Testability Analysis

Why Testability Analysis?

* Need approximate measure of:

— Difficulty of setting internal circuit lines to 0 or 1 by
setting primary input values.

— Difficulty of observing internal circuit lines by
observing primary outputs.
* Why required?
— To analyze difficulty of testing internal circuit parts.
* redesign or add special test hardware

— To provide guidance for algorithms for computing
test patterns.

+ avoid using hard-to-control lines
— Estimation of fault coverage.
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Origins

« Control theory

* Rutman 1972
— First definition of controllability.

* Goldstein 1979 -- SCOAP
— First definition of observability.
— First elegant formulation.

— First efficient algorithm to compute controllability
and observability.

Types of Measures in SCOAP

« SCOAP
— Sandia Controllability and Observability
Analysis Program
+ Combinational measures:
CCO0 - Difficulty of setting circuit line to logic 0
CC1 - Difficulty of setting circuit line to logic 1
CO - Difficulty of observing a circuit line

+ Sequential measures — analogous:
SCo
SC1
SO
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Range of SCOAP Measures

Controllabilities

— Value ranges from 1 (easiest) to infinity (hardest).

Observabilities

— Value ranges from 0 (easiest) to infinity (hardest).

Combinational measures:

— Roughly proportional to number of circuit lines
that must be set to control or observe given line.

Sequential measures:

— Roughly proportional to number of times a flip-
flop must be clocked to control or observe given
line.

Goldstein’s SCOAP Measures

AND gate output 0 controllability:
output_controllability = min (input_controllabilities) + 1

AND gate output 1 controllability:
output_controllability = X (input_controllabilities) + 1

XOR gate output controllability
output_controllability = min (controllabilities of
each input set) + 1

Fanout Stem observability:
X or min (some or all fanout branch observabilities)
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Controllability Examples

CCd (a)

GClfa)___

& \ CGU (Z) =min (GGU (a), CCQ (0}) +1
coo () — '
i o

b —j - CC1 (z) min (CC'I {a), CC1 (b)) +1

a — ‘\__ z GCO(2) = CG1 (3) + CC1 (0) + 1

/' [ [L/ = {THii [;;Ju [ﬂ/, L;Gu [u// + i

More Controllability Examples

a z CCO (z) = min (CC1 (a), CC1 (b)) + 1

b CG1 (z) = CCO (a) + CCO (b} + 1

a z CCO (z) = min (CC1 (a)+ CCO (b), CCO (a) + CC1 (b)) + 1
b CC1 (z) = min (CCO (a)+ GCO (b), CC1 (a) + CC1 (b)) + 1

2 z CCO(z)=CCT(a)+ 1
CC1(z)=CC0fa)+ 1
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Observability Examples

To observe a gate input:
Observe output and make other input values non-controlling

CO (a)

cC1 (a)
CO (a) = CO (z) + CC1 (b) + 1 2 CC9 @), DEZ(Z)
CO (b) = CO (z) + CC1 (a) + 1 TR

CC1 (b)
CO (a) = CO (2) + CCO (b) + 1 5 CC0 0 B
CO (b) = CO (z) + CCO (a) + 1 b$
CO (a) = CO (z) + min (CCO (b), CC1 (b)) + 1 a ,
CO (b) = CO (2) + min (CCO (a), CCT (a)) + 1 bjD
CO (a) = CO (z) + CCT (b) + 1 a i
CO (b) = CO (z) + CC1 (a) + 1 b }
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More Observability Examples

To observe a fanout stem:
Observe it through branch with best observability

CO (a) = CO (z) + CCO (b) + 1 a 7

CO (b) = CO (z) + CCO (a) + 1 b

CO (a) = CO (z) + min (CCO (b), CC1 (b)) + 1 a z

CO (b) = CO (z) + min (CCO (a), CCT (a)) + 1 b:>
o—

CO (a) =CO (z) + 1 a

z1
CO (a) = min (CO (z1), CO (22}, ..., CO(zn)) a— % . z2

I:—Z."T
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Error: Stems & Reconverging Fanouts

SCOAP measures wrongly assume that controlling or
observing x, y, z are independent events:

— CCO0 (x), CCO (y), CCO (z) correlate
— CC1 (x), CC1 (y), CC1 (z) correlate
— CO (x), CO (y), CO (z) correlate

INO
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INZ

p ¢

OouTo
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Correlation Error Example

Exact computation of measures is NP-Complete and
impractical.

Italicized measures show correct values —- SCOAP
measures are not italicized CC0,CC1 (CO).

1,1(6) 2,3(4)
INO 4 1(5,) X 2,3(4,) 6,2(0)
INT 4,2(0) OUTO
1,1(5) (6) —(5) ylf
1%6) (6) (4’62) 34) |

3(4,) | Z

N2 11(6)

1,1(5,)
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Sequential Example
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Levelization Algorithm

» Label each gate with max # of logic levels from
primary inputs, or with max # of logic levels from
primary output.

» The algorithm:
— Assign level # 0 to all primary inputs (PIs).
— For each Pl fanout:
+ Label that line with the PI level number.
* Queue logic gate driven by that fanout.
— While queue is not empty:
» Dequeue next logic gate.

« If all gate inputs have level #’s, label the gate with the
maximum of them + 1.

» Else, requeue the gate.

14
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Controllability Through Level 0

Circled numbers give level number. (CC0, CC1)
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Controllability Through Level 2
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Final Combinational Controllability
1,1 @
H( ) (1,1 (2.6)
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Combinational Observability for Level 1

Number in square box is level from primary outputs (POs).
(Cco, cc1)co

(1.1
A

PPI7

:
(1.1) D e | 5 &2 ©90 ppos
PPI8 J/
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Combinational Observabilities for Level 2

(1.1) (1.1)
R (2.6)3
(1.1) 4
(1.1) (85
PPI7 (1.1)
L D270
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Final Combinational Observabilities
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Sequential Measure Differences

+ Combinational
— Increment CC0O, CC1, CO whenever we pass

through a gate, either forwards or backwards.

» Sequential

— Increment SCO0, SC1, SO only when we pass
through a flip-flop, either forwards or
backwards, to Q, Q’, D, C, SET, or RESET.

+ Both
— Must iterate on feedback loops until
controllabilities stabilize.
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D Flip-Flop Equations

= Assume a synchronous RESET line.

CCO (Q) =min [CCI (RESET) + CCI (C) + CCO (O),
CCO D) +CCI (C)+CCo (0]

SCO (Q) is analogous
COD)=CO(Q)+CCI (C)+CCO(C)+CCO (RESET)

SO (D) is analogous

CCI(Q)=CCI D)+CCI(C)+CCO(C)+CCO(RESET)
SCI (Q) =SCI (D) +SCI (C) + SCO (C) + SCO (RESET) +1

| Q

22
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D Flip-Flop Clock and Reset

CO(RESET)=CO(Q) + CC1(Q) + CC1(RESET) +
CC1(C) + CCO(C)
SO (RESET) is analogous

Three ways to observe the clock line:

1. Set Qto 1 and clock in a 0 from D

2. Set the flip-flop and then reset it

3. Reset the flip-flop and clock in a 1 from D

CO(C)=min[ CO(Q) + CC1(Q) + CCO (D) +
CC1(C) + cco(0),
CO(Q) + CC1(Q) + CC1(RESET) +
CC1(C) + cco(C),
CO(Q)+ CCO(Q) + CCO(RESET) +
CC1(D) + CC1(C)+ ccCo(C)]

SO (C) is analogous
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Algorithm:Testability Computation

1. Forall Pls, CC0 =CC1=1and SC0O =SC1 =0.

2. For all other nodes, CC0 = CC1 =SCO0 = SC1 = .
3. Go from Pls to POS, using CC and SC equations

to get controllabilities. Iterate on loops until SC
stabilizes (convergence guaranteed).

4. Forall POs,set CO=S0=0.

5. Work from POs to Pls, Use CO, SO, and
controllabilities to get observabilities.

6. Fanout stem (CO, SO) = min branch (CO, SO).

7. Ifa CC or SC (CO or SO) is «, that node is
uncontrollable (unobservable).

24
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Sequential Example Initialization
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After 2 lterations
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Stable Sequential Measures
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Test Vector Length Prediction

» First compute testabilities for stuck-at
faults .
T (x s-a-0) = CC1 (x) + CO (x)
T (x s-a-1) = CCO (x) + CO (x)

Testability index =log X T (f)
all

31

Number Test Vectors vs. Testability
Index

1M -

NUMBER 100k~

OF 10k 3
VECTORS o
FOR90% 'K
COVERAGE 100 -

10 —
1

I I I I I
g0 2 4 6 8 10
TESTABILITY INDEX

32

8/22/2012

16



Summary

+ ATPG systems
— Methods to reduce test generation effort while generating
efficient test vectors.
» Testability approximately measures:
— Difficulty of setting circuit lines to 0 or 1.
— Difficulty of observing internal circuit lines.

+ Uses:

— Analysis of difficulty of testing internal circuit parts.

» Redesign circuit hardware or add special test hardware where
measures show bad CY and OY.

— Guidance for algorithms computing test patterns.
— Estimation of test vector length.

33
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