

(Mem	T ory Siz	est Time i e n Bits, Me	n Second	S e Time 60ns)
Size	Nu	mber of Test /	Algorithm Op	erations
n	n	n X log ₂ n	n ^{3/2}	n ²
1 Mb	0.06	1.26	64.5	18.3 hr
4 Mb	0.25	5.54	515.4	293.2 hr
16 Mb	1.01	24.16	1.2 hr	4691.3 hr
64 Mb	4.03	104.7	9.2 hr	75060.0 hr
256 Mb	16.11	451.0	73.3 hr	1200959.9 hr
1 Gb	64.43	1932.8	586.4 hr	19215358.4 hr
2 Gb	128.9	3994.4	1658.6 hr	76861433.7 hr
				3

Fault Types
– Permanent
 System is broken and stays broken the same way indefinitely
 Transient
 Fault temporarily affects the system behavior, and then the system reverts to the good machine
 Time dependency, caused by environmental condition
 Intermittent
 Sometimes causes a failure, sometimes does not
4

Failure Mechanisms

- Permanent faults:
 - Missing/Added Electrical Connection
 - Broken Component (IC mask defect or siliconto-metal connection)
 - Burnt-out Chip Wire
 - Corroded connection between chip & package

5

- Chip logic error (Pentium division bug)

Transient Faults: Cosmic Ray An a particle (ionized Helium atom) Air pollution (causes wire short/open) Humidity (temporary short) Temperature (temporary logic error) Pressure (temporary wire open/short) Vibration (temporary wire open) Power Supply Fluctuation (logic error) Electromagnetic Interference (coupling) Static Electrical Discharge (change state) Ground Loop (misinterpreted logic value)

Intermittent Faults:

- Loose Connections
- Aging Components (changed logic delays)
- Hazards and Races in critical timing paths (bad design)
- Resistor, Capacitor, Inductor variances (timing faults)

7

- Physical Irregularities (narrow wire -- high resistance)
- Electrical Noise (memory state changes)

FaultSAFStuck-at faultTFTransition faultCFCoupling fault	
NPSF Neighborhood Pattern Sensitive fault	

Fault		Functional fault	
SAF	а	Cell stuck	
SAF	b	Driver stuck	
SAF	С	Read/write line stuck	
SAF	d	Chip-select line stuck	
SAF	е	Data line stuck	
SAF	f	Open circuit in data line	
CF	g	Short circuit between data lines	
CF	ĥ	Crosstalk between data lines	
AF	i	Address line stuck	
AF	i	Open circuit in address line	
AF	k	Shorts between address lines	
AF	1	Open circuit in decoder	
AF	m	Wrong address access	
AF	n	Multiple simultaneous address access	
TF	0	Cell can be set to 0 (1) but not to 1 (0)	
NPSE	n	Pattern sensitive cell interaction	

	Irredundant March Tests
Algorithm	Description
MATS	{
MATS+	{ (w0);
MATS++	{ ↓(w0); 1 (r0, w1); ↓(r1, w0, r0) }
MARCH X	{ (w0); (r0, w1); (r1, w0); (r0) }
MARCH	{ (w0); ((r0, w1); ((r1, w0);
C	↓(r0, w1); ↓(r1, w0); ‡(r0) }
MARCH A	{ (w0); (r0, w1, w0, w1); (r1, w0, w1);
	↓ (r1, w0, w1, w0); ↓ (r0, w1, w0) }
MARCH Y	{ ‡(w0); 1 (r0, w1, r1); 4 (r1, w0, r0); 1 (r0) }
MARCH B	{ 1 (w0); 1 (r0, w1, r1, w0, r0, w1);
	↑ (r1, w0, w1); ↓ (r1, w0, w1, w0);
	↓ (r0, w1, w0) }

					, 5 1	Canin	inci y
Algorithm	SAF	AF	TF	CF	CF	CF	Linked
				in	id	dyn	Faults
MATS	All	Some					
MATS+	All	All					
MATS++	All	All	All				
MARCH X	All	All	All	All			
MARCH C	All	All	All	All	All	All	
MARCH A	All	All	All	All			Some
MARCH Y	All	All	All	All			Some
MARCH B	All	All	All	All			Some

Algorithm	Complexity	7
MATS	4 <i>n</i>	-
MATS+	5 <i>n</i>	-
MATS++	6 <i>n</i>	1
MARCH X	6 <i>n</i>	1
MARCH C	10 <i>n</i>	
MARCH A	15 <i>n</i>	
MARCH Y	8 <i>n</i>	7
MARCH B	17 <i>n</i>	

Fault type	Without tiling	With tiling
Static neighborhood patterns sensitive faults (SNPSF)	n × 2 ^k	n × 2 ^k / k
Active and passive neighborhood pattern sensitive faults (APNPSF)	n × k × 2 ^k	n × k × 2 ^k / k

NPSF Tes	ting A	lgor	ith	n	S	um	mary	
• A: activ	ve, P: pas	sive, S	stat	ic				
• D: Dete	cts Faults	s, L: <i>Lo</i>	cates	s Fa	aults	5		-
	Fault	Fau	lt Co	ove	erag	je	Oper-	
Algorithm	Loca-				NPS	SF	ation	
	tion?	SAF	TF	Α	Ρ	S	Count	
TDANPSF1G	No	L		D			163.5 <i>n</i>	
TLAPNPSF1G	Yes	L	L	L	L	L	195.5 <i>n</i>	
TLAPNPSF2T	Yes	L	L	L	L		5122 <i>n</i>	
TLAPNPSF1T	Yes	L	L	L	L		194 <i>n</i>	
TLSNPSF1G	Yes	L				L	43.5 <i>n</i>	
TLSNPSF1T	Yes	L				L	39.2 <i>n</i>	
TLSNPSF2T	Yes	L				L	569.78 <i>n</i>	
TDSNPSF1G	No	L				D	36.125 <i>n</i>	
							56	

Algorithm	Neigh- bor- hood	Method	k
TDANPSF1G	Type-1	2 Group	5
TLAPNPSF1G	Type-1	2 Group	5
TLAPNPSF2T	Type-2	Tiling	9
TLAPNPSF1T	Type-1	Tiling	5
TLSNPSF1G	Type-1	2 Group	5
TLSNPSF1T	Type-1	Tiling	5
TLSNPSF2T	Type-2	Tiling	9
TDSNPSF1G	Type-1	2 Group	5

