								

Memory Requirement

- Each cell needs to store a number between 1 and L, where
 L is some bound on the maximum path length.
 - For M x N grid, L can be at most M+N-1.
- One bit combination to denote empty cell.
- One bit combination to denote obstacles.

 $\lceil \log_2(L+2) \rceil$ bits per cell

27

• Examples:

- 1. 2000 x 2000 grid
 - $B = log_2 4001 = 12$
 - Memory required = 2000 x 2000 x 12 bits = 6 Mbytes
- 2. 3000 x 3000 grid
 - B = log₂ 6001 = 13
 - Memory required = 3000 x 3000 x 13 bits = 14.6 Mbytes
- 3. 4000 x 4000 grid
 - $B = \log_2 8001 = 13$
 - Memory required = 4000 x 4000 x 13 bits = 26 Mbytes

Improvements:

- Instead of using the sequence 1,2,3,4,5,.... for numbering the cells, the sequence 1,2,3,1,2,3,... is used.
 - For a cell, labels of predecessors and successors are different. So tracing back is easy.

$$\log_2(3+2)$$
 = 3 bits per cell.

1.5 Mbytes for 2000 x 2000 grid

- Use the sequence 0,0,1,1,0,0,1,1,....
 - Predecessors and successors are again different.

$$\log_2(2+2)$$
 = 2 bits per cell.

1.0 Mbyte for 2000 x 2000 grid

						1	0	
Label 0011001		Т			1	0	0	
		1					1	
	1	0		0	0	0	1	
	0	0	1		S	0	0	
	0	1	1	0	0	0	1	
			ONLINE CATION COU					
IIT KHARAGPUR	35							

Reducing Running Time

- Starting point selection
 - Choose the starting point as the one that is farthest from the center of the grid.
- Double fan-out
 - Propagate waves from both the source and the target cells.
 - Labeling continues until the wavefronts touch.
- Framing
 - An artificial boundary is considered outside the terminal pairs to be connected.
 - 10-20% larger than the smallest bounding box.

37

Connecting Multi-point Nets

- A multi-pin net consists of three or more terminal points to be connected.
- Extension of Lee's algorithm:
 - One of the terminals of the net is treated as source, and the rest as targets.
 - A wave is propagated from the source until one of the targets is reached.
 - All the cells in the determined path are next labeled as source cells, and the remaining unconnected terminals as targets.
 - Process continues.

Hadlock's Algorithm

- Uses a new method for cell labeling called <u>detour numbers</u>.
 - A goal directed search method.
 - The detour number d(P) of a path P connecting two cells S and T is defined as the number of grid cells directed away from its target T.
 - The length of the path P is given by

len(P) = MD(S,T) + 2d(P)

where MD (S,T) is the Manhattan distance between S and T.

- The cell filling phase of Lee's algorithm can be modified as follows:
 - Fill a cell with the detour number with respect to a specified target T (not by its distance from source).
 - Cells with smaller detour numbers are expanded with higher priority.
- Path retracing is of course more complex, and requires some degree of searching.

Advantages:

- Number of grid cells filled up is considerably less as compared to Lee's algorithm.
- Running time for an NxN grid ranges from O(N) to O(N²).
 - Depends on the obstructions.
 - Also locations of S and T.

5.

Line Search Algorithm

- In maze running algorithms, the time and space complexities are too high.
- An alternative approach is called line searching, which overcomes this drawback.
- Basic idea:
 - Assume no obstacles for the time being.
 - A vertical line drawn through S and a horizontal line passing though T will intersect.
 - Manhattan path between S and T.
 - In the presence of obstacles, several such lines need to be drawn.

53

- Line search algorithms do not guarantee finding the optimal path.
 - May need several backtrackings.
 - Running time and memory requirements are significantly less.
 - Routing area and paths are represented by a set of line segments.
 - Not as a matrix as in Lee's or Hadlock's algorithm.

Mikami-Tabuchi's Algorithm

- Let S and T denote a pair of terminals to be connected.
- <u>Step 0:</u>
 - Generate four lines (two horizontal and two vertical) passing through S and T.
 - Extend these lines till they hit obstructions or the boundary of the layout.
 - If a line generated from S intersects a line generated from T, then a connecting path is found.
 - If they do not intersect, they are identified as trial lines of level zero.
 - Stored in temporary storage for further processing.

55

- Step i of Iteration: (i > 0)
 - Pick up trial lines of level i-1, one at a time.
 - Along the trial line, all its grid points are traced.
 - Starting from these grid points, new trial lines (of level i) are generated perpendicular to the trial line of level i-1.
 - If a trial line of level i intersects a trial line (of any level) from the other terminal point, the connecting path can be found.
 - By backtracing from the intersection point to S and T.
 - Otherwise, all trial lines of level i are added to temporary storage, and the procedure repeated.
- The algorithm guarantees to find a path if it exists.

Hightower's Algorithm

- Similar to Mikami-Tabuchi's algorithm.
 - Instead of generating all line segments perpendicular to a trial line, consider only those lines that can be extended beyond the obstacle which blocked the preceding trial line.
- Steps of the algorithm:
 - Pass a horizontal and a vertical line through source and target points (called first-level probes).
 - If the source and the target lines meet, a path is found.
 - Otherwise, pass a perpendicular line to the previous probe whenever it intersects an obstacle.
 - Concept of escape point and escape line.

Steiner Trees

• A tree interconnecting a set $P=\{P_1,...,P_n\}$ of specified points in the rectilinear plane and some arbitrary points is called a (rectilinear) Steiner tree of P.

- A Steiner tree with minimum total cost is called a Steiner minimal tree (SMT).
 - The general SMT problem is NP-hard.

59

Steiner Tree Based Algorithms

- Minimum length Steiner trees:
 - Goal is to minimize the sum of the length of the edges of the tree.
 - Both exact and approximate versions exist.
- Weigted Steiner trees:
 - Given a plane partitioned into a collection of weighted regions, an edge with length L in a region with weight W has cost LW.
- Steiner trees with arbitrary orientations:
 - Allows lines in non-rectilinear directions like +45° and -45°.

