

CLOCK NETWORK SYNTHESIS

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Problem Formulation

- Specialized algorithms are required for clock (and power nets) due to strict specifications for routing such nets.
 - Better to develop specialized routers for these nets.
 - Do not over-complicate the general router.
 - In many designs, both these nets are manually routed.
- Sophisticated and accurate clock routing tools are a must for high-performance designs.

Clock Routing

- Clock synchronization is one of the most critical issues in the design of high-performance VLSI circuits.
 - Data transfer between functional elements is synchronized by the clock.
 - It is desirable to design a circuit with the fastest possible clock.
- The clock signal is typically generated external to the chip.
 - Provided to the chip through clock pin.

3

- Each functional unit which needs the clock is connected to clock pin by the *clock net*.
- Ideally, the clock must arrive at all the functional units precisely at the same time.
- In practice, clock skew exists.
 - Maximum difference in the arrival time of a clock at two different components.
 - Forces the designer to be conservative.
 - Use a larger time period between clock pulses, i.e. lower clock frequency.

Clocking Schemes

• The clock is a simple pulsating signal alternating between 0 and 1.

- Digital systems use a number of clocking schemes:
 - 1. Single-phase clocking with latches
 - 2. Single-phase clocking with flip-flops
 - 3. Two-phase clocking

Single-phase Clocking with Latches

- The latch opens when the clock goes high.
- Data are accepted continuously while the clock is high.
- The latch closes when the clock goes down.
- Not commonly used due to their complicated timing requirements.
 - Some high-performance circuits use this scheme.

- Latch implementation using NAND gates.
 - ➤ As long as CLK is at 1, the value at D gets stored.

- Latches and flip-flops can be implemented in CMOS using inverters and switches.
- In CMOS, a switch can be implemented in two ways:
 - Pass transistor that requires a single n-type transistor.
 - Voltage degradation while passing high voltage.
 - Transmission gate that uses two back-to-back transistors, one p-type and one n-type.

Single-phase Clocking with Flip-flops

 Data are accepted only on the rising or falling edge of the clock.

- As a rule of thumb, most systems cannot tolerate a clock skew of more than 10% of the system clock period.
 - A good clock distribution strategy is necessary.
 - Also a requirement for designing high-performance circuits.

Clocking in a Pipeline

- When successive stages are connected in a pipeline, we do not need master-slave flip-flops.
 - Use single-phase latches in the register separating states.
 - Clock alternate latch stages by the two phases Φ_1 and Φ_2 of a two-phase clock.

Strategies to reduce clock skew

- Two main strategies:
 - 1. Locate all clock inputs close together; but it is difficult to implement in a large circuit.
 - 2. Drive them from the same source & balance the delays.
- Due to physical limitation and diverse distribution of clock sinks, strategy 2 is often used.

17

How to Realize Strategy 2?

- 1. Spider-leg distribution network
 - > Use a power driver to drive N outputs.
 - > A separate wire goes to each destination.
 - Use load (R) termination to reduce reflection if the traces are long (distributed circuit). Total load = R/N.
 - For example, if line impedance=75 Ω and N=3, total load=25 Ω .
 - > Two or more drivers may need to be connected in parallel.
- 2. Clock distribution tree

Clock Buffering Mechanisms

- Clock signal is global in nature.
 - Clock lines are typically very long.
 - Long wires have large capacitances, which limit the performance of the system.
 - RC delay plays a big factor.
- RC delay cannot be reduced by making the wires wider.
 - Resistance reduces, but capacitance increases.

- To reduce RC delay, buffers are used.
 - Also helps to preserve the clock waveform.
 - Significantly reduces the delay.
 - May occupy as much as 5% of the total chip area.
 - Isolate the clock net from upstream load impedances.

2

Use of Buffers

Clock Buffering:: Approach 1

- Use a big, centralized buffer.
 - Better from skew minimization point of view.
 - Only need to concentrate on equalizing the wire lengths of the tree.

25

Clock Buffering:: Approach 2

- Distribute buffers in the branches of the clock tree.
 - Use identical buffers so that the delay introduced by the buffers is equal in all branches.
- Regular layout of the clock tree, and equalization of the buffer loads help to reduce clock skew.

Binary Tree with Crosslinks A specific implementation of a binary tree. Cross-links are inserted at specific points along the tree to equalize clock latency. NPTEL ONLINE CERTIFICATION COURSES

IIT KHARAGPUR

Terminology

- A clock routing instance (clock net) is represented by n+1 terminals, where s_0 is designated as the source, and $S = \{s_1, s_2, \dots, s_n\}$ is designated as sinks
 - Let s_i , $0 \le i \le n$, denote both a terminal and its location.
- A clock routing solution consists of a set of wire segments that connect all terminals of the clock net, so that a signal generated at the source propagates to all of the sinks.
 - Two aspects of clock routing solution: topology and geometric embedding.

31

- The clock-tree topology (clock tree) is a rooted binary tree *G* with *n* leaves corresponding to the set of sinks.
 - Internal nodes = Steiner points

Terminology

 Clock skew: (maximum) difference in clock signal arrival times between sinks.

$$skew(T) = \max_{s_i, s_j \in S} |t(s_0, s_i) - t(s_0, s_j)|$$

- Local skew: maximum difference in arrival times of the clock signal at the clock pins of two or more related sinks.
 - Sinks within distance d.
 - Flip-flops or latches connected by a directed signal path.

- Global skew: maximum difference in arrival times of the clock signal at the clock pins of any two (related or unrelated) sinks.
 - Difference between shortest and longest source-sink path delays in the clock distribution network.
 - The term "skew" typically refers to "global skew".

Terminologies for Clock-Tree Routing

- Zero skew: zero-skew tree (ZST)
 - ZST problem
- Bounded skew: true ZST may not be necessary in practice
 - Signoff timing analysis is sufficient with a non-zero skew bound.
 - In addition to final (signoff) timing, this relaxation can be useful with intermediate delay models when it facilitates reductions in the length of the tree.
 - Bounded-Skew Tree (BST) problem.

- Useful skew: correct chip timing only requires control of the local skews between pairs of interconnected flip-flops or latches.
 - Useful skew formulation is based on analysis of local skew constraints.

Modern Clock Tree Synthesis

- Basic requirements:
 - Constructing trees with Zero Global Skew
 - Clock Tree Buffering in the presence of variation
- A clock tree should have low skew, while delivering the same signal to every sequential block.

- Clock tree synthesis is performed in two steps:
 - a) Initial tree construction with one of these scenarios.
 - Construct a regular clock tree, largely independent of sink locations
 - Simultaneously determine a topology and an embedding
 - Construct only the embedding, given a clock-tree topology as input
 - b) Clock buffer insertion and several subsequent skew optimizations.

Clock Routing Algorithms

- How to minimize skew?
 - Distribute the clock signal in such a way that the interconnections carrying the clock signal to functional sub-blocks are equal in length.
- Several algorithms exist which try to achieve this goal.
 - H-tree based algorithm
 - X-tree based algorithm
 - Method of Means and Medians algorithm
 - Recursive Geometric Matching algorithm
 - Zero clock skew routing

H-tree based Algorithm

- An early approach, which is based on equalization of wire lengths.
- In H-tree based approach, the distance from clock source to each of the clock sinks is the same.
- Suitable for scenarios where all clock terminals are arranged in a symmetrical fashion, as in gate arrays or FPGAs.
 - Can also be used to carry the clock signal to various regions or zones of the chip.

41

- This ensures minimumdelay routing as well.
 - P₀ and P₃ are at a distance
 7 (rectilinear distance).
- Can be generalized to 4^m points, where m is an integer.

- Exact zero skew due to the symmetry of the H tree.
- Typically used for top-level clock distribution, not for the entire clock tree.
 - Blockages can spoil the symmetry of a H tree.
 - Non-uniform sink location and varying sink capacitances also complicate the design of H trees.

X-tree based Algorithm

- An alternate tree structure with a smaller delay.
 - Assuming non-rectilinear routing is possible.
- Although apparently better than H-trees, this may cause crosstalk due to close proximity of wires.
- Like H-trees, this is also applicable for very special structures.
 - Not applicable in general.

Method of Means & Medians (MMM)

- Follows a strategy very similar to the H-tree algorithm.
 - Can deal with arbitrary locations of clock sinks.
- Basic idea:
 - Recursively partition the set of terminals into two subsets of equal size (median).
 - Connects the center of mass of the whole set to the centers of masses of the two partitioned subsets (*mean*).

47

How is the partitioning done?

- Let L_x denote the list of clock points sorted according to their x-coordinates.
- Let P_x be the median in L_x.
 - Assign points in list to the left of P_x to P_L.
 - Assign the remaining points to P_R.
- Next, we go for a horizontal partition, where we partition a set of points into two sets P_B and P_T .
- This process is repeated iteratively.

- The basic algorithm ignores the blockages and produces a non-rectilinear tree. Some wires may also intersect.
 - In the second phase, each wire can be converted so that it consists only of rectilinear segments and avoids blockages.

Recursive Geometric Matching (RGM)

- RGM proceeds in a bottom-up fashion.
 - Compare to MMM, which is a top-down algorithm.
- Basic idea:
 - Recursively determine a minimum-cost geometric matching of n sinks.
 - Find a set of n/2 line segments that match n endpoints and minimize total length (subject to the matching constraint).
 - After each matching step, a balance or tapping point is found on each matching segment to preserve zero skew to the associated sinks.
 - The set of n/2 tapping points then forms the input to the next matching step.

51

Set of *n* sinks *S*

Min-cost geometric matching

Find balance or tapping points (point that achieves zero skew in the subtree, not always midpoint)

Min-cost geometric matching

Final result after recursively performing RGM on each subset

Zero Skew Clock Routing

- Based on the Elmore delay model.
 - Delay along an edge is proportional to its length.
 - However, the delay along a path is defined recursively.
- Adopts a bottom-up process of matching subtree roots and merging the corresponding subtrees, similar to RGM.
- Two important improvements:
 - Finds exact zero-skew tapping points with respect to the Elmore delay model.
 - Maintains exact delay balance even when two subtrees with very different sourcesink delays are matched (by wire elongation).

53

- The point set is recursively partitioned into two subsets, and trees are constructed in a bottom-up manner.
 - Assume, inductively, that every sub-tree has achieved zero skew.
 - Given two zero-skew sub-trees, merge them by an edge to achieve zero skew on the new tree.
 - Necessary to decide the position of the connecting points (taps).
 - Uses Elmore delay model for the purpose.

Elmore Delay

- ON transistors look like resistors.
- Pullup or pulldown network modeled as RC ladder.
- Elmore delay of RC ladder is shown.

A Zero Skew Clock Tree based on Elmore Delay Analysis

57

Clock Tree Buffering in the Presence of Variation

- To address challenging skew constraints, a clock tree undergoes several optimization steps:
 - Geometric clock tree construction
 - Initial clock buffer insertion
 - Clock buffer sizing
 - Wire sizing
 - Wire snaking

- In the presence of process, voltage, and temperature variations, such optimizations require modeling the impact of variations.
 - Variation model encapsulates the different parameters, such as width and thickness, of each library element.

Case Study :: IBM's Approach

- This concept was applied to a family of IBM microprocessors.
- A central H-tree drives a set of 16 to 64 sector buffers.
- Each buffer drives a tunable tree.
 - Each wire width of this tree is sized.
- Finally, all the tunable trees drive a single grid that provides the clock signal to the entire chip.

- The higher levels of the network consist of trees.
 - Lower latency, lower power, lower area, better global skew.
- The lowest level consists of a regular grid.
 - Constant structure so that the clock can be distributed anywhere.
 - The regular grid allows the higher levels of the tree to be regular.
 - Better local skew.

- Another optimization:
 - The wires from the central buffer to sector buffers are lengthmatched.
 - Routed on top two (lowest resistance) layers.
 - Critical interconnects are split into 8 parallel wires each surrounded by VDD/GND return paths to optimize R, L, C.
 - Wire widths/spaces are further optimized.
 - The tunable trees are sized to reduce skew.
 - These trees have widely different loads.
 - The final clock grid is cut so that each leaf node drives the same load (leads to more skew than gridded network).

Case Study:: Alpha 21264 Clock Distribution

- Similar strategy of a tree-grid combination driving a global mesh called GCLK.
- The PLL clock signal is routed to the center of the die from where it is distributed by X and H trees to 16 distributed clock buffers.
- Clock buffers feed to a global clock mesh.
 - Skew is determined by grid and not gate load placement.
 - Universal availability of clock signal.
 - Good process variation tolerance.

POWER AND GROUND ROUTING

PROF. INDRANIL SENGUPTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Basic Problem

- In a design, almost all blocks require power and ground connections.
- Power and ground nets are usually laid out entirely on the metal layer(s) of the chip.
 - Due to smaller resistivity of metal.
 - Planar single-layer implementation is desirable since contacts (via's) also significantly add to the parasitics.

- Routing of power (VDD) and ground (GND) nets consists of two main tasks:
 - Construction of interconnection topology.
 - Determination of the widths of the various segments.

• Requirement:

- Find two non-intersecting interconnection trees.
- The width of the trees at any particular point must be proportional to the amount of current being drawn by the points in that sub-tree.

Approach 1:: Grid Structure

- Several rows of horizontal wires for both VDD and GND run parallel to each other on one metal layer.
- The vertical wires run in another metal layer and connect the horizontal wires.
- A block simply connects to the nearest VDD and GND wire.

Basic Steps Involved

Step 1: Creating a ring

 A ring is constructed to surround the entire core area of the chip, and possibly individual blocks.

Step 2: Connecting I/O pads to the ring

Step 3: Creating a mesh

A power mesh consists of a set of stripes at defined pitches on two or more layers.

Step 4: Creating rails on some metal layer (typically Metal1)

Power mesh consists of a set of stripes at defined pitches on two or more layers.

Step 5: Connecting the metal rails to the mesh.

Approach 2:: Using Inter-digitated Trees

- Tends to route nets in an inter-digitated fashion.
- Extends one net from the left edge of the chip, and the other from the right.
 - Routing order of the connecting points is determined by the horizontal distances of the connecting points from the edge of the chip.

- Planar routing.
- Nets are determined by a combined Lee and Line Search algorithm.
 - Points of the left net which lie in the left half of the chip are routed using a fast line search algorithm.
 - Similarly, for the right net in the right half of the chip.
 - Next, all other points of the two sets are routed by Lee's algorithm.

Basic Steps Involved

Step 1: Planarize the topology of the nets

 As both power and ground nets must be routed on one layer, the design should be split using the Hamiltonian path.

Step 2: Layer assignment

Net segments are assigned to appropriate routing layers.

Step 3: Determining the widths of the net segments

 A segment's width is determined from the sum of the currents from all the cells to which it connects

Summary

- Power and ground routing needs special attention because of wire widths.
 - Non-uniform wire widths.
 - Careful sizing of wires is required.
- Routing of power and ground nets is often given first priority.
 - Usually laid out entirely on metal layer(s).
 - Signal nets may share the metal layer(s) with power and ground, but they change layers whenever a power or ground wire is encountered.
- Choice of layer:
 - Aluminium :: most widely used.

