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VERILOG
Hardware Description Language
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About Verilog

• Along with VHDL, Verilog is among the 
most widely used HDLs.

• Main differences:

– VHDL was designed to support system-level 
design and specification.

– Verilog was designed primarily for digital 
hardware designers developing FPGAs and 
ASICs.

• The differences become clear if someone 
analyzes the language features.
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• VHDL
– Provides some high-level constructs 

not available in Verilog (user defined 
types, configurations, etc.).

• Verilog
– Provides comprehensive support for 

low-level digital design.

– Not available in native VHDL

• Range of type definitions and 
supporting functions (called 
packages) needs to be included.
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Concept of Verilog “Module”

• In Verilog, the basic unit of hardware 
is called a module.

– Modules cannot contain definitions of 
other modules.

– A module can, however, be instantiated 
within another module.

– Allows the creation of a hierarchy in a 
Verilog description.
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Basic Syntax of Module Definition 

module  module_name  (list_of_ports);

input/output declarations

local net declarations

Parallel statements

endmodule
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Example 1 :: simple AND gate

module  simpleand (f, x, y);

input  x, y;

output  f;

assign  f = x & y;

endmodule
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Example 2 :: two-level circuit

module  two_level (a, b, c, d, f);
input  a, b, c, d;
output  f;
wire  t1, t2;
assign  t1 = a & b;
assign  t2 = ~ (c | d);
assign  f = t1 ^ t2;

endmodule 
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Example 3 :: a hierarchical design

module  add3 (s, cy3, cy_in, x, y);

input [2:0] x, y;

input cy_in;

output [2:0] s;

output cy3;

wire [1:0]  cy_out;

add B0 (cy_out[0], s[0], x[0], y[0], cy_in);

add B1 (cy_out[1],s[1],x[1],y[1],cy_out[0]);

add B2 (cy3, s[2], x[2], y[2], cy_out[1]);

endmodule
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Specifying Connectivity

• There are two alternate ways of 
specifying connectivity:
– Positional association

• The connections are listed in the 
same order

add  A1 (c_out, sum, a, b, c_in);

– Explicit association

• May be listed in any order

add  A1 (.in1(a), .in2(b), .cin(c_in),

.sum(sum), .cout(c_out));
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Variable Data Types

• A variable belongs to one of two data 
types:
– Net

• Must be continuously driven

• Used to model connections between 
continuous assignments & 
instantiations

– Register

• Retains the last value assigned to it

• Often used to represent storage 
elements
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Net data type
– Different ‘net’ types supported for 

synthesis:

• wire, wor, wand, tri, supply0, supply1

– ‘wire’ and ‘tri’ are equivalent; when 
there are multiple drivers driving them, 
the outputs of the drivers are shorted 
together.

– ‘wor’ / ‘wand’ inserts an OR / AND gate 
at the connection.

– ‘supply0’ / ‘supply1’ model power 
supply connections.

12

module  using_wire  (A, B, C, D, f);
input    A, B, C, D;
output  f;
wire      f;             //  net f declared as ‘wire’

assign  f = A & B;
assign  f = C | D;

endmodule
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module  using_wired_and  (A, B, C, D, f);
input    A, B, C, D;
output  f;
wand    f;           // net f declared as ‘wand’

assign  f = A & B;
assign  f = C | D;

endmodule
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module  using_supply_wire  (A, B, C, f);

input      A, B, C;

output    f;

supply0  gnd;

supply1  vdd;

nand   G1  (t1, vdd, A, B);

xor      G2  (t2, C, gnd);

and     G3  (f, t1, t2);

endmodule
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Register data type

– Different ‘register’ types supported for 
synthesis:

• reg, integer

– The ‘reg’ declaration explicitly specifies the 
size.

reg  x, y;  // single-bit register variables

reg [15:0] bus; // 16-bit bus, bus[15] MSB

– For ‘integer’, it takes the default size, 
usually 32-bits.

• Synthesizer tries to determine the size.

16

Other differences:
– In arithmetic expressions,

• An ‘integer’ is treated as a 2’s 
complement signed integer.

• A ‘reg’ is treated as an unsigned 
quantity.

– General rule of thumb

• ‘reg’ used to model actual hardware 
registers such as counters, 
accumulator, etc.

• ‘integer’ used for situations like loop 
counting.
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module  simple_counter  (clk, rst, count);
input    clk, rst;
output  count;
reg [31:0]  count;

always  @(posedge  clk)
begin

if  (rst)
count = 32’b0;

else
count = count + 1;

end
endmodule 

18

• When ‘integer’ is used, the synthesis 
system often carries out a data flow 
analysis of the model to determine its 
actual size.

• Example:

wire [1:10]  A, B;

integer        C;

C  =  A + B;

�The size of C can be determined to be  

equal to 11 (10 bits plus a carry).
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Specifying Constant Values

• A value may be specified in either the 
‘sized’ or the ‘un-sized’ form.

– Syntax for ‘sized’ form:

<size>’<base><number>

• Examples:
8’b01110011  // 8-bit binary number

12’hA2D         // 1010 0010 1101 in binary

12’hCx5          // 1100 xxxx 0101 in binary

25                    // signed number, 32 bits

1’b0                // logic 0

1’b1                // logic 1

20

Parameters

• A parameter is a constant with a name.

• No size is allowed to be specified for a 
parameter.

– The size gets decided from the constant 
itself (32-bits if nothing is specified).

• Examples:

parameter  HI = 25, LO = 5;

parameter  up = 2b’00, down = 2b’01,

steady = 2b’10; 
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Logic Values

• The common values used in modeling 
hardware are:

0   ::   Logic-0 or FALSE

1   ::   Logic-1 or TRUE

x   ::   Unknown (or don’t care)

z   ::   High impedance

• Initialization:

– All unconnected nets set to ‘z’ 

– All register variables set to ‘x’

22

• Verilog provides a set of predefined 
logic gates.

– They respond to inputs (0, 1, x, or z) in a 
logical way.

– Example :: AND

0 & 0  ���� 0  0 & x  ���� 0

0 & 1  ���� 0 1 & z  ���� x

1 & 1  ���� 1 z & x  ���� x

1 & x  ���� x
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Primitive Gates

• Primitive logic gates (instantiations):

and    G (out, in1, in2);

nand  G (out, in1, in2);

or       G (out, in1, in2);

nor     G (out, in1, in2);

xor     G (out, in1, in2);

xnor   G (out, in1, in2);

not     G (out1, in);

buf     G (out1, in);

24

• Primitive Tri-State gates (instantiation)

bufif1  G (out, in, ctrl);

bufif0  G (out, in, ctrl);

notif1  G (out, in, ctrl);

notif0  G (out, in, ctrl);
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Some Points to Note

• For all primitive gates,

– The output port must be connected to a 
net (a wire).

– The input ports may be connected to 
nets or register type variables.

– They can have a single output but any 
number of inputs.

– An optional delay may be specified.

• Logic synthesis tools ignore time 
delays.

26

`timescale  1 ns / 1ns

module  exclusive_or  (f, a, b);

input  a, b;

output f;

wire  t1, t2, t3;

nand  #5  m1 (t1, a, b);

and    #5  m2 (t2, a, t1);

and    #5  m3 (t3, t1, b);

or       #5  m4 (f, t2, t3);

endmodule
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Hardware Modeling Issues

• The values computed can be held in

– A ‘wire’

– A ‘flip-flop’ (edge-triggered storage cell)

– A ‘latch’ (level-sensitive storage cell)

• A variable in Verilog can be of

– ‘net data type

• Maps to a ‘wire’ during synthesis

– ‘register’ data type

• Maps either to a ‘wire’ or to a ‘storage 
cell’ depending on the context under 
which a value is assigned.

28

module  reg_maps_to_wire  (A, B, C, f1, f2);
input    A, B, C;
output  f1, f2;
wire      A, B, C;
reg        f1, f2;
always  @(A or B or C)
begin

f1 = ~(A & B);
f2 = f1 ^ C;

end
endmodule

The synthesis system
will generate a wire 
for f1
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module  a_problem_case  (A, B, C, f1, f2);
input    A, B, C;
output  f1, f2;
wire      A, B, C;
reg        f1, f2;
always  @(A or B or C)
begin

f2 = f1 ^ f2;
f1 = ~(A & B);

end
endmodule

The synthesis system
will not generate a 
storage cell for f1
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// A latch gets inferred here
module  simple_latch  (data, load, d_out);

input    data, load;
output  d_out;

always @(load or data)
begin

if (!load)
t = data;

d_out = !t;
end

endmodule

Else part missing; so
latch is inferred.
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Verilog Operators

• Arithmetic operators

*, /, +, -, %  

• Logical operators

!        ���� logical negation

&&    ���� logical AND

| |      ���� logical OR

• Relational operators

>,  <,  >=,  <=,  ==,  !=

• Bitwise operators
~,  &,  |,  ^,  ~^

32

• Reduction operators (operate on all the bits 
within a word)

&,  ~&,  |,  ~|,  ^,  ~^

���� accepts a single word operand and 

produces a single bit as output

• Shift operators

>>,  <<

• Concatenation { }

• Replication { { } }

• Conditional

<condition> ? <expression1> : <expression2>
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module  operator_example  (x, y, f1, f2);

input     x, y;

output  f1, f2;

wire [9:0]  x, y;    wire [4:0]  f1;    wire  f2;

assign   f1  =  x[4:0]  &  y[4:0];

assign   f2  =  x[2]  |  ~f1[3];

assign   f2  =  ~&  x;

assign   f1  =  f2  ?  x[9:5]  :  x[4:0];

endmodule
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//  An 8-bit adder description

module  parallel_adder  (sum, cout, in1, in2, cin);

input    [7:0]  in1, in2;    input     cin;

output  [7:0]  sum;         output  cout;

assign   #20  {cout, sum}  =  in1 + in2 + cin;

endmodule   
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Some Points

• The presence of a ‘z’ or ‘x’ in a reg or wire
being used in an arithmetic expression 
results in the whole expression being 
unknown (‘x’).

• The logical operators (!, &&, | |)  all 
evaluate to a 1-bit result (0, 1 or x).

• The relational operators (>, <, <=, >=, ~=, 
==) also evaluate to a 1-bit result (0 or 1). 

• Boolean false is equivalent to 1’b0

Boolean true is equivalent to 1’b1.

36

Some Valid Statements

assign  outp = (p == 4’b1111);

if  (load  &&  (select == 2’b01)) …….

assign   a = b >> 1;

assign   a = b << 3;

assign  f = {a, b};

assign f = {a, 3’b101, b};

assign f = {x[2], y[0], a};

assign f = { 4{a} };   // replicate four times

assign f = {2’b10, 3{2’b01}, x};
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Description Styles in Verilog

• Two different styles of description:

1. Data flow

• Continuous assignment

2. Behavioral

• Procedural assignment

� Blocking

� Non-blocking

38

Data-flow Style: Continuous Assignment

• Identified by the keyword “assign”.

assign   a = b & c

assign   f[2] = c[0];

• Forms a static binding between

– The ‘net’ being assigned on the LHS,

– The expression on the RHS.

• The assignment is continuously active.

• Almost exclusively used to model 
combinational logic.
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• A Verilog module can contain any number 
of continuous assignment statements.

• For an “assign” statement,

– The expression on RHS may contain 
both “register” or “net” type variables.

– The LHS must be of “net” type, typically 
a “wire”.

• Several examples of “assign” illustrated 
already.

40

module   generate_mux (data, select, out);

input  [0:7]  data;

input  [0:2]  select;

output  out;

assign   out  =  data [ select];

endmodule

Non-constant index in 
expression on RHS 
generates a MUX
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module generate_decoder (out, in, select);

input  in;

input [0:1]  select;

output  [0:3]  out;

assign   out [ select]  =  in;

endmodule

Non-constant index in 
expression on LHS 
generates a decoder
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module  generate_set_of_MUX (a, b, f, sel);

input [0:3]  a, b;

input  sel;

output  [0:3]  f;

assign  f  =  sel  ?  a  :  b;

endmodule

Conditional operator
generates a MUX
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module   level_sensitive_latch  (D, Q, En);

input  D, En;

output  Q;

assign  Q  =  en  ?  D  :  Q;

endmodule

Using “assign” to describe
sequential logic

44

Behavioral Style: Procedural Assignment

• The procedural block defines
– A region of code containing sequential

statements.

– The statements execute in the order they are 
written.

• Two types of procedural blocks in Verilog
– The “always” block

• A continuous loop that never terminates.

– The “initial” block

• Executed once at the beginning of 
simulation (used in Test-benches).
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• A module can contain any number of 
“always” blocks, all of which execute 
concurrently.

• Basic syntax of “always” block:

always  @ (event_expression)
begin

statement;

statement;
end

• The @(event_expression) is required for 
both combinational and sequential logic 
descriptions.

Sequential
statements

46

• Only “reg” type variables can be 
assigned within an “always” block.   
Why??

– The sequential “always” block executes 
only when the event expression triggers.

– At other times the block is doing nothing.

– An object being assigned to must therefore 
remember the last value assigned (not 
continuously driven).

– So, only “reg” type variables can be 
assigned within the “always” block.

– Of course, any kind of variable may appear 
in the event expression (reg, wire, etc.).
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Sequential Statements in Verilog
1. begin

sequential_statements
end

2. if   (expression)
sequential_statement

[else
sequential_statement]

3. case  (expression)
expr:      sequential_statement
…….
default:  sequential_statement

endcase

begin...end 
not required

if there 
is only 1 stmt.

48

4. forever

sequential_statement

5. repeat  (expression)

sequential_statement

6. while  (expression)

sequential_statement

7. for  (expr1; expr2; expr3)

sequential_statement
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8. # (time_value)

• Makes a block suspend for 
“time_value” time units.

9. @ (event_expression)

• Makes a block suspend until 
event_expression triggers.

50

//  A combinational logic example

module  mux21  (in1, in0, s, f);
input  in1, in0, s;
output  f;
reg  f;

always  @ (in1  or  in0  or  s)
if  (s)

f  =  in1;
else

f  =  in0;
endmodule
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// A sequential logic example

module  dff_negedge  (D, clock, Q, Qbar);

input  D, clock;

output  Q, Qbar;

reg  Q, Qbar;

always  @ (negedge clock)

begin

Q  =  D;

Qbar  =  ~D;

end

endmodule

52

// Another sequential logic example

module  incomp_state_spec  (curr_state, flag);

input     [0:1]  curr_state;

output  [0:1]  flag;

reg        [0:1]  flag;

always  @ (curr_state)

case  (curr_state)

0, 1  :  flag = 2;

3      :  flag = 0;

endcase

endmodule

The variable ‘flag’ is not 
assigned a value in all the
branches of case.
���� Latch is inferred
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// A small change made

module  incomp_state_spec  (curr_state, flag);
input     [0:1]  curr_state;
output  [0:1]  flag;
reg        [0:1]  flag;

always  @ (curr_state)
flag = 0;
case  (curr_state)

0, 1  :  flag = 2;
3      :  flag = 0;

endcase
endmodule

‘flag’ defined for all
values of curr_state.
���� Latch is avoided
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module  ALU_4bit  (f, a, b, op);

input   [1:0]  op;        input [3:0]  a, b;
output [3:0]  f;           reg    [3:0]  f;

parameter  ADD=2’b00, SUB=2’b01,
MUL=2’b10, DIV=2’b11;

always  @ (a or b or op)
case (op)

ADD : f = a + b;
SUB : f = a – b;
MUL : f = a * b;
DIV   : f = a / b;

endcase
endmodule
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module  priority_encoder  (in, code);

input [0:3]  in;

output [0:1]  code;

reg [0:1]  code;

always  @ (in)

case  (1’b1)

input[0] :  code = 2’b00;

input[1] :  code = 2’b01;

input[2] :  code = 2’d10;

input[3] :  code = 2’b11;

endcase

endmodule

56

Blocking & Non-blocking Assignments

• Sequential statements within procedural 
blocks (“always” and “initial”) can use 
two types of assignments:

– Blocking assignment

• Uses the ‘=’ operator

– Non-blocking assignment

• Uses the ‘=>’ operator
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Blocking Assignment (using ‘=’)

• Most commonly used type.

• The target of assignment gets updated 
before the next sequential statement in the 
procedural block is executed.

• A statement using blocking assignment 
blocks the execution of the statements 
following it, until it gets completed.

• Recommended style for modeling 
combinational logic.

58

Non-Blocking Assignment (using ‘<=’)

• The assignment to the target gets scheduled 
for the end of the simulation cycle.

– Normally occurs at the end of the sequential 
block.

– Statements subsequent to the instruction 
under consideration are not blocked by the 
assignment.

• Recommended style for modeling sequential 
logic.

– Can be used to assign several ‘reg’ type 
variables synchronously, under the control 
of a common clock.
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Some Rules to be Followed

• Verilog synthesizer ignores the delays 
specified in a procedural assignment 
statement.

– May lead to functional mismatch 
between the design model and the 
synthesized netlist.

• A variable cannot appear as the target of 
both a blocking and a non-blocking 
assignment.

– Following is not permissible:

value  =  value  +  1;

value  <=  init;

60

// Up-down counter (synchronous clear)

module  counter (mode, clr, ld, d_in, clk, count);
input mode, clr, ld, clk;     input [0:7] d_in;
output [0:7]  count;            reg [0:7]  count;
always  @ (posedge  clk)

if  (ld)
count  <= d_in;

else  if  (clr)
count  <= 0;

else  if  (mode)
count  <=  count + 1;

else
count  <=  count + 1;

endmodule
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// Parameterized design:: an N-bit counter

module  counter (clear, clock, count);
parameter  N = 7;
input  clear, clock; 
output [0:N]  count;         reg [0:N]  count;

always  @ (negedge  clock)
if  (clear)

count  <= 0;
else 

count  <=  count + 1;
endmodule

62

// Using more than one clocks in a module

module  multiple_clk (clk1, clk2, a, b, c, f1, f2);

input  clk1, clk2, a, b, c;

output  f1, f2;

reg  f1, f2;

always  @ (posedge  clk1)

f1  <=  a & b;

always  @ (negedge  clk2)

f2  <=  b ^ c;

endmodule
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// Using multiple edges of the same clock

module multi_phase_clk (a, b, f, clk);

input  a, b, clk;

output  f;

reg  f, t;

always  @ (posedge  clk)

f  <=  t & b;

always  @ (negedge  clk)

t  <=  a | b;

endmodule
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A Ring Counter Example

module  ring_counter  (clk, init, count);
input  clk, init;        output [7:0]  count;
reg [7:0]  count;
always  @ (posedge clk)
begin

if  (init)
count  =  8’b10000000;

else  begin
count      =  count  <<  1;
count[0]  =  count[7];

end
end

endmodule
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A Ring Counter Example (Modified--1)

module  ring_counter_modi1  (clk, init, count);
input  clk, init;        output [7:0]  count;
reg [7:0]  count;
always  @ (posedge clk)
begin

if  (init)
count  =  8’b10000000;

else  begin
count       <=  count  <<  1;
count[0]  <=  count[7];

end
end

endmodule
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A Ring Counter Example (Modified – 2)

module  ring_counter_modi2  (clk, init, count);
input  clk, init;        output [7:0]  count;
reg [7:0]  count;
always  @ (posedge clk)
begin

if  (init)
count  =  8’b10000000;

else  
count  =  {count[6:0], count[7]};

endmodule
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About “Loop” Statements

• Verilog supports four types of loops:

– ‘while’ loop

– ‘for’ loop

– ‘forever’ loop

– ‘repeat’ loop

• Many Verilog synthesizers supports only 
‘for’ loop for synthesis:

– Loop bound must evaluate to a constant. 

– Implemented by unrolling the ‘for’ loop, and 
replicating the statements.

68

Modeling Memory

• Synthesis tools are usually not very efficient in 
synthesizing memory.

– Best modeled as a component.

– Instantiated in a design.

• Implementing memory as a two-dimensional 
register file is inefficient.
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module  memory_example (en, clk, adbus, dbus,   

rw);

parameter  N = 16;

input  en, rw, clk;

input  [N-1:0]  adbus;

output [N-1:0]  dbus;

…………

ROM  Mem1  (clk, en, rw, adbus, dbus);

…………

endmodule

70

Modeling Tri-state Gates

module  bus_driver  (in, out, enable);

input  enable;            input [0:7]  in;

output [0:7]  out;       reg [0:7]  out;

always  @ (enable or in)

if  (enable)

out = in;

else

out = 8’bz;

endmodule;
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• Two types of FSMs

– Moore Machine

– Mealy Machine

Modeling Finite State Machines

NS
Logic

F/F
O/p

Logic

PSNS

NS
Logic

F/F
O/p

Logic
PSNS
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Moore Machine : Example 1

• Traffic Light Controller

– Simplifying assumptions made

– Three lights only (RED, GREEN, YELLOW)

– The lights glow cyclically at a fixed rate

• Say, 10 seconds each

• The circuit will be driven by a clock of 
appropriate frequency

clk
RED

GREEN

YELLOW
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module  traffic_light  (clk, light);

input  clk;

output [0:2]  light;      reg  [0:2]  light;

parameter  S0=0, S1=1, S2=2;

parameter  RED=3’b100, GREEN=3’b010,

YELLOW=3’b001;

reg [0:1]  state;

always  @ (posedge  clk)

case  (state)

S0:  begin                       // S0 means RED

light  <=  YELLOW;

state <=  S1;

end

74

S1:  begin                     // S1 means YELLOW
light  <=  GREEN;
state <=  S2;

end
S2:  begin                     // S2 means GREEN

light  <=  RED;
state <=  S0;

end
default:  begin  

light  <=  RED;
state <=  S0;

end
endcase

endmodule
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• Comment on the solution

– Five flip-flops are synthesized

• Two for ‘state’

• Three for ‘light’  (outputs are also 
latched into flip-flops)

– If we want non-latched outputs, we have 
to modify the Verilog code.

• Assignment to ‘light’ made in a 
separate ‘always’ block.

• Use blocking assignment.

76

module  traffic_light_nonlatched_op  (clk, light);
input  clk;
output [0:2]  light;      reg  [0:2]  light;
parameter  S0=0, S1=1, S2=2;
parameter  RED=3’b100, GREEN=3’b010,

YELLOW=3’b001;
reg [0:1]  state;
always  @ (posedge  clk)

case  (state)
S0:          state  <=  S1;
S1:          state  <=  S2;
S2:          state  <=  S0;
default:  state  <=  S0;

endcase
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always  @ (state)

case  (state)

S0:          light  =  RED;

S1:          light  =  YELLOW;

S2:          light  =  GREEN;

default:  light  =  RED;

endcase

endmodule
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Moore Machine:  Example 2

• Serial parity detector

x

clk
z

EVEN ODD

x=1
x=0 x=0

x=1

= 0, for even

1, for odd
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module  parity_gen  (x, clk, z);

input  x, clk;

output  z;        reg  z;

reg  even_odd;    // The machine state

parameter  EVEN=0, ODD=1;

always  @ (posedge  clk)

case  (even_odd)

EVEN:  begin

z  <=  x ? 1 : 0;

even_odd  <=  x ? ODD : EVEN;

end
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ODD:   begin
z  <=  x ? 0 : 1;
even_odd  <=  x ? EVEN : ODD;

end
endcase

endmodule

• If no output latches need to be synthesized, we

can follow the principle shown in the last example.
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Mealy Machine:  Example

• Sequence detector for the pattern ‘0110’.

x
z

clk

S0 S1 S2 S3

1/0

0/0

0/0

0/0 1/0

1/0

1/0

0/1
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// Sequence detector for the pattern ‘0110’

module  seq_detector  (x, clk, z)

input  x, clk;

output  z;          reg  z;

parameter  S0=0, S1=1, S2=2, S3=3;

reg [0:1]  PS, NS;

always  @ (posedge  clk)

PS  <=  NS;
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always  @ (PS  or  x)
case  (PS)

S0:  begin
z     =  x ? 0 : 0;
NS  =  x ? S0 : S1; 

end;
S1:  begin

z     =  x ? 0 : 0;
NS  =  x ? S2 : S1; 

end;
S2:  begin

z     =  x ? 0 : 0;
NS  =  x ? S3 : S1; 

end;
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S3:  begin

z     =  x ? 0 : 1;

NS  =  x ? S0 : S1; 

end;

endcase

endmodule



43

85

Example with Multiple Modules

• A simple example showing multiple module 
definitions.

Complementor

Adder

Parity Checker P

A
B

add_sub

Bout

sumcarry

en

c_in
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module  complementor (Y, X, comp);

input [7:0]  X;

input  comp;

output [7:0]  Y;      reg [7:0]  Y;

always  @ (X or comp)

if  (comp)

Y = ~X;

else

Y = X;

endmodule
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module  adder  (sum, cy_out, in1, in2, cy_in);

input [7:0]  in1, in2;

input  cy_in;

output [7:0]  sum;        reg [7:0]  sum;

output  cy_out;             reg  cy_out;

always  @ (in1 or in2 or cy_in)

{cy_out, sum}  =  in1  +  in2  +  cy_in;

endmodule
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module  parity_checker (out_par, in_word);

input  [8:0]  in_word;

output  out_par;

always  @ (in_word)

out_par  =  ^ (in_word);

endmodule  
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// Top level module

module  add_sub_parity  (p, a, b, add_sub);

input [7:0]  a, b;

input  add_sub;      // 0 for add, 1 for subtract

output  p;                // parity of the result

wire [7:0]  Bout, sum;    wire  carry;

complementor  M1 (Bout, B, add_sub);

adder  M2 (sum, carry, A, Bout, add_sub);

parity_checker  M3 (p, {carry, sum});

endmodule
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Memory Modeling Revisited

• Memory is typically included by 
instantiating a pre-designed module.

• Alternatively, we can model 
memories using two-dimensional 
arrays.

– Array of register variables.

• Behavioral model of memory.

– Mostly used for simulation purposes.

– For small memories, even for synthesis.
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Typical Example

module  memory_model ( …….. )

reg [7:0]   mem [0:1023]; 

endmodule
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How to Initialize memory

• By reading memory data patterns 
from a specified disk file.

– Used for simulation.

– Used in test benches.

• Two Verilog functions are available:
1. $readmemb (filename, memname,  

startaddr, stopaddr)
Data read in binary format.

2.  $readmemh (filename, memname,  

startaddr, stopaddr)
Data read in hexadecimal format.
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An Example

module  memory_model ( …….. )

reg [7:0]   mem [0:1023]; 

initial

begin

$readmemh (“mem.dat”, mem);

end

endmodule
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A Specific Example :: Single Port RAM 

with Synchronous Read-Write

module  ram_1 (addr, data, clk, rd, wr, cs)

input  [9:0] addr;    input  clk, rd, wr, cs;

inout  [7:0] data;

reg [7:0]  mem [1023:0];    reg [7:0] d_out;

assign   data = (cs && rd)  ?  d_out ; 8’bz;

always  @ (posedge clk)

if (cs && wr && !rd)  mem [addr]  =  data;

always  @ (posedge clk)

if (cs && rd && !wr)  d_out  =  mem [addr];

endmodule
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A Specific Example :: Single Port RAM 

with Asynchronous Read-Write

module  ram_2 (addr, data, rd, wr, cs)

input  [9:0] addr;    input  rd, wr, cs;

inout  [7:0] data;

reg [7:0]  mem [1023..0];    reg [7:0] d_out;

assign   data = (cs && rd)  ?  d_out ; 8’bz;

always  @ (addr or data or rd or wr or cs)

if (cs && wr && !rd)  mem [addr]  =  data;

always  @ (addr or rd or wr or cs)

if (cs && rd && !wr)  d_out  =  mem [addr];

endmodule
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A Specific Example :: ROM/EPROM

module  rom (addr, data, rd_en, cs)

input  [2:0] addr;    input  rd_en, cs;

output  [7:0] data;

reg [7:0]  data;

always  @ (addr or rd_en or cs)

case (addr)

0:   22;

1:   45;

…………………

7:   12;

endcase

endmodule
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Verilog Test Bench

• What is test bench?

– A Verilog procedural block which 
executes only once.

– Used for simulation.

– Testbench generates clock, reset, and 
the required test vectors.

98

Module
Under
Test

Test Bench

Compare

logic

Stimulus
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How to Write Testbench?

• Create a dummy template
– Declare inputs to the module-under-test (MUT) 

as “reg”, and the outputs as “wire”

– Instantiate the MUT.

• Initialization
– Assign some known values to the MUT inputs.

• Clock generation logic
– Various ways to do so.

• May include several simulator directives
– Like $display, $monitor, $dumpfile, 

$dumpvars, $finish.
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• $display
– Prints text or variables to stdout.

– Syntax same as “printf”.

• $monitor
– Similar to $display, but prints the value whenever 

the value of some variable in the given list 
changes.

• $finish
– Terminates the simulation process.

• $dumpfile
– Specify the file that will be used for storing the 

waveform.

• $dumpvars
– Starts dumping all the signals to the specified file.
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Example Testbench

module  shifter_toplevel;

reg  clk, clear, shift;

wire [7:0]  data;

shift_register S1 (clk, clear, shift, data);

initial

begin

clk = 0;   clear = 0;   shift = 0;

end

always

#10 clk = !clk;

endmodule
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Testbench: More Complete Version

module  shifter_toplevel;

reg  clk, clear, shift;

wire [7:0]  data;

shift_register S1 (clk, clear, shift, data);

initial

begin

clk = 0;   clear = 0;   shift = 0;

end

always

#10 clk = !clk;

contd..
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initial

begin

$dumpfile (“shifter.vcd”);

$dumpvars;

end

initial

begin

$display (“\ttime, \tclk, \tclr, \tsft, \tdata);

$monitor (“%d, %d, %d, %d, %d”, $time,

clk, reset, clear, shift, data);

end

initial

#400  $finish;

***** REMAINING CODE HERE  ******

endmodule
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A Complete Example

module  testbench;

wire  w1, w2, w3;

xyz  m1  (w1, w2, w3);

test_xyz  m2  (w1, w2, w3);

endmodule

module  xyz  (f, A, B);

input  A, B;    output  f;

nor  #1 (f, A, B);

ndmodule

contd..
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module  test_xyz  (f, A, B);

input  f;

output  A, B;

reg  A, B;

initial

begin

$monitor ($time, “A=%b”, “B=%b”, f=%b”,

A, B, f);

#10  A = 0;  B = 0;

#10  A = 1;  B = 0;

#10  A = 1;  B = 1;

#10  $finish;

end

endmodule


