
Combinational
Automatic Test Pattern Generation

(ATPG)

1

(ATPG)

Introduction

• Basic problem:

– Input:

• A combinational circuit

• A fault list

– Output:

• A set of test vectors

• List of undetected faults

2

Broad Approaches

• From truth table

– Impractical

• From Boolean equation

– High complexity

• Using Boolean difference• Using Boolean difference

– Difficult to automate

• From circuit structure

– D-Algorithm (Roth 1967), 9-V Algorithm (Cha
1978), PODEM (Goel 1981), FAN (Fujiwara 1983)

3

Test Generation Methods
(From Truth Table)

Ex: How to generate tests
for the stuck-at 0 fault
(fault α)α)α)α)?

a

abc f fαααα

000 0 0

001 0 0

010 0 0

011 0 0
s-a-0 α

4

c

a

f

b
Impractical !!

√√√√

011 0 0

100 0 0

101 1 1

110 1 0

111 1 1

Test Generation Methods
(Using Boolean Equation)

Since f = ab+ac, fα α α α = ac

Tαααα = the set of all tests for fault αααα

= ON_set(f) ∗∗∗∗ OFF_set(fαααα) + OFF_set(f) ∗ ∗ ∗ ∗
ON_set(fαααα)

5

ON_set(fαααα)

= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1}

= {(a,b,c) | abc'=1}

= { (110) }.

* ON_set(f): All input combinations that make f have value 1.

OFF_set(f): All input combinations that make f have value 0.

High complexity !!

Since it needs to compute the faulty
function for each fault.

Boolean Difference

• Algebraic method for determining the
complete set of tests that detect a given
fault.

• Definition:

– The Boolean difference of a function – The Boolean difference of a function
f(x1,x2,…,xn) with respect to one of its variables
xi is defined as

= f(x1,…,xi-1,0,xi+1,…,xn)

⊕⊕⊕⊕ f(x1,…,xi-1,1,xi+1,…,xn)

= fi(0) ⊕⊕⊕⊕ fi(1)

6

df(X)
dxi

• Some results:

– The set of tests which detect the fault xi/0 is
given by the equation

xi = 1
df(X)
dxi

– The set of tests which detect the fault xi/1 is
given by the equation

xi′′′′ = 1

7

df(X)
dxi

Example

x1

x2

x3

x4

f

h Generate tests
for x3/0 and x3/1

8

4

Example

x1

x2

x3

x4

f

h Generate tests
for h/0 and h/1

9

4

Example

x1

x2

x3

x

h
f

10

x4

Test Generation by Path Sensitizing

• Test generation done from circuit structure.

• We first talk about 1-D path sensitization.

• Basic Principle:

– Step 1: At the site of the fault, assign a logic
value complementary to the fault being tested.value complementary to the fault being tested.

– Step 2: Select a path from the site of the fault to a
circuit output. Sensitize the path by assigning
inputs to the gates along the path so as to
propagate the effect of fault.

(FORWARD DRIVE PHASE)

11

– Step 3: Determine the primary inputs that will
produce all the necessary signal values
specified in Step 2. This requires tracing the
signals backwards from each of the gates
along the path to the primary inputs.

(BACKWARD TRACE PHASE)(BACKWARD TRACE PHASE)

12

Example

x1

x2

x3

x4

x5

f1

h

Generate test
for h/1

13

x5

f2

h

• Limitations of the Method:

– Suppose for the same fault we decide to observe
the circuit response at f2.

• The input vector X=(1,0,0,1,1) sensitizes two
paths emanating from h and terminating in f2.paths emanating from h and terminating in f2.

• But the fault effect does not propagate to f2.

– This occurs when there exists reconvergent
fanouts with unequal inversion parities.

• To test such fault, a vector must be found
which sensitizes only one of the two paths.

• In this example, X=(0,0,0,0,1).

14

• Major Advantage of the Method:

– In many cases a test for a PI (primary input) is
also a test for all the lines along the sensitized
path.

• Fanouts and reconvergence complicates • Fanouts and reconvergence complicates
the problem.

15

Another Example

h

x1

x2

x3

f
G8

G6

G5

G4

G2

G1

Generate test
for h/0

16

x4

G7

G6

G3

• Analysis:

• If we were allowed to sensitize both paths
through G5 and G6 simultaneously, a test
can be generated.

• We, therefore, need 2-D path sensitization.• We, therefore, need 2-D path sensitization.

17

Test Generation using Path
Sensitization

• Basically a two-step process:

1. Activate the fault: Set PI values that causes
line ‘h’ to have value v′′′′ (for h/v fault).

2. Propagate the fault: Through forward drive
and backward trace phases, set PI values that and backward trace phases, set PI values that
propagates the fault effest to one of the
primary outputs.

18

Composite Value System

• To keep track of error propagation, we
must consider values in both the fault-free
circuit N and the faulty circuit Nf.

– For this we define composite logic values of
the form v/vf, where v and vf are values of the the form v/vf, where v and vf are values of the
same signal line in N and Nf respectively.

– 1/0 is denoted by the symbol D

0/1 is denoted by the symbol D′′′′

0/0 is denoted by the symbol 0

1/1 is denoted by the symbol 1

19

– Any logic operation between two composite
values can be done separately by processing
the fault-free and faulty values.

– For example,

D′′′′ + 0 = 0/1 + 0/0 = (0+0) / (1+0) = 0/1 = D′′′′D′′′′ + 0 = 0/1 + 0/0 = (0+0) / (1+0) = 0/1 = D′′′′

– We also use a fifth value ‘X’ to denote an
unspecified composite value; that is, any value
in the set {0, 1, D, D′′′′}.

20

0 1 D D′′′′ X

10

00

DD0

D

0

D′′′′ D′′′′

X XXX0

X0

00

XD′′′′

00

X

0

X

D′′′′

D

1

0 1 D D′′′′ X

OR

11

10

D1D

1

D

1 D′′′′

X XX1X

X1

1D′′′′

11

XD′′′′

X

0

X

D′′′′

D

1

21

AND OR

0 1 D D′′′′ X

EXOR

01

10

0D′′′′D

D′′′′

D

D 0

X XXXX

X1

1D′′′′

XD

XD′′′′

X

0

X

D′′′′

D

1

• It is easy to verify that D behaves
consistently with the rules of Boolean
algebra:

D + D′′′′ = 1

D . D′′′′ = 0D . D′′′′ = 0

D + D = D . D = D

D′′′′ + D′′′′ = D′′′′ . D′′′′ = D′′′′

22

The Basic Algorithm

• Structure of the algorithm to generate a
test for line ‘h’ s-a-v:

begin

set all values to ‘X’;set all values to ‘X’;

Justify (h, v′′′′);

if (v = 0)

then Propagate (h, D);

else Propagate (h, D′′′′);

end

23

Some Definitions

• Basic gates like AND, OR, NAND
and NOR can be characterized
by two parameters:

1. Controlling value: The value of an
input is said to be controlling if it

c i

AND 0 0

OR 1 0
input is said to be controlling if it
determines the value of the gate
output regardless of the values of
the other inputs.

2. Inversion: If ‘c’ is the controlling
value of an input to a gate with
inversion ‘i’, the value of the gate
output will be c⊕⊕⊕⊕i .

24

NAND 0 1

NOR 1 1

Line Justification Algorithm

Justify (h, val)

begin

set line ‘h’ to ‘val’;

if ‘h’ is a PI then return;

c = controlling value of ‘h’;

i = inversion of ‘h’;

inval = val ⊕⊕⊕⊕ i;

1

1

1
0

h

inval = val ⊕⊕⊕⊕ i;

if (inval = c′′′′)

then for every input ‘j’ of ‘h’

Justify (j, inval);

else begin

select any one input ‘j’ of ‘h’;

Justify (j, inval);

end

end

25

X

X

0
1

h
j

Error Propagation Algorithm

Propagate (h, err) /* err is D or D′′′′ */

begin

set line ‘h’ to ‘err’;

if ‘h’ is PO then return;

k = the gate driven by ‘h’;

c = controlling value of ‘k’;c = controlling value of ‘k’;

i = inversion of ‘k’;

for every input ‘j’ of ‘k’ other than ‘h’

Justify (j, c′′′′);

Propagate (k, err ⊕⊕⊕⊕ i);

end

26

Example 1

j

e

d

c

b
a

i

h

g

f Generate test
for f/0

27

e

Example 2

f1

c
b
a

d

j

i

h

g

f2

Generate test
for h/1

28

e
j

Example 3

d

c

b

a

n
m

l

k

sr

q

29

ph
f
e

o
n

Generate test
for h/1

Some Comments

• It is seen that in general, search for a test
may need backtracking.

• The algorithms as presented does not
implement backtracking.

– Must be incorporated in any real implementation.

– This makes the algorithm more complex.

– May even fail to generate test for some faults.

30

D Algorithm

• Concepts presented builds the foundation for D
algorithm, and its derivatives.

• Definition:

– D-Frontier: It consists of all gates whose
output value is currently ‘X’ but have one or output value is currently ‘X’ but have one or
more error signals (D or D′′′′) on their inputs).

• Error Propagation:

– Select one gate from D-frontier and assign
values to the unspecified gate inputs so that
the gate output becomes D or D′′′′.

(called D-DRIVE OPERATION)

31

D-Algorithm: Example (1/6)

• Logic values = {0, 1, D, D', x}.

d

d'
h

i

1

32

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

D-Algorithm: Example (2/6)

d

d'
h

i

1
1

D'

0

33

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

D'

D-Algorithm: Example (3/6)

d

d'
h

i

1
1

D'

0

34

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

D'

1

1=D'

1

1

D
01

conflict=>backtracking!

D-Algorithm: Example (4/6)

d

d'
h

i

j

1
1

D'

0

35

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

1

D'

0
1

D-Algorithm: Example (5/6)

d

d'
h

i

1
1

D'

0

36

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

D'

1

D'

0
1

1

1=D'

D

01
conflict=>backtracking!

D-Algorithm: Example (6/6)

d

d'
h

i

1
1

D'

0

37

n
e

f

f'

e'
j

k

l

m

ga
b
c

0
1
1 D

D'

1

D'

0
1

1

D'

0 1

D

