
1

1

VERILOG
Hardware Description Language

2

About Verilog

• Along with VHDL, Verilog is among the
most widely used HDLs.

• Main differences:

– VHDL was designed to support system-level
design and specification.

– Verilog was designed primarily for digital
hardware designers developing FPGAs and
ASICs.

• The differences become clear if someone
analyzes the language features.

2

3

• VHDL
– Provides some high-level constructs

not available in Verilog (user defined
types, configurations, etc.).

• Verilog
– Provides comprehensive support for

low-level digital design.

– Not available in native VHDL

• Range of type definitions and
supporting functions (called
packages) needs to be included.

4

Concept of Verilog “Module”

• In Verilog, the basic unit of hardware
is called a module.

– Modules cannot contain definitions of
other modules.

– A module can, however, be instantiated
within another module.

– Allows the creation of a hierarchy in a
Verilog description.

3

5

Basic Syntax of Module Definition

module module_name (list_of_ports);

input/output declarations

local net declarations

Parallel statements

endmodule

6

Example 1 :: simple AND gate

module simpleand (f, x, y);

input x, y;

output f;

assign f = x & y;

endmodule

4

7

Example 2 :: two-level circuit

module two_level (a, b, c, d, f);
input a, b, c, d;
output f;
wire t1, t2;
assign t1 = a & b;
assign t2 = ~ (c | d);
assign f = t1 ^ t2;

endmodule

8

Example 3 :: a hierarchical design

module add3 (s, cy3, cy_in, x, y);

input [2:0] x, y;

input cy_in;

output [2:0] s;

output cy3;

wire [1:0] cy_out;

add B0 (cy_out[0], s[0], x[0], y[0], cy_in);

add B1 (cy_out[1],s[1],x[1],y[1],cy_out[0]);

add B2 (cy3, s[2], x[2], y[2], cy_out[1]);

endmodule

5

9

Specifying Connectivity

• There are two alternate ways of
specifying connectivity:
– Positional association

• The connections are listed in the
same order

add A1 (c_out, sum, a, b, c_in);

– Explicit association

• May be listed in any order

add A1 (.in1(a), .in2(b), .cin(c_in),

.sum(sum), .cout(c_out));

10

Variable Data Types

• A variable belongs to one of two data
types:
– Net

• Must be continuously driven

• Used to model connections between
continuous assignments &
instantiations

– Register

• Retains the last value assigned to it

• Often used to represent storage
elements

6

11

Net data type
– Different ‘net’ types supported for

synthesis:

• wire, wor, wand, tri, supply0, supply1

– ‘wire’ and ‘tri’ are equivalent; when
there are multiple drivers driving them,
the outputs of the drivers are shorted
together.

– ‘wor’ / ‘wand’ inserts an OR / AND gate
at the connection.

– ‘supply0’ / ‘supply1’ model power
supply connections.

12

module using_wire (A, B, C, D, f);
input A, B, C, D;
output f;
wire f; // net f declared as ‘wire’

assign f = A & B;
assign f = C | D;

endmodule

7

13

module using_wired_and (A, B, C, D, f);
input A, B, C, D;
output f;
wand f; // net f declared as ‘wand’

assign f = A & B;
assign f = C | D;

endmodule

14

module using_supply_wire (A, B, C, f);

input A, B, C;

output f;

supply0 gnd;

supply1 vdd;

nand G1 (t1, vdd, A, B);

xor G2 (t2, C, gnd);

and G3 (f, t1, t2);

endmodule

8

15

Register data type

– Different ‘register’ types supported for
synthesis:

• reg, integer

– The ‘reg’ declaration explicitly specifies the
size.

reg x, y; // single-bit register variables

reg [15:0] bus; // 16-bit bus, bus[15] MSB

– For ‘integer’, it takes the default size,
usually 32-bits.

• Synthesizer tries to determine the size.

16

Other differences:
– In arithmetic expressions,

• An ‘integer’ is treated as a 2’s
complement signed integer.

• A ‘reg’ is treated as an unsigned
quantity.

– General rule of thumb

• ‘reg’ used to model actual hardware
registers such as counters,
accumulator, etc.

• ‘integer’ used for situations like loop
counting.

9

17

module simple_counter (clk, rst, count);
input clk, rst;
output count;
reg [31:0] count;

always @(posedge clk)
begin

if (rst)
count = 32’b0;

else
count = count + 1;

end
endmodule

18

• When ‘integer’ is used, the synthesis
system often carries out a data flow
analysis of the model to determine its
actual size.

• Example:

wire [1:10] A, B;

integer C;

C = A + B;

�The size of C can be determined to be

equal to 11 (10 bits plus a carry).

10

19

Specifying Constant Values

• A value may be specified in either the
‘sized’ or the ‘un-sized’ form.

– Syntax for ‘sized’ form:

<size>’<base><number>

• Examples:
8’b01110011 // 8-bit binary number

12’hA2D // 1010 0010 1101 in binary

12’hCx5 // 1100 xxxx 0101 in binary

25 // signed number, 32 bits

1’b0 // logic 0

1’b1 // logic 1

20

Parameters

• A parameter is a constant with a name.

• No size is allowed to be specified for a
parameter.

– The size gets decided from the constant
itself (32-bits if nothing is specified).

• Examples:

parameter HI = 25, LO = 5;

parameter up = 2b’00, down = 2b’01,

steady = 2b’10;

11

21

Logic Values

• The common values used in modeling
hardware are:

0 :: Logic-0 or FALSE

1 :: Logic-1 or TRUE

x :: Unknown (or don’t care)

z :: High impedance

• Initialization:

– All unconnected nets set to ‘z’

– All register variables set to ‘x’

22

• Verilog provides a set of predefined
logic gates.

– They respond to inputs (0, 1, x, or z) in a
logical way.

– Example :: AND

0 & 0 ���� 0 0 & x ���� 0

0 & 1 ���� 0 1 & z ���� x

1 & 1 ���� 1 z & x ���� x

1 & x ���� x

12

23

Primitive Gates

• Primitive logic gates (instantiations):

and G (out, in1, in2);

nand G (out, in1, in2);

or G (out, in1, in2);

nor G (out, in1, in2);

xor G (out, in1, in2);

xnor G (out, in1, in2);

not G (out1, in);

buf G (out1, in);

24

• Primitive Tri-State gates (instantiation)

bufif1 G (out, in, ctrl);

bufif0 G (out, in, ctrl);

notif1 G (out, in, ctrl);

notif0 G (out, in, ctrl);

13

25

Some Points to Note

• For all primitive gates,

– The output port must be connected to a
net (a wire).

– The input ports may be connected to
nets or register type variables.

– They can have a single output but any
number of inputs.

– An optional delay may be specified.

• Logic synthesis tools ignore time
delays.

26

`timescale 1 ns / 1ns

module exclusive_or (f, a, b);

input a, b;

output f;

wire t1, t2, t3;

nand #5 m1 (t1, a, b);

and #5 m2 (t2, a, t1);

and #5 m3 (t3, t1, b);

or #5 m4 (f, t2, t3);

endmodule

14

27

Hardware Modeling Issues

• The values computed can be held in

– A ‘wire’

– A ‘flip-flop’ (edge-triggered storage cell)

– A ‘latch’ (level-sensitive storage cell)

• A variable in Verilog can be of

– ‘net data type

• Maps to a ‘wire’ during synthesis

– ‘register’ data type

• Maps either to a ‘wire’ or to a ‘storage
cell’ depending on the context under
which a value is assigned.

28

module reg_maps_to_wire (A, B, C, f1, f2);
input A, B, C;
output f1, f2;
wire A, B, C;
reg f1, f2;
always @(A or B or C)
begin

f1 = ~(A & B);
f2 = f1 ^ C;

end
endmodule

The synthesis system
will generate a wire
for f1

15

29

module a_problem_case (A, B, C, f1, f2);
input A, B, C;
output f1, f2;
wire A, B, C;
reg f1, f2;
always @(A or B or C)
begin

f2 = f1 ^ f2;
f1 = ~(A & B);

end
endmodule

The synthesis system
will not generate a
storage cell for f1

30

// A latch gets inferred here
module simple_latch (data, load, d_out);

input data, load;
output d_out;

always @(load or data)
begin

if (!load)
t = data;

d_out = !t;
end

endmodule

Else part missing; so
latch is inferred.

16

31

Verilog Operators

• Arithmetic operators

*, /, +, -, %

• Logical operators

! ���� logical negation

&& ���� logical AND

| | ���� logical OR

• Relational operators

>, <, >=, <=, ==, !=

• Bitwise operators
~, &, |, ^, ~^

32

• Reduction operators (operate on all the bits
within a word)

&, ~&, |, ~|, ^, ~^

���� accepts a single word operand and

produces a single bit as output

• Shift operators

>>, <<

• Concatenation { }

• Replication { { } }

• Conditional

<condition> ? <expression1> : <expression2>

17

33

module operator_example (x, y, f1, f2);

input x, y;

output f1, f2;

wire [9:0] x, y; wire [4:0] f1; wire f2;

assign f1 = x[4:0] & y[4:0];

assign f2 = x[2] | ~f1[3];

assign f2 = ~& x;

assign f1 = f2 ? x[9:5] : x[4:0];

endmodule

34

// An 8-bit adder description

module parallel_adder (sum, cout, in1, in2, cin);

input [7:0] in1, in2; input cin;

output [7:0] sum; output cout;

assign #20 {cout, sum} = in1 + in2 + cin;

endmodule

18

35

Some Points

• The presence of a ‘z’ or ‘x’ in a reg or wire
being used in an arithmetic expression
results in the whole expression being
unknown (‘x’).

• The logical operators (!, &&, | |) all
evaluate to a 1-bit result (0, 1 or x).

• The relational operators (>, <, <=, >=, ~=,
==) also evaluate to a 1-bit result (0 or 1).

• Boolean false is equivalent to 1’b0

Boolean true is equivalent to 1’b1.

36

Some Valid Statements

assign outp = (p == 4’b1111);

if (load && (select == 2’b01)) …….

assign a = b >> 1;

assign a = b << 3;

assign f = {a, b};

assign f = {a, 3’b101, b};

assign f = {x[2], y[0], a};

assign f = { 4{a} }; // replicate four times

assign f = {2’b10, 3{2’b01}, x};

19

37

Description Styles in Verilog

• Two different styles of description:

1. Data flow

• Continuous assignment

2. Behavioral

• Procedural assignment

� Blocking

� Non-blocking

38

Data-flow Style: Continuous Assignment

• Identified by the keyword “assign”.

assign a = b & c

assign f[2] = c[0];

• Forms a static binding between

– The ‘net’ being assigned on the LHS,

– The expression on the RHS.

• The assignment is continuously active.

• Almost exclusively used to model
combinational logic.

20

39

• A Verilog module can contain any number
of continuous assignment statements.

• For an “assign” statement,

– The expression on RHS may contain
both “register” or “net” type variables.

– The LHS must be of “net” type, typically
a “wire”.

• Several examples of “assign” illustrated
already.

40

module generate_mux (data, select, out);

input [0:7] data;

input [0:2] select;

output out;

assign out = data [select];

endmodule

Non-constant index in
expression on RHS
generates a MUX

21

41

module generate_decoder (out, in, select);

input in;

input [0:1] select;

output [0:3] out;

assign out [select] = in;

endmodule

Non-constant index in
expression on LHS
generates a decoder

42

module generate_set_of_MUX (a, b, f, sel);

input [0:3] a, b;

input sel;

output [0:3] f;

assign f = sel ? a : b;

endmodule

Conditional operator
generates a MUX

22

43

module level_sensitive_latch (D, Q, En);

input D, En;

output Q;

assign Q = en ? D : Q;

endmodule

Using “assign” to describe
sequential logic

44

Behavioral Style: Procedural Assignment

• The procedural block defines
– A region of code containing sequential

statements.

– The statements execute in the order they are
written.

• Two types of procedural blocks in Verilog
– The “always” block

• A continuous loop that never terminates.

– The “initial” block

• Executed once at the beginning of
simulation (used in Test-benches).

23

45

• A module can contain any number of
“always” blocks, all of which execute
concurrently.

• Basic syntax of “always” block:

always @ (event_expression)
begin

statement;

statement;
end

• The @(event_expression) is required for
both combinational and sequential logic
descriptions.

Sequential
statements

46

• Only “reg” type variables can be
assigned within an “always” block.
Why??

– The sequential “always” block executes
only when the event expression triggers.

– At other times the block is doing nothing.

– An object being assigned to must therefore
remember the last value assigned (not
continuously driven).

– So, only “reg” type variables can be
assigned within the “always” block.

– Of course, any kind of variable may appear
in the event expression (reg, wire, etc.).

24

47

Sequential Statements in Verilog
1. begin

sequential_statements
end

2. if (expression)
sequential_statement

[else
sequential_statement]

3. case (expression)
expr: sequential_statement
…….
default: sequential_statement

endcase

begin...end
not required

if there
is only 1 stmt.

48

4. forever

sequential_statement

5. repeat (expression)

sequential_statement

6. while (expression)

sequential_statement

7. for (expr1; expr2; expr3)

sequential_statement

25

49

8. # (time_value)

• Makes a block suspend for
“time_value” time units.

9. @ (event_expression)

• Makes a block suspend until
event_expression triggers.

50

// A combinational logic example

module mux21 (in1, in0, s, f);
input in1, in0, s;
output f;
reg f;

always @ (in1 or in0 or s)
if (s)

f = in1;
else

f = in0;
endmodule

26

51

// A sequential logic example

module dff_negedge (D, clock, Q, Qbar);

input D, clock;

output Q, Qbar;

reg Q, Qbar;

always @ (negedge clock)

begin

Q = D;

Qbar = ~D;

end

endmodule

52

// Another sequential logic example

module incomp_state_spec (curr_state, flag);

input [0:1] curr_state;

output [0:1] flag;

reg [0:1] flag;

always @ (curr_state)

case (curr_state)

0, 1 : flag = 2;

3 : flag = 0;

endcase

endmodule

The variable ‘flag’ is not
assigned a value in all the
branches of case.
���� Latch is inferred

27

53

// A small change made

module incomp_state_spec (curr_state, flag);
input [0:1] curr_state;
output [0:1] flag;
reg [0:1] flag;

always @ (curr_state)
flag = 0;
case (curr_state)

0, 1 : flag = 2;
3 : flag = 0;

endcase
endmodule

‘flag’ defined for all
values of curr_state.
���� Latch is avoided

54

module ALU_4bit (f, a, b, op);

input [1:0] op; input [3:0] a, b;
output [3:0] f; reg [3:0] f;

parameter ADD=2’b00, SUB=2’b01,
MUL=2’b10, DIV=2’b11;

always @ (a or b or op)
case (op)

ADD : f = a + b;
SUB : f = a – b;
MUL : f = a * b;
DIV : f = a / b;

endcase
endmodule

28

55

module priority_encoder (in, code);

input [0:3] in;

output [0:1] code;

reg [0:1] code;

always @ (in)

case (1’b1)

input[0] : code = 2’b00;

input[1] : code = 2’b01;

input[2] : code = 2’d10;

input[3] : code = 2’b11;

endcase

endmodule

56

Blocking & Non-blocking Assignments

• Sequential statements within procedural
blocks (“always” and “initial”) can use
two types of assignments:

– Blocking assignment

• Uses the ‘=’ operator

– Non-blocking assignment

• Uses the ‘=>’ operator

29

57

Blocking Assignment (using ‘=’)

• Most commonly used type.

• The target of assignment gets updated
before the next sequential statement in the
procedural block is executed.

• A statement using blocking assignment
blocks the execution of the statements
following it, until it gets completed.

• Recommended style for modeling
combinational logic.

58

Non-Blocking Assignment (using ‘<=’)

• The assignment to the target gets scheduled
for the end of the simulation cycle.

– Normally occurs at the end of the sequential
block.

– Statements subsequent to the instruction
under consideration are not blocked by the
assignment.

• Recommended style for modeling sequential
logic.

– Can be used to assign several ‘reg’ type
variables synchronously, under the control
of a common clock.

30

59

Some Rules to be Followed

• Verilog synthesizer ignores the delays
specified in a procedural assignment
statement.

– May lead to functional mismatch
between the design model and the
synthesized netlist.

• A variable cannot appear as the target of
both a blocking and a non-blocking
assignment.

– Following is not permissible:

value = value + 1;

value <= init;

60

// Up-down counter (synchronous clear)

module counter (mode, clr, ld, d_in, clk, count);
input mode, clr, ld, clk; input [0:7] d_in;
output [0:7] count; reg [0:7] count;
always @ (posedge clk)

if (ld)
count <= d_in;

else if (clr)
count <= 0;

else if (mode)
count <= count + 1;

else
count <= count + 1;

endmodule

31

61

// Parameterized design:: an N-bit counter

module counter (clear, clock, count);
parameter N = 7;
input clear, clock;
output [0:N] count; reg [0:N] count;

always @ (negedge clock)
if (clear)

count <= 0;
else

count <= count + 1;
endmodule

62

// Using more than one clocks in a module

module multiple_clk (clk1, clk2, a, b, c, f1, f2);

input clk1, clk2, a, b, c;

output f1, f2;

reg f1, f2;

always @ (posedge clk1)

f1 <= a & b;

always @ (negedge clk2)

f2 <= b ^ c;

endmodule

32

63

// Using multiple edges of the same clock

module multi_phase_clk (a, b, f, clk);

input a, b, clk;

output f;

reg f, t;

always @ (posedge clk)

f <= t & b;

always @ (negedge clk)

t <= a | b;

endmodule

64

A Ring Counter Example

module ring_counter (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin

if (init)
count = 8’b10000000;

else begin
count = count << 1;
count[0] = count[7];

end
end

endmodule

33

65

A Ring Counter Example (Modified--1)

module ring_counter_modi1 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin

if (init)
count = 8’b10000000;

else begin
count <= count << 1;
count[0] <= count[7];

end
end

endmodule

66

A Ring Counter Example (Modified – 2)

module ring_counter_modi2 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin

if (init)
count = 8’b10000000;

else
count = {count[6:0], count[7]};

endmodule

34

67

About “Loop” Statements

• Verilog supports four types of loops:

– ‘while’ loop

– ‘for’ loop

– ‘forever’ loop

– ‘repeat’ loop

• Many Verilog synthesizers supports only
‘for’ loop for synthesis:

– Loop bound must evaluate to a constant.

– Implemented by unrolling the ‘for’ loop, and
replicating the statements.

68

Modeling Memory

• Synthesis tools are usually not very efficient in
synthesizing memory.

– Best modeled as a component.

– Instantiated in a design.

• Implementing memory as a two-dimensional
register file is inefficient.

35

69

module memory_example (en, clk, adbus, dbus,

rw);

parameter N = 16;

input en, rw, clk;

input [N-1:0] adbus;

output [N-1:0] dbus;

…………

ROM Mem1 (clk, en, rw, adbus, dbus);

…………

endmodule

70

Modeling Tri-state Gates

module bus_driver (in, out, enable);

input enable; input [0:7] in;

output [0:7] out; reg [0:7] out;

always @ (enable or in)

if (enable)

out = in;

else

out = 8’bz;

endmodule;

36

71

• Two types of FSMs

– Moore Machine

– Mealy Machine

Modeling Finite State Machines

NS
Logic

F/F
O/p

Logic

PSNS

NS
Logic

F/F
O/p

Logic
PSNS

72

Moore Machine : Example 1

• Traffic Light Controller

– Simplifying assumptions made

– Three lights only (RED, GREEN, YELLOW)

– The lights glow cyclically at a fixed rate

• Say, 10 seconds each

• The circuit will be driven by a clock of
appropriate frequency

clk
RED

GREEN

YELLOW

37

73

module traffic_light (clk, light);

input clk;

output [0:2] light; reg [0:2] light;

parameter S0=0, S1=1, S2=2;

parameter RED=3’b100, GREEN=3’b010,

YELLOW=3’b001;

reg [0:1] state;

always @ (posedge clk)

case (state)

S0: begin // S0 means RED

light <= YELLOW;

state <= S1;

end

74

S1: begin // S1 means YELLOW
light <= GREEN;
state <= S2;

end
S2: begin // S2 means GREEN

light <= RED;
state <= S0;

end
default: begin

light <= RED;
state <= S0;

end
endcase

endmodule

38

75

• Comment on the solution

– Five flip-flops are synthesized

• Two for ‘state’

• Three for ‘light’ (outputs are also
latched into flip-flops)

– If we want non-latched outputs, we have
to modify the Verilog code.

• Assignment to ‘light’ made in a
separate ‘always’ block.

• Use blocking assignment.

76

module traffic_light_nonlatched_op (clk, light);
input clk;
output [0:2] light; reg [0:2] light;
parameter S0=0, S1=1, S2=2;
parameter RED=3’b100, GREEN=3’b010,

YELLOW=3’b001;
reg [0:1] state;
always @ (posedge clk)

case (state)
S0: state <= S1;
S1: state <= S2;
S2: state <= S0;
default: state <= S0;

endcase

39

77

always @ (state)

case (state)

S0: light = RED;

S1: light = YELLOW;

S2: light = GREEN;

default: light = RED;

endcase

endmodule

78

Moore Machine: Example 2

• Serial parity detector

x

clk
z

EVEN ODD

x=1
x=0 x=0

x=1

= 0, for even

1, for odd

40

79

module parity_gen (x, clk, z);

input x, clk;

output z; reg z;

reg even_odd; // The machine state

parameter EVEN=0, ODD=1;

always @ (posedge clk)

case (even_odd)

EVEN: begin

z <= x ? 1 : 0;

even_odd <= x ? ODD : EVEN;

end

80

ODD: begin
z <= x ? 0 : 1;
even_odd <= x ? EVEN : ODD;

end
endcase

endmodule

• If no output latches need to be synthesized, we

can follow the principle shown in the last example.

41

81

Mealy Machine: Example

• Sequence detector for the pattern ‘0110’.

x
z

clk

S0 S1 S2 S3

1/0

0/0

0/0

0/0 1/0

1/0

1/0

0/1

82

// Sequence detector for the pattern ‘0110’

module seq_detector (x, clk, z)

input x, clk;

output z; reg z;

parameter S0=0, S1=1, S2=2, S3=3;

reg [0:1] PS, NS;

always @ (posedge clk)

PS <= NS;

42

83

always @ (PS or x)
case (PS)

S0: begin
z = x ? 0 : 0;
NS = x ? S0 : S1;

end;
S1: begin

z = x ? 0 : 0;
NS = x ? S2 : S1;

end;
S2: begin

z = x ? 0 : 0;
NS = x ? S3 : S1;

end;

84

S3: begin

z = x ? 0 : 1;

NS = x ? S0 : S1;

end;

endcase

endmodule

43

85

Example with Multiple Modules

• A simple example showing multiple module
definitions.

Complementor

Adder

Parity Checker P

A
B

add_sub

Bout

sumcarry

en

c_in

86

module complementor (Y, X, comp);

input [7:0] X;

input comp;

output [7:0] Y; reg [7:0] Y;

always @ (X or comp)

if (comp)

Y = ~X;

else

Y = X;

endmodule

44

87

module adder (sum, cy_out, in1, in2, cy_in);

input [7:0] in1, in2;

input cy_in;

output [7:0] sum; reg [7:0] sum;

output cy_out; reg cy_out;

always @ (in1 or in2 or cy_in)

{cy_out, sum} = in1 + in2 + cy_in;

endmodule

88

module parity_checker (out_par, in_word);

input [8:0] in_word;

output out_par;

always @ (in_word)

out_par = ^ (in_word);

endmodule

45

89

// Top level module

module add_sub_parity (p, a, b, add_sub);

input [7:0] a, b;

input add_sub; // 0 for add, 1 for subtract

output p; // parity of the result

wire [7:0] Bout, sum; wire carry;

complementor M1 (Bout, B, add_sub);

adder M2 (sum, carry, A, Bout, add_sub);

parity_checker M3 (p, {carry, sum});

endmodule

90

Memory Modeling Revisited

• Memory is typically included by
instantiating a pre-designed module.

• Alternatively, we can model
memories using two-dimensional
arrays.

– Array of register variables.

• Behavioral model of memory.

– Mostly used for simulation purposes.

– For small memories, even for synthesis.

46

91

Typical Example

module memory_model (……..)

reg [7:0] mem [0:1023];

endmodule

92

How to Initialize memory

• By reading memory data patterns
from a specified disk file.

– Used for simulation.

– Used in test benches.

• Two Verilog functions are available:
1. $readmemb (filename, memname,

startaddr, stopaddr)
Data read in binary format.

2. $readmemh (filename, memname,

startaddr, stopaddr)
Data read in hexadecimal format.

47

93

An Example

module memory_model (……..)

reg [7:0] mem [0:1023];

initial

begin

$readmemh (“mem.dat”, mem);

end

endmodule

94

A Specific Example :: Single Port RAM

with Synchronous Read-Write

module ram_1 (addr, data, clk, rd, wr, cs)

input [9:0] addr; input clk, rd, wr, cs;

inout [7:0] data;

reg [7:0] mem [1023:0]; reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8’bz;

always @ (posedge clk)

if (cs && wr && !rd) mem [addr] = data;

always @ (posedge clk)

if (cs && rd && !wr) d_out = mem [addr];

endmodule

48

95

A Specific Example :: Single Port RAM

with Asynchronous Read-Write

module ram_2 (addr, data, rd, wr, cs)

input [9:0] addr; input rd, wr, cs;

inout [7:0] data;

reg [7:0] mem [1023..0]; reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8’bz;

always @ (addr or data or rd or wr or cs)

if (cs && wr && !rd) mem [addr] = data;

always @ (addr or rd or wr or cs)

if (cs && rd && !wr) d_out = mem [addr];

endmodule

96

A Specific Example :: ROM/EPROM

module rom (addr, data, rd_en, cs)

input [2:0] addr; input rd_en, cs;

output [7:0] data;

reg [7:0] data;

always @ (addr or rd_en or cs)

case (addr)

0: 22;

1: 45;

…………………

7: 12;

endcase

endmodule

49

97

Verilog Test Bench

• What is test bench?

– A Verilog procedural block which
executes only once.

– Used for simulation.

– Testbench generates clock, reset, and
the required test vectors.

98

Module
Under
Test

Test Bench

Compare

logic

Stimulus

50

99

How to Write Testbench?

• Create a dummy template
– Declare inputs to the module-under-test (MUT)

as “reg”, and the outputs as “wire”

– Instantiate the MUT.

• Initialization
– Assign some known values to the MUT inputs.

• Clock generation logic
– Various ways to do so.

• May include several simulator directives
– Like $display, $monitor, $dumpfile,

$dumpvars, $finish.

100

• $display
– Prints text or variables to stdout.

– Syntax same as “printf”.

• $monitor
– Similar to $display, but prints the value whenever

the value of some variable in the given list
changes.

• $finish
– Terminates the simulation process.

• $dumpfile
– Specify the file that will be used for storing the

waveform.

• $dumpvars
– Starts dumping all the signals to the specified file.

51

101

Example Testbench

module shifter_toplevel;

reg clk, clear, shift;

wire [7:0] data;

shift_register S1 (clk, clear, shift, data);

initial

begin

clk = 0; clear = 0; shift = 0;

end

always

#10 clk = !clk;

endmodule

102

Testbench: More Complete Version

module shifter_toplevel;

reg clk, clear, shift;

wire [7:0] data;

shift_register S1 (clk, clear, shift, data);

initial

begin

clk = 0; clear = 0; shift = 0;

end

always

#10 clk = !clk;

contd..

52

103

initial

begin

$dumpfile (“shifter.vcd”);

$dumpvars;

end

initial

begin

$display (“\ttime, \tclk, \tclr, \tsft, \tdata);

$monitor (“%d, %d, %d, %d, %d”, $time,

clk, reset, clear, shift, data);

end

initial

#400 $finish;

***** REMAINING CODE HERE ******

endmodule

104

A Complete Example

module testbench;

wire w1, w2, w3;

xyz m1 (w1, w2, w3);

test_xyz m2 (w1, w2, w3);

endmodule

module xyz (f, A, B);

input A, B; output f;

nor #1 (f, A, B);

ndmodule

contd..

53

105

module test_xyz (f, A, B);

input f;

output A, B;

reg A, B;

initial

begin

$monitor ($time, “A=%b”, “B=%b”, f=%b”,

A, B, f);

#10 A = 0; B = 0;

#10 A = 1; B = 0;

#10 A = 1; B = 1;

#10 $finish;

end

endmodule

