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Introduction

* Test generation and response evaluation
done on-chip.

« Only a few external pins to control BIST
operation.

 Additional hardware overhead.
« Offers a number of benefits.
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BIST Motivation

« Useful for field test and diagnosis:
— Less expensive than a local automatic test equipment

- Software tests for field test and diagnosis:
— Low hardware fault coverage
— Low diagnostic resolution
— Slow to operate

 Hardware BIST benefits:
— Lower system test effort
— Improved system maintenance and repair
— Improved component repair
— Better diagnosis
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BIST — Basic Idea
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BIST Architecture
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BIST Costs

— Chip area overhead for:
« Test controller
- Hardware pattern generator / response compactor
« Testing of BIST hardware
— Pin overhead
« At least 1 pin needed to activate BIST operation
— Performance overhead
- Extra path delays due to BIST
— Yield loss
* Due to increased chip area
— Reliability reduction
* Due to increased area
— Increased BIST hardware complexity
- Happens when BIST hardware is made testable
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BIST Benefits

« Faults tested:
— Single combinational / sequential stuck-at faults
— Delay faults
— Single stuck-at faults in BIST hardware

 BIST benefits

— Reduced testing and maintenance cost

— Lower test generation cost

— Reduced storage / maintenance of test patterns
— Simpler and less expensive ATE

— Can test many units in parallel

— Shorter test application times

— Can test at functional system speed
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BIST Techniques

 Stored Vector Based

— Microinstruction support
— Stored in ROM

« Algorithmic Hardware Test Pattern
Generators
— Counter :: exhaustive, pseudo-exhaustive
— Linear Feedback Shift Register
— Cellular Automata

BIST Basics - LFSR



Exhaustive Pattern Generation

« Shows that every state and transition works
* For n-input circuits, requires all 2" vectors
 Impractical for n > 20
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Pseudo-Exhaustive Method

 Partition large circuit into fanin cones
— Backtrace from each PO to Pls influencing it
— Test fanin cones in parallel
* An illustrative example (next slide):
— No. of tests reduced from 28 = 256 to 2° x 2 = 64
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Pseudo-Exhaustive Pattern Generation
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Random Pattern Testing

Generate pseudo-random patterns as test
input vectors.

Evaluate fault coverage through fault
simulation.

Motivation:

— Test length may be larger.
— Faster test generation.

Used to get tests for 60-80% of faults, then
switch to ATPG for rest.

Some circuits may be random pattern
resistant.
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Linear Feedback Shift Register
(LFSR)
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What is LFSR?

* A simple hardware structure based on
shift register.
— Linear feedback circuit.

 Has a number of useful applications:
— Pseudo-random number generation
— Response compression
— Error checking (Cyclic Redundancy Code)
— Data compression
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LFSR Example
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LFSR - Recurrence Relation
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LFSR - Recurrence Relation (continue)
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LFSR - Recurrence Relation (continue)
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LFSR - Definitions

* If the sequence generated by an n-stage
LFSR has period 2"-1, then it is called a
maximum-length sequence or m-sequence.

* The characteristic polynomial associated
with maximum-length sequence is called a
primitive polynomial.

* An irreducible polynomial is one that cannot
be factored; i.e., it is not divisible by any
other polynomial other than 1 and itself.




Example Primitive Polynomials
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LFSR - Theories

+ If the initial state of an LFSR is
a;=a,=..=a;,=0 a,=1
then the LFSR sequence {a,} is periodic with a period
that is the smallest integer k for which f(x) divides
(1+x%).
* An irreducible polynomial f(x) satisfying the following
two conditions is a primitive polynomial.
— It has an odd number of terms including the 1 term.

— If its degree nis greater than 3, then f(x) must
divide (71 + x¥), where k = 2"-1

BIST Basics - LFSR



Properties of m-sequences

1. The period of {a,} is p=2"-1, that is, a,,, = a;, for all i
> 0.

2. Starting from any nonzero state, the LFSR that
generates {a,} goes through all 2"-1 states before
repeating.

3. The number of 1’s differs from the number of 0’s by
one.

4. If a window of width n is slid along an m-sequence,
then each of the 2"-1 nonzero binary n-tuples is
seen exactly once in a period.

5. In every period of an m-sequence, one-half the runs
have length 1, one-fourth have length 2, one-eighth
have length 3, and so on.
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Randomness Properties of m-sequence

* m-sequences generated by LFSRs are
called pseudo random sequence.

— The autocorrelation of any output bit is very
close to zero.

— The correlation of any two output bits is very
close to zero.

BIST Basics - LFSR



LFSR as Pseudo-Random Pattern Generator

 Standard LFSR

— Produces patterns algorithmically — repeatable.
— Has most of desirable randomness properties.

* Need not cover all 2" input combinations.

 Long sequences heeded for good fault
coverage.

October 26, 2011 28



Weighted Pseudo-Random Pattern
Generation

s-a-0
-
1
- lf p(1)atall Plsis 0.5, pg(1)=0.5% = 555

Pr(0) 256 256

« Will need enormous # of random patterns to test
a stuck-at 0 fault on F.

 We must not use an ordinary LFSR to test this.

- IBM holds patents on weighted pseudo-random
pattern generator in ATE.
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- LFSR p(1)=0.5
 Solution:

— Add programmable weight selection and
complement LFSR bits to get p (1)’s other than
0.5.

* Need 2-3 weight sets for a typical circuit.
« Weighted pattern generator drastically

shortens pattern length for pseudo-
random patterns.
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Weighted Pattern Generator
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How to compute weights?

« Assume p(1) of primary output(s) to be
0.5.

- Systematically backtrace and compute the
p(1) values of all other lines.

* Finally obtain the p(1) values of the
primary input lines.
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Cellular Automata (CA)

» Superior to LFSR — even “more” random
= No shift-induced bit value correlation
= Can make LFSR more random with linear phase shifter

- Regular connections — each cell only connects to local

neighbors
Xc1 () xc (D) Xppq (1)
Gives CA cell connections
111 {110 | 101 {100 | 011 | 010 | 001 | 000
X, (t+1) 0 1 0 1 1 0 1 0

26 + 24 4+ 23 4+ 21 =90 Called Rule 90
X (t+1) =X, () © Xxc,q (D)
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Cellular Automata Example
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* Five-stage hybrid cellular automaton
* Rule 150: x, (t+ 1) = x4 (f) & x, () ® x4 (1)
 Alternate Rule 90 and Rule 150 CA
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Test Pattern Augmentation

« Secondary ROM - to get LFSR to 100% stuck-at
fault coverage.
— Add a small ROM with missing test patterns.

— Add extra circuit mode to input MUX - shift to ROM
patterns after LFSR done.

— LFSR reseeding is another alternative.

 Use diffracter:

— Generates cluster of patterns in neighborhood of stored
ROM pattern.

- Transform LFSR patterns into new vector set.

« Put LFSR and transformation hardware in full-
scan chain.
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Test Response Compaction
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Response Compaction

* Huge volume of data in CUT response:

— An example:
- Generate 5 million random patterns

« CUT has 200 outputs
» Leads to: 5 million x 200 = 1 billion bits response
 Uneconomical to store and check all of
these responses on chip.

 Responses must be compacted.
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Definitions

- Aliasing
— Due to information loss, sighatures of good
and some bad circuits match.

- Compaction

— Drastically reduce # bits in original circuit
response.

— Loss of information.
« Compression

— Reduce # bits in original circuit response .

— No information loss — fully invertible (can get
back original response).

October 26, 2011 38



- Signature analysis

— Compact good machine response into good
machine signature.

— Actual signature generated during testing, and
compared with good machine signature

* Ones Count (Syndrome) Compaction.
— Count # of 1’s

« Transition Count Response Compaction

— Count # of transitionsfrom0 > 1and1-> 0
as a signature.
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BIST - Response Compression

 Introduction

Ones-Count Compression
Transition-Count Compression
Syndrome-Count Compression
Signature Analysis

Space Compression




Some Points

 Bit-to-bit comparison is infeasible for BIST.

« General principle:

— Compress a very long output sequence into a single
signature.

— Compare the compressed word with the prestored
golden signature to determine the correctness of the
circuit.

* Problem of aliasing:

— Many output sequences may have the same signature
after the compression.

* Poor diagnosis resolution after compression.
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Ones-Count - Hardware

* Apply predetermined patterns.

« Count the number of ones in the output
sequence.

Test
Pattern

CUT

YYYYYYY

Clock T ! Counter

Y




Ones Counter - Aliasing

 Aliasing Probability

_[’Z"]—1~ %
POC _ 2m_1:(m)

m : the test length

r : the number of ones
« r=m/2 :: the case with the highest aliasing prob.
« r=mand r=0 :: no aliasing probability

 For combinational circuits, the input sequence can
be permuted without changing the count.




Transition Count - Hardware

* Apply predetermined patterns

« Count the number of the transitions
(0 >1and 1 - 0).

R DFF
Test -
> CUT
Pattern <
A
A
Clock .| Counter




Transition Count

 Aliasing Probability

IR

1
P = = ﬂ'm/Z

m : the test length
r : the number of transitions

* r=m/2 :: highest aliasing probability
 r=0and r=m :: no aliasing probability




m Transition count:

m

C(R) = i§:1 (r; ® r;i4) for all mprimary outputs

= To maximize fault coverage:

= Make C (R0) — good machine transition count —
as large or as small as possible
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Syndrome Testing

* Apply exhaustive test patterns.
« Count the number of 1’s in the output.
 Normalize by dividing with number of

minterms.

counter

YYYYYY

Clock

A

\

CUT

Y

Y

Syndrome counter




Analysis of Syndrome Testing
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Signature Analysis

« Apply predetermined test patterns.

« Compress the output sequence by LFSR.
— Compressed value is called signature.

Test
Pattern

Y

LFSR

CUT

YYYVYY




Signature Analysis

m: test length, n: length of LFSR
« Aliasing probability is output independent.

« An LFSR with two or more nonzero coefficients detect
any single faults.

« An LFSR with primitive polynomial detect any double
faults separated less than 2"-1.




LFSR Based Response Compaction
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LFSR for Response Compaction

« Use LFSR based CRC generator as response
compacter.

* Treat data bits from circuit POs to be compacted as
a decreasing order coefficient polynomial.

 CRC divides the PO polynomial by its characteristic
polynomial.
— Leaves remainder of division in LFSR.
— Must initialize LFSR to seed value (usually 0) before testing.
 After testing — compare signature in LFSR to known
good machine signature.

« Critical: Must compute good machine signature.
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Example Modular LFSR Response
Compacter

Characteristic Polynomial x5+ X 34— X+ 1

01010007 D Q DLDO D Q Dloo D Q
o> : : I

> 1 X S X PXS > X
CLOCK 17 17 [
Y Y Y Y

X X.'. XE X.S’ X4

« LFSR seed value is “00000”
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Polynomial Division

nputs X% X1 x2 x3 x*

InitialState 0 0 0 0 O

1 1 0 0 0 O

0 O 1 0 0 O

Simulation: 0 0 0 0 10
1 1 0 0 0 1

0 1 0 0 1 O

1 i 1 0 0 1

0 i 0 1 1 O

Logic simulation: Remainder=1 + x? + x3

o101 0 0 O0 1
Input polynomial: x' + x3 + x7
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Symbolic Polynomial Division

R+ xS+ x+ 1 )i L

X + X0 + X
X' +x° +x° +x°
X0 F X+ X
X o+ x3 +X +1
remainder > 3 4+ x2 +1

Remainder matches that from logic simulation
of the response compacter!
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Multiple-Input Signature Register
(MISR)

* Problem with ordinary LFSR response
compacter:
— Too much hardware if one of these is put on
each primary output (PO)
« Solution: MISR — compacts all outputs into
one LFSR

— Works because LFSR is linear — obeys
superposition principle

— Superimpose all responses in one LFSR

— Final remainder is XOR sum of remainders of

polynomial divisions of each PO by the
characteristic polynomial
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Multiple Input Signhature Register
(MISR)
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MISR Matrix Equation

* d; () — output response on PO;at time ¢

Cxe) ] gt 0 o[ X0 ] [d
X (t+1) ’0.. 0 0 || X dy (1
Xpa(t+1) [=1 20w 1 0| [X300 [+]dpz(d
Xn_2 (t+ 1) 1 0 - 0 1 Xn_2 (t) dn_2 (t)
Xn_1 (t+ 1) h1 T hn_2 hn_1 Xn_1 (t) dn—1 (t)
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Modular MISR Example

01010 )) Mb o
d,
1

CLOCK
d, 10110 d, ' 00010
Characteristic Polynomial X3 x+1
Xot+1) | o0 1] [xm] [d@®
Xo(t+1) 010 X5 (1) d, (1)
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Multiple Signature Checking

« Use 2 different testing epochs:
= 1stwith MISR with 1 polynomial
= 2nd with MISR with different polynomial

* Reduces probability of aliasing —

= Very unlikely that both polynomials will alias for the same
fault

 Low hardware cost:
= A few XOR gates for the 2"d MISR polynomial
= A 2-1 MUX to select between two feedback polynomials
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Summary

- LFSR pattern generator and MISR response
compacter — preferred BIST methods

 BIST has overheads: test controller, extra circuit
delay, Input MUX, pattern generator, response
compacter, DFT to initialize circuit & test the test
hardware

* BIST benefits:

— At-speed testing for delay & stuck-at faults
— Drastic ATE cost reduction

— Field test capability

— Faster diagnosis during system test

— Less effort to design testing process

— Shorter test application times

October 26, 2011

61



