Built-in Self-test

October 26, 2011

Introduction

- Test generation and response evaluation done on-chip.
- Only a few external pins to control BIST operation.
- Additional hardware overhead.
- Offers a number of benefits.

BIST Motivation

- Useful for field test and diagnosis:
 - Less expensive than a local automatic test equipment
- Software tests for field test and diagnosis:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
- Hardware BIST benefits:
 - Lower system test effort
 - Improved system maintenance and repair
 - Improved component repair
 - Better diagnosis

BIST – Basic Idea

BIST Basics

BIST Architecture

- Note: BIST cannot test wires and transistors:
 - From PI pins to input MUX
 - From POs to output pins

BIST Costs

- Chip area overhead for:
 - Test controller
 - Hardware pattern generator / response compactor
 - Testing of BIST hardware
- Pin overhead
 - At least 1 pin needed to activate BIST operation
- Performance overhead
 - Extra path delays due to BIST
- Yield loss
 - Due to increased chip area
- Reliability reduction
 - Due to increased area
- Increased BIST hardware complexity
 - Happens when BIST hardware is made testable

BIST Benefits

- Faults tested:
 - Single combinational / sequential stuck-at faults
 - Delay faults
 - Single stuck-at faults in BIST hardware
- BIST benefits
 - Reduced testing and maintenance cost
 - Lower test generation cost
 - Reduced storage / maintenance of test patterns
 - Simpler and less expensive ATE
 - Can test many units in parallel
 - Shorter test application times
 - Can test at functional system speed

BIST Techniques

- Stored Vector Based
 - Microinstruction support
 - Stored in ROM
- Algorithmic Hardware Test Pattern Generators
 - Counter :: exhaustive, pseudo-exhaustive
 - Linear Feedback Shift Register
 - Cellular Automata

Exhaustive Pattern Generation

- Shows that every state and transition works
- For *n*-input circuits, requires all 2^{*n*} vectors
- Impractical for n > 20

Pseudo-Exhaustive Method

- Partition large circuit into fanin cones
 - Backtrace from each PO to PIs influencing it
 - Test fanin cones in parallel
- An illustrative example (next slide):

- No. of tests reduced from $2^8 = 256$ to $2^5 \times 2 = 64$

Pseudo-Exhaustive Pattern Generation

Random Pattern Testing

- Generate pseudo-random patterns as test input vectors.
- Evaluate fault coverage through fault simulation.
- Motivation:
 - Test length may be larger.
 - Faster test generation.
- Used to get tests for 60-80% of faults, then switch to ATPG for rest.
- Some circuits may be random pattern resistant.

October 26, 2011

Linear Feedback Shift Register (LFSR)

October 26, 2011

What is LFSR?

- A simple hardware structure based on shift register.
 - Linear feedback circuit.
- Has a number of useful applications:
 - Pseudo-random number generation
 - Response compression
 - Error checking (Cyclic Redundancy Code)
 - Data compression

Two types of LFSR

- Unit delay
 - D Flip flop
- Modulo 2 adder
 - XOR gate
- Modulo 2 multiplier
 - Connection

General Type-1 LFSR

LFSR Example

LFSR - Recurrence Relation

• Characteristic polynomial $f(x) = \sum_{i=1}^{n} c_i x^i + 1$

LFSR - Recurrence Relation (continue)

$$a_{m} = \sum_{i=1}^{n} c_{i} a_{m-i}$$

$$G(x) = \sum_{m=0}^{\infty} a_{m} x^{m}$$

$$= \sum_{m=0}^{\infty} \sum_{i=1}^{n} c_{i} a_{m-i} x^{m} = \sum_{i=1}^{n} c_{i} x^{i} \sum_{m=0}^{\infty} a_{m-i} x^{m-i}$$

$$= \sum_{i=1}^{n} c_{i} x^{i} \left[a_{-i} x^{-i} + \dots + a_{-1} x^{-1} + \sum_{m=0}^{\infty} \sum_{m=0}^{\infty} a_{m} x^{m} + \sum_{i=1}^{n} c_{i} x^{i} \left[a_{-i} x^{-i} + \dots + a_{-1} x^{-1} + G(x) \right]$$

LFSR - Recurrence Relation (continue)

$$\Rightarrow G(x) = \sum_{i=1}^{n} c_{i} x^{i} G(x) + \sum_{i=1}^{n} c_{i} x^{i} \left(a_{-i} x^{-i} + \dots + a_{-1} x^{-1} \right)$$

$$\Rightarrow G(x) = \frac{\sum_{i=1}^{n} c_{i} x^{i} \left(a_{-i} x^{-i} + \dots + a_{-1} x^{-1} \right)}{1 + \sum_{i=1}^{n} c_{i} x^{i}}$$

$$G(x) = \frac{\sum_{i=1}^{n} c_{i} x^{i} \left(a_{-i} x^{-i} + \dots + a_{-1} x^{-1} \right)}{f(x)}$$

if $a_{-1} = a_{-2} = \dots = a_{-n+1} = 0$ and $a_{-n} = 1 \Rightarrow G(x) = \frac{1}{f(x)}$

G(x) is function of initial state and g(x)

LFSR - Definitions

- If the sequence generated by an n-stage LFSR has period 2ⁿ-1, then it is called a maximum-length sequence or m-sequence.
- The characteristic polynomial associated with maximum-length sequence is called a *primitive polynomial.*
- An *irreducible polynomial* is one that cannot be factored; i.e., it is not divisible by any other polynomial other than 1 and itself.

Example Primitive Polynomials

1

3:	1	0		•	X ³	+	X	+
4:	1	0						
5:	2	0						
6:	1	0						
7:	1	0						
8:	6	5	1	0				
16:	5	3	2	0				
32:	28	27	1	0				
64:	4	3	1	0				

LFSR - Theories

If the initial state of an LFSR is

 $a_{.1} = a_{.2} = ... = a_{1.n} = 0$, $a_{.n} = 1$ then the LFSR sequence $\{a_m\}$ is periodic with a period that is the smallest integer k for which f(x) divides $(1+x^k)$.

- An *irreducible polynomial f(x)* satisfying the following two conditions is a *primitive polynomial*:
 - It has an odd number of terms including the 1 term.
 - If its degree n is greater than 3, then f(x) must divide (1 + x^k), where k = 2ⁿ-1

Properties of m-sequences

- 1. The period of $\{a_n\}$ is p=2ⁿ-1, that is, $a_{p+1} = a_i$, for all i ≥ 0 .
- 2. Starting from any nonzero state, the LFSR that generates {a_n} goes through all 2ⁿ-1 states before repeating.
- 3. The number of 1's differs from the number of 0's by one.
- If a window of width n is slid along an m-sequence, then each of the 2ⁿ-1 nonzero binary n-tuples is seen exactly once in a period.
- 5. In every period of an *m*-sequence, one-half the runs have length 1, one-fourth have length 2, one-eighth have length 3, and so on.

Randomness Properties of m-sequence

- m-sequences generated by LFSRs are called pseudo random sequence.
 - The autocorrelation of any output bit is very close to zero.
 - The correlation of any two output bits is very close to zero.

LFSR as Pseudo-Random Pattern Generator

- Standard LFSR
 - Produces patterns algorithmically repeatable.
 - Has most of desirable randomness properties.
- Need not cover all 2ⁿ input combinations.
- Long sequences needed for good fault coverage.

Weighted Pseudo-Random Pattern Generation

• If p(1) at all PIs is 0.5, $p_F(1) = 0.5^8 = \frac{1}{256}$

$$p_F(0) = 1 - \frac{1}{256} = \frac{255}{256}$$

- Will need enormous # of random patterns to test a stuck-at 0 fault on *F*.
- We must not use an ordinary LFSR to test this.
- IBM holds patents on weighted pseudo-random pattern generator in ATE.

- LFSR p(1) = 0.5
- Solution:
 - Add programmable weight selection and complement LFSR bits to get p (1)'s other than 0.5.
- Need 2-3 weight sets for a typical circuit.
- Weighted pattern generator drastically shortens pattern length for pseudorandom patterns.

Weighted Pattern Generator

October 26, 2011

How to compute weights?

- Assume p(1) of primary output(s) to be 0.5.
- Systematically backtrace and compute the p(1) values of all other lines.
- Finally obtain the p(1) values of the primary input lines.

Cellular Automata (CA)

- Superior to LFSR even "more" random
 - No shift-induced bit value correlation
 - Can make LFSR more random with linear phase shifter
- Regular connections each cell only connects to local neighbors

	$\begin{array}{c c} x_{c-1}(t) & x_{c}(t) & x_{c+1}(t) \\ \hline Gives CA cell connections \end{array}$								
	111	110	101	100	011	010	001	000	
$x_c(t+1)$	0	1	0	1	1	0	1	0	

 $2^6 + 2^4 + 2^3 + 2^1 = 90$ Called *Rule 90*

 $x_{c}(t+1) = x_{c-1}(t) \oplus x_{c+1}(t)$

Cellular Automata Example

- Five-stage hybrid cellular automaton
- Rule 150: $x_c(t+1) = x_{c-1}(t) \oplus x_c(t) \oplus x_{c+1}(t)$
- Alternate Rule 90 and Rule 150 CA

Test Pattern Augmentation

- Secondary ROM to get LFSR to 100% stuck-at fault coverage.
 - Add a small ROM with missing test patterns.
 - Add extra circuit mode to input MUX shift to ROM patterns after LFSR done.
 - LFSR reseeding is another alternative.
- Use diffracter:
 - Generates cluster of patterns in neighborhood of stored ROM pattern.
- Transform LFSR patterns into new vector set.
- Put LFSR and transformation hardware in fullscan chain.

Test Response Compaction

Response Compaction

- Huge volume of data in CUT response:
 - An example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip.
- Responses must be compacted.

Definitions

- Aliasing
 - Due to information loss, signatures of good and some bad circuits match.
- Compaction
 - Drastically reduce # bits in original circuit response.
 - Loss of information.
- Compression
 - Reduce # bits in original circuit response.
 - No information loss fully invertible (can get back original response).

Signature analysis

- Compact good machine response into good machine signature.
- Actual signature generated during testing, and compared with good machine signature
- Ones Count (Syndrome) Compaction.
 - Count # of 1's
- Transition Count Response Compaction
 - Count # of transitions from $0 \rightarrow 1$ and $1 \rightarrow 0$ as a signature.

BIST - Response Compression

- Introduction
- Ones-Count Compression
- Transition-Count Compression
- Syndrome-Count Compression
- Signature Analysis
- Space Compression

Some Points

- Bit-to-bit comparison is infeasible for BIST.
- General principle:
 - Compress a very long output sequence into a single signature.
 - Compare the compressed word with the prestored golden signature to determine the correctness of the circuit.
- Problem of aliasing:
 - Many output sequences may have the same signature after the compression.
- Poor diagnosis resolution after compression.

Ones-Count - Hardware

- Apply predetermined patterns.
- Count the number of ones in the output sequence.

Ones Counter - Aliasing

Aliasing Probability

$$P_{OC} = \frac{{\binom{m}{r}} - 1}{2^m - 1} \cong (\pi m)^{\frac{1}{2}}$$

- *m*: the test length
- *r* : the number of ones
- r=m/2 :: the case with the highest aliasing prob.
- r=m and r=0 :: no aliasing probability
- For combinational circuits, the input sequence can be permuted without changing the count.

Transition Count - Hardware

- Apply predetermined patterns
- Count the number of the transitions $(0 \rightarrow 1 \text{ and } 1 \rightarrow 0)$.

Transition Count

Aliasing Probability

$$P_{TC} = \frac{2{\binom{m-1}{r}} - 1}{2^m - 1} \cong (\pi m)^{\frac{1}{2}}$$

- *m* : the test length
- *r* : the number of transitions
- r=m/2 :: highest aliasing probability
- r=0 and r=m :: no aliasing probability

Transition count:

m

 $C(R) = \sum_{i=1}^{\infty} (r_i \oplus r_{i-1})$ for all *m* primary outputs

To maximize fault coverage:

 Make C (R0) – good machine transition count – as large or as small as possible

Syndrome Testing

- Apply exhaustive test patterns.
- Count the number of 1's in the output.
- Normalize by dividing with number of minterms.

Analysis of Syndrome Testing

October 26, 2011

Signature Analysis

- Apply predetermined test patterns.
- Compress the output sequence by LFSR.
 - Compressed value is called signature.

Signature Analysis

Aliasing Probability

$$P_{SA} = \frac{2^{m-n} - 1}{2^m - 1} \cong 2^{-n}$$

m: test length, *n*: length of LFSR

- Aliasing probability is output independent.
- An LFSR with two or more nonzero coefficients detect any single faults.
- An LFSR with primitive polynomial detect any double faults separated less than 2ⁿ-1.

LFSR Based Response Compaction

LFSR for Response Compaction

- Use LFSR based CRC generator as response compacter.
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial.
- CRC divides the PO polynomial by its characteristic polynomial.
 - Leaves remainder of division in LFSR.
 - Must initialize LFSR to seed value (usually 0) before testing.
- After testing compare signature in LFSR to known good machine signature.
- Critical: Must compute good machine signature.

Example Modular LFSR Response Compacter

LFSR seed value is "00000"

Polynomial Division

	Inputs	<i>X</i> ⁰	<i>X</i> ¹	<i>X</i> ²	Х ³	<i>x</i> ⁴		
	Initial State	0	0	0	0	0		
Logic Simulation:	1	1	0	0	0	0		
	0	0	1	0	0	0		
	0	0	0	1	0	0		
	0	0	0	0	1	0		
	1	1	0	0	0	1		
	0	1	0	0	1	0		
	1	1	1	0	0	1		
	0	1	0	1	1	0		
Logic simulation: Remainder = $1 + x^2 + x^3$								
0 1 0 1	0 0 0 1							
Input polynomial: x ¹ + x ³ + x ⁷								

Symbolic Polynomial Division

Remainder matches that from logic simulation of the response compacter!

October 26, 2011

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR compacts all outputs into one LFSR
 - Works because LFSR is linear obeys superposition principle
 - Superimpose all responses in one LFSR
 - Final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

Multiple Input Signature Register (MISR)

MISR Matrix Equation

• $d_i(t)$ – output response on PO_i at time t

Modular MISR Example

October 26, 2011

Multiple Signature Checking

- Use 2 different testing epochs:
 - 1st with MISR with 1 polynomial
 - 2nd with MISR with different polynomial
- Reduces probability of aliasing
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials

Summary

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times