
Built-in Self-test

October 26, 2011 1



Introduction

• Test generation and response evaluation 
done on-chip.

• Only a few external pins to control BIST 
operation.

• Additional hardware overhead.
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• Additional hardware overhead.

• Offers a number of benefits.



BIST Motivation

• Useful for field test and diagnosis:

– Less expensive than a local automatic test equipment

• Software tests for field test and diagnosis:

– Low hardware fault coverage

– Low diagnostic resolution

– Slow to operate
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– Slow to operate

• Hardware BIST benefits:

– Lower system test effort

– Improved system maintenance and repair

– Improved component repair

– Better diagnosis



Test Generator

Circuit Under Test

BIST – Basic Idea

CHIP

Circuit Under Test
(CUT)

Response Compressor

BIST Basics 



BIST Architecture

Circuit
M
U

Pattern
Generator

Response

ROM

=

TEST CONTROLLERTEST
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Circuit
under
test

U
X

Generator

PI

Response
Compactor =

Good / 
BadPO

� Note: BIST cannot test wires and transistors:

� From PI pins to input MUX

� From POs to output pins



BIST Costs

– Chip area overhead for:

• Test controller

• Hardware pattern generator / response compactor

• Testing of BIST hardware

– Pin overhead

• At least 1 pin needed to activate BIST operation

– Performance overhead
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– Performance overhead

• Extra path delays due to BIST

– Yield loss 

• Due to increased chip area 

– Reliability reduction

• Due to increased area

– Increased BIST hardware complexity

• Happens when BIST hardware is made testable



BIST Benefits

• Faults tested:

– Single combinational / sequential stuck-at faults

– Delay faults

– Single stuck-at faults in BIST hardware

• BIST benefits

– Reduced testing and maintenance cost
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– Reduced testing and maintenance cost

– Lower test generation cost

– Reduced storage / maintenance of test patterns

– Simpler and less expensive ATE

– Can test many units in parallel

– Shorter test application times

– Can test at functional system speed



BIST Techniques

• Stored Vector Based

– Microinstruction support

– Stored in ROM

• Algorithmic Hardware Test Pattern 
GeneratorsGenerators

– Counter :: exhaustive, pseudo-exhaustive

– Linear Feedback Shift Register

– Cellular Automata

BIST Basics - LFSR



Exhaustive Pattern Generation

• Shows that every state and transition works

• For n-input circuits, requires all 2n vectors

• Impractical for n > 20
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Pseudo-Exhaustive Method

• Partition large circuit into fanin cones

– Backtrace from each PO to PIs influencing it

– Test fanin cones in parallel

• An illustrative example (next slide):

– No. of tests reduced from 28 = 256 to 25 x 2 = 64
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– No. of tests reduced from 28 = 256 to 25 x 2 = 64



Pseudo-Exhaustive Pattern Generation
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Random Pattern Testing

• Generate pseudo-random patterns as test 
input vectors.

• Evaluate fault coverage through fault 
simulation.

• Motivation:
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• Motivation:
– Test length may be larger.

– Faster test generation.

• Used to get tests for 60-80% of faults, then 
switch to ATPG for rest.

• Some circuits may be random pattern 
resistant.



% 

100%
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Number of test vectors

Fault 

Coverage



P R P G
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C U T

Response Evaluation



Linear Feedback Shift Register 
(LFSR)
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What is LFSR?

• A simple hardware structure based on 
shift register.

– Linear feedback circuit.

• Has a number of useful applications:

– Pseudo-random number generation
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– Pseudo-random number generation

– Response compression

– Error checking (Cyclic Redundancy Code)

– Data compression



Two types of LFSR

D1 D2 D3 D4

+

Type 1

D1 D2 D4+

Type 2

D3

• Unit delay 

– D Flip flop

• Modulo 2 adder 

– XOR gate

• Modulo 2 multiplier 

– Connection



General Type-1 LFSR
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LFSR Example

1 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 0
1 1 0 1

4 D D2 D1D3

+

D4D3D2D1

1)( 14 ++= xxxf

1 1 0 1
1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



LFSR - Recurrence Relation

...

DnDn-1D2 D3D1
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LFSR - Recurrence Relation (continue)
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LFSR - Recurrence Relation (continue)
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LFSR - Definitions

• If the sequence generated by an n-stage 
LFSR has period 2n-1, then it is called a 
maximum-length sequence or m-sequence.

• The characteristic polynomial associated 
with maximum-length sequence is called a with maximum-length sequence is called a 
primitive polynomial.

• An irreducible polynomial is one that cannot 
be factored; i.e., it is not divisible by any 
other polynomial other than 1 and itself. 



Example Primitive Polynomials

3:  1  0    ���� x3 + x + 1

4:  1  0

5:  2  0

6:  1  0
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7:  1  0

8:  6  5  1  0

16: 5  3  2  0

32:  28 27  1  0

64:  4  3  1  0



LFSR - Theories

• If the initial state of an LFSR is 

a-1 = a-2 = ... = a1-n = 0,    a-n = 1

then the LFSR sequence {am} is periodic with a period 
that is the smallest integer k for which f(x) divides 
(1+xk).

• An irreducible polynomial f(x) satisfying the following • An irreducible polynomial f(x) satisfying the following 
two conditions is a primitive polynomial:

– It has an odd number of terms including the 1 term.

– If its degree n is greater than 3, then f(x) must 
divide (1 + xk), where k = 2n–1

BIST Basics - LFSR



Properties of m-sequences

1. The period of {an} is p=2n-1, that is, ap+I = ai, for all i 
≥≥≥≥ 0.

2. Starting from any nonzero state, the LFSR that 
generates {an} goes through all 2n-1 states before 
repeating.

3. The number of 1’s differs from the number of 0’s by 
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3. The number of 1’s differs from the number of 0’s by 
one.

4. If a window of width n is slid along an m-sequence, 
then each of the 2n-1 nonzero binary n-tuples is 
seen exactly once in a period.

5. In every period of an m-sequence, one-half the runs 
have length 1, one-fourth have length 2, one-eighth 
have length 3, and so on.



Randomness Properties of m-sequence

• m-sequences generated by LFSRs are 
called pseudo random sequence.

– The autocorrelation of any output bit is very 
close to zero.

– The correlation of any two output bits is very – The correlation of any two output bits is very 
close to zero.

BIST Basics - LFSR



LFSR as Pseudo-Random Pattern Generator

• Standard LFSR

– Produces patterns algorithmically – repeatable.

– Has most of desirable randomness properties.

• Need not cover all 2n input combinations.

• Long sequences needed for good fault 
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• Long sequences needed for good fault 
coverage.



Weighted Pseudo-Random Pattern 
Generation

• If p (1) at all PIs is 0.5,    pF (1) = 0.58 =
1

256

F 

s-a-0
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• If p (1) at all PIs is 0.5,    pF (1) = 0.5 =

• Will need enormous # of random patterns to test 
a stuck-at 0 fault on F.    

• We must not use an ordinary LFSR to test this.

• IBM holds patents on weighted pseudo-random 
pattern generator in ATE.

256

255
256

1
256

pF (0) = 1 – =



• LFSR    p (1) = 0.5

• Solution: 
– Add programmable weight selection and 

complement LFSR bits to get p (1)’s other than 
0.5.
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0.5.

• Need 2-3 weight sets for a typical circuit.

• Weighted pattern generator drastically 
shortens pattern length for pseudo-
random patterns.



Weighted Pattern Generator
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w1

0

0

0

0

w2

0

0

1

1

Inv.

0

1

0

1

p (output)

½

½

¼

3/4

w1

1

1

1

1

w2

0

0

1

1

p (output)

1/8

7/8

1/16

15/16

Inv.

0

1

0

1



How to compute weights?

• Assume p(1) of primary output(s) to be 
0.5.

• Systematically backtrace and compute the 
p(1) values of all other lines.

• Finally obtain the p(1) values of the 
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• Finally obtain the p(1) values of the 
primary input lines.



Cellular Automata (CA)

• Superior to LFSR – even “more” random

� No shift-induced bit value correlation

� Can make LFSR more random with linear phase shifter

• Regular connections – each cell only connects to local 
neighbors

xc-1 (t)   xc (t)   xc+1 (t)
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xc-1 (t)   xc (t)   xc+1 (t)

Gives CA cell connections

111   110     101    100    011     010    001    000

xc (t + 1)     0       1          0       1        1         0         1       0

26 + 24 + 23 + 21 = 90 Called Rule 90

xc (t + 1) = xc-1 (t)   ⊕⊕⊕⊕ xc+1 (t)



Cellular Automata Example
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• Five-stage hybrid cellular automaton

• Rule 150: xc (t + 1) = xc-1 (t) ⊕⊕⊕⊕ xc (t) ⊕⊕⊕⊕ xc+1 (t)

• Alternate Rule 90 and Rule 150 CA



Test Pattern Augmentation

• Secondary ROM – to get LFSR to 100% stuck-at 
fault coverage.

– Add a small ROM with missing test patterns.

– Add extra circuit mode to input MUX – shift to ROM 
patterns after LFSR done.

– LFSR reseeding is another alternative.
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– LFSR reseeding is another alternative.

• Use diffracter:

– Generates cluster of patterns in neighborhood of stored 
ROM pattern.

• Transform LFSR patterns into new vector set.

• Put LFSR and transformation hardware in full-
scan chain.



Test Response Compaction
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Response Compaction

• Huge volume of data in CUT response:

– An example:

• Generate 5 million random patterns

• CUT has 200 outputs

• Leads to: 5 million x 200 = 1 billion bits response
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• Uneconomical to store and check all of 
these responses on chip.

• Responses must be compacted.



Definitions

• Aliasing

– Due to information loss, signatures of good 
and some bad circuits match.

• Compaction

– Drastically reduce # bits in original circuit 
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– Drastically reduce # bits in original circuit 
response.

– Loss of information.

• Compression

– Reduce # bits in original circuit response .

– No information loss – fully invertible (can get 
back original response).



• Signature analysis

– Compact good machine response into good 
machine signature.  

– Actual signature generated during testing, and 
compared with good machine signature
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compared with good machine signature

• Ones Count (Syndrome) Compaction.

– Count # of 1’s 

• Transition Count Response Compaction

– Count # of transitions from 0  ���� 1 and 1 ���� 0 

as a signature.



BIST - Response Compression

• Introduction

• Ones-Count Compression

• Transition-Count Compression

• Syndrome-Count Compression

• Signature Analysis

• Space Compression



Some Points

• Bit-to-bit comparison is infeasible for BIST.

• General principle:

– Compress a very long output sequence into a single 
signature.

– Compare the compressed word with the prestored 
golden signature to determine the correctness of the 
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golden signature to determine the correctness of the 
circuit.

• Problem of aliasing:

– Many output sequences may have the same signature 
after the compression.

• Poor diagnosis resolution after compression.



Ones-Count - Hardware

• Apply predetermined patterns.

• Count the number of ones in the output 
sequence.

TestTest

Pattern
CUT

CounterClock



Ones Counter - Aliasing

• Aliasing Probability

m : the test length

[ ]
( ) 2

1

12

1
mP

m

m

r
OC π≅

−

−
=

m : the test length
r  : the number of ones

• r=m/2  ::  the case with the highest aliasing prob.

• r=m and r=0 ::  no aliasing probability

• For combinational circuits, the input sequence can 
be permuted without changing the count.



Transition Count - Hardware

• Apply predetermined patterns

• Count the number of the transitions
(0 ����1 and 1 ���� 0).

DFF

Test

Pattern
CUT

CounterClock

DFF



Transition Count

• Aliasing Probability

m  : the test length

[ ]
( )P mTC

r
m

m
=

−

−
≅

−
2 1

2 1

1
1

2π

m  : the test length
r    : the number of transitions

• r=m/2  :: highest aliasing probability

• r=0 and r=m :: no aliasing probability



� Transition count:

C (R) =   ΣΣΣΣ (ri ⊕⊕⊕⊕ ri-1)  for all m primary outputs
i = 1

m
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� To maximize fault coverage:

� Make C (R0) – good machine transition count –
as large or as small as possible



Syndrome Testing

• Apply exhaustive test patterns.

• Count the number of 1’s in the output.

• Normalize by dividing with number of 
minterms.

counter CUT

Syndrome counter
Clock



Analysis of Syndrome Testing
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Signature Analysis

• Apply predetermined test patterns.

• Compress the output sequence by LFSR.
– Compressed value is called signature.

Test

Pattern
CUT LFSR



Signature Analysis

• Aliasing Probability

m: test length,       n: length of LFSR

• Aliasing probability is output independent.

PSA

m n

m

n
=

−

−
≅

−
−2 1

2 1
2

• Aliasing probability is output independent.

• An LFSR with two or more nonzero coefficients detect 
any single faults.

• An LFSR with primitive polynomial detect any double 
faults separated less than 2n-1.



LFSR Based Response Compaction
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LFSR for Response Compaction

• Use LFSR based CRC generator as response 
compacter.

• Treat data bits from circuit POs to be compacted as 
a decreasing order coefficient polynomial.

• CRC divides the PO polynomial by its characteristic 
polynomial.
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polynomial.

– Leaves remainder of division in LFSR.

– Must initialize LFSR to seed value (usually 0) before testing.

• After testing – compare signature in LFSR to known 
good machine signature.

• Critical:  Must compute good machine signature.



Example Modular LFSR Response 
Compacter
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• LFSR seed value is “00000”



Polynomial Division

Inputs
Initial State

1
0
0
0

X0

0
1
0
0
0

X1

0
0
1
0
0

X2

0
0
0
1
0

X3

0
0
0
0
1

X4

0
0
0
0
0

Logic
Simulation:
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Logic simulation:  Remainder = 1 + x2 + x3

0    1    0    1    0    0    0    1

Input polynomial:  x1 + x3 + x7

0
1
0
1
0

0
1
1
1
1

0
0
0
1
0

0
0
0
0
1

1
0
1
0
1

0
1
0
1
0

Simulation:



Symbolic Polynomial Division

x2

x7

x7

+ 1

+ x5

x5

+ x3

+ x3 + x2

+ x2

+ x

+ x

x
5 + x3 + x + 1
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x

x5 + x3

x3

+ x

+ x2

+ x

+ x + 1

+ 1remainder

Remainder matches that from logic simulation
of the response compacter!



Multiple-Input Signature Register 
(MISR)

• Problem with ordinary LFSR response 
compacter:
– Too much hardware if one of these is put on 

each primary output (PO)

• Solution: MISR – compacts all outputs into 
one LFSR
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one LFSR
– Works because LFSR is linear – obeys 

superposition principle

– Superimpose all responses in one LFSR 

– Final remainder is XOR sum of remainders of 
polynomial divisions of each PO by the 
characteristic polynomial



Multiple Input Signature Register 
(MISR)

type 1

D4 + D3 + D2 + D1 +

+

D4 + D3 + D2 + D1 +

type 2

type 1



MISR Matrix Equation

• di (t) – output response on POi at time t

X0 (t + 1) 1
0

0
… 0 0 X0 (t) d0 (t)
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X0 (t + 1)
X1 (t + 1)

.

.

.
Xn-3 (t + 1)
Xn-2 (t + 1)
Xn-1 (t + 1)

1
0
.
.
.
0
0

h1

0
.
.
.
0

0

1

…

…

…

…

…

0
0
.
.
.
1
0

hn-2

0
0
.
.
.
0
1

hn-1

X0 (t)
X1 (t).

.

.
Xn-3 (t)
Xn-2 (t)
Xn-1 (t)

=

d0 (t)
d1 (t).

.

.
dn-3 (t)
dn-2 (t)
dn-1 (t)

+



Modular MISR Example
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X0 (t + 1)
X1 (t + 1)
X2 (t + 1)

0
0
1

0
1
0

1
1
0

=

X0 (t)
X1 (t)
X2 (t)

d0 (t)
d1 (t)
d2 (t)

+



Multiple Signature Checking

• Use 2 different testing epochs:

� 1st with MISR with 1 polynomial

� 2nd with MISR with different polynomial

• Reduces probability of aliasing –

� Very unlikely that both polynomials will alias for the same 
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� Very unlikely that both polynomials will alias for the same 
fault

• Low hardware cost:

� A few XOR gates for the 2nd MISR polynomial

� A 2-1 MUX to select between two feedback polynomials



Summary

• LFSR pattern generator and MISR response 
compacter – preferred BIST methods

• BIST has overheads: test controller, extra circuit 
delay, Input MUX, pattern generator, response 
compacter, DFT to initialize circuit & test the test 
hardware
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hardware

• BIST benefits:
– At-speed testing for delay & stuck-at faults

– Drastic ATE cost reduction

– Field test capability

– Faster diagnosis during system test

– Less effort to design testing process

– Shorter test application times


