Testability Analysis

Why Testability Analysis?

* Need approximate measure of:

— Difficulty of setting internal circuit lines to 0 or 1 by
setting primary input values.

— Difficulty of observing internal circuit lines by
observing primary outputs.
* Why required?
— To analyze difficulty of testing internal circuit parts.
* redesign or add special test hardware

— To provide guidance for algorithms for computing
test patterns.

+ avoid using hard-to-control lines
— Estimation of fault coverage.

8/22/2012

Origins

« Control theory

* Rutman 1972
— First definition of controllability.

* Goldstein 1979 -- SCOAP
— First definition of observability.
— First elegant formulation.

— First efficient algorithm to compute controllability
and observability.

Types of Measures in SCOAP

« SCOAP
— Sandia Controllability and Observability
Analysis Program
+ Combinational measures:
CCO0 - Difficulty of setting circuit line to logic 0
CC1 - Difficulty of setting circuit line to logic 1
CO - Difficulty of observing a circuit line

+ Sequential measures — analogous:
SCo
SC1
SO

8/22/2012

Range of SCOAP Measures

Controllabilities

— Value ranges from 1 (easiest) to infinity (hardest).

Observabilities

— Value ranges from 0 (easiest) to infinity (hardest).

Combinational measures:

— Roughly proportional to number of circuit lines
that must be set to control or observe given line.

Sequential measures:

— Roughly proportional to number of times a flip-
flop must be clocked to control or observe given
line.

Goldstein’s SCOAP Measures

AND gate output 0 controllability:
output_controllability = min (input_controllabilities) + 1

AND gate output 1 controllability:
output_controllability = X (input_controllabilities) + 1

XOR gate output controllability
output_controllability = min (controllabilities of
each input set) + 1

Fanout Stem observability:
X or min (some or all fanout branch observabilities)

8/22/2012

Controllability Examples

CCd (a)

GClfa)___

& \ CGU (Z) =min (GGU (a), CCQ (0}) +1
coo () — '
i o

b —j - CC1 (z) min (CC'I {a), CC1 (b)) +1

a — ‘__ z GCO(2) = CG1 (3) + CC1 (0) + 1

/' [[L/ = {THii [;;Ju [ﬂ/, L;Gu [u// + i

More Controllability Examples

a z CCO (z) = min (CC1 (a), CC1 (b)) + 1

b CG1 (z) = CCO (a) + CCO (b} + 1

a z CCO (z) = min (CC1 (a)+ CCO (b), CCO (a) + CC1 (b)) + 1
b CC1 (z) = min (CCO (a)+ GCO (b), CC1 (a) + CC1 (b)) + 1

2 z CCO(z)=CCT(a)+ 1
CC1(z)=CC0fa)+ 1

8/22/2012

Observability Examples

To observe a gate input:
Observe output and make other input values non-controlling

CO (a)

cC1 (a)
CO (a) = CO (z) + CC1 (b) + 1 2 CC9 @), DEZ(Z)
CO (b) = CO (z) + CC1 (a) + 1 TR

CC1 (b)
CO (a) = CO (2) + CCO (b) + 1 5 CC0 0 B
CO (b) = CO (z) + CCO (a) + 1 b$
CO (a) = CO (z) + min (CCO (b), CC1 (b)) + 1 a ,
CO (b) = CO (2) + min (CCO (a), CCT (a)) + 1 bjD
CO (a) = CO (z) + CCT (b) + 1 a i
CO (b) = CO (z) + CC1 (a) + 1 b }

9

More Observability Examples

To observe a fanout stem:
Observe it through branch with best observability

CO (a) = CO (z) + CCO (b) + 1 a 7

CO (b) = CO (z) + CCO (a) + 1 b

CO (a) = CO (z) + min (CCO (b), CC1 (b)) + 1 a z

CO (b) = CO (z) + min (CCO (a), CCT (a)) + 1 b:>
o—

CO (a) =CO (z) + 1 a

z1
CO (a) = min (CO (z1), CO (22}, ..., CO(zn)) a— % . z2

I:—Z."T

10

8/22/2012

Error: Stems & Reconverging Fanouts

SCOAP measures wrongly assume that controlling or
observing x, y, z are independent events:

— CCO0 (x), CCO (y), CCO (z) correlate
— CC1 (x), CC1 (y), CC1 (z) correlate
— CO (x), CO (y), CO (z) correlate

INO
Nt

INZ

p ¢

OouTo

11

Correlation Error Example

Exact computation of measures is NP-Complete and
impractical.

Italicized measures show correct values —- SCOAP
measures are not italicized CC0,CC1 (CO).

1,1(6) 2,3(4)
INO 4 1(5,) X 2,3(4,) 6,2(0)
INT 4,2(0) OUTO
1,1(5) (6) —(5) ylf
1%6) (6) (4’62) 34) |

3(4,) | Z

N2 11(6)

1,1(5,)

12

8/22/2012

Sequential Example

A 4
p]
— >
*{)O—I ;D__ff_or
o) 52
"/ | Ls
oL

13

Levelization Algorithm

» Label each gate with max # of logic levels from
primary inputs, or with max # of logic levels from
primary output.

» The algorithm:
— Assign level # 0 to all primary inputs (PIs).
— For each Pl fanout:
+ Label that line with the PI level number.
* Queue logic gate driven by that fanout.
— While queue is not empty:
» Dequeue next logic gate.

« If all gate inputs have level #’s, label the gate with the
maximum of them + 1.

» Else, requeue the gate.

14

8/22/2012

Controllability Through Level 0

Circled numbers give level number. (CC0, CC1)

A (1.1) (1,1) ®
(1.1 4
(1.1
PPI7 EH)@
(1.1) 5 } z
0—_/ @
© E— PPO7
’>° ®
} PPOS8

_/

n
v
m/‘\
:e
(]

15

Controllability Through Level 2

A (1.1) (1,1) @
(1.1) 4
(3.5)
(1.1
PPI7 L(H)@
(1.1 5 Z
o—_/ @
9 2.2) (3.5) 3 PPO7
®
3 } (8.5 (3.5) PPO8

16

8/22/2012

8/22/2012

Final Combinational Controllability
1,1 @
H() (1,1 (2.6)
(3.5)
(1,1)
PPI7 L(H)@()
2,7
(1.1 5) C7 .
*— @
@ 2.2) (3.5) D PPO7
® (27) &7
™ 3,5 3,5
(1.1 ®(2,2) 3 S © ppos
PPI18 /
17

Combinational Observability for Level 1

Number in square box is level from primary outputs (POs).
(Cco, cc1)co

(1.1
A

PPI7

:
(1.1) D e | 5 &2 ©90 ppos
PPI8 J/

18

Combinational Observabilities for Level 2

(1.1) (1.1)
R (2.6)3
(1.1) 4
(1.1) (85
PPI7 (1.1)
L D270
(1.9 5) en? z
L
ey 7R
(2.2) PPO7
2,73 (57)0
3) (8.5 8.50 PPOS

19

Final Combinational Observabilities

(1.1)a (118
A (2,6)3
(1.8 4
(1,1)6 (S’S)G‘ID&
PPI7
L(1,1)5 =7
(11)4 5) (270
*— 4 IIl
(2.2)3 (8.5)2 B_ PPO7
(2,7)3 (5.7)0
7] 5 N\ | 350 (3,5)0 pPOS

20

8/22/2012

10

Sequential Measure Differences

+ Combinational
— Increment CC0O, CC1, CO whenever we pass

through a gate, either forwards or backwards.

» Sequential

— Increment SCO0, SC1, SO only when we pass
through a flip-flop, either forwards or
backwards, to Q, Q’, D, C, SET, or RESET.

+ Both
— Must iterate on feedback loops until
controllabilities stabilize.

21

D Flip-Flop Equations

= Assume a synchronous RESET line.

CCO (Q) =min [CCI (RESET) + CCI (C) + CCO (O),
CCO D) +CCI (C)+CCo (0]

SCO (Q) is analogous
COD)=CO(Q)+CCI (C)+CCO(C)+CCO (RESET)

SO (D) is analogous

CCI(Q)=CCI D)+CCI(C)+CCO(C)+CCO(RESET)
SCI (Q) =SCI (D) +SCI (C) + SCO (C) + SCO (RESET) +1

| Q

22

8/22/2012

11

D Flip-Flop Clock and Reset

CO(RESET)=CO(Q) + CC1(Q) + CC1(RESET) +
CC1(C) + CCO(C)
SO (RESET) is analogous

Three ways to observe the clock line:

1. Set Qto 1 and clock in a 0 from D

2. Set the flip-flop and then reset it

3. Reset the flip-flop and clock in a 1 from D

CO(C)=min[CO(Q) + CC1(Q) + CCO (D) +
CC1(C) + cco(0),
CO(Q) + CC1(Q) + CC1(RESET) +
CC1(C) + cco(C),
CO(Q)+ CCO(Q) + CCO(RESET) +
CC1(D) + CC1(C)+ ccCo(C)]

SO (C) is analogous

23

Algorithm:Testability Computation

1. Forall Pls, CC0 =CC1=1and SC0O =SC1 =0.

2. For all other nodes, CC0 = CC1 =SCO0 = SC1 = .
3. Go from Pls to POS, using CC and SC equations

to get controllabilities. Iterate on loops until SC
stabilizes (convergence guaranteed).

4. Forall POs,set CO=S0=0.

5. Work from POs to Pls, Use CO, SO, and
controllabilities to get observabilities.

6. Fanout stem (CO, SO) = min branch (CO, SO).

7. Ifa CC or SC (CO or SO) is «, that node is
uncontrollable (unobservable).

24

8/22/2012

12

Sequential Example Initialization

(.1 (1.1
[0,0] oo} @
1:))*
®
(1.1) 5 }e z
ol —LD @ ©
D Q_Q‘! (0, 0)
@ (1,1)_>7 [0, 00]
@ \ [0.0] Q2 (e, m)
(0, 00) 3 D o ;
[@,0] "b‘ L/ T>a @ [o.]
1
GL an .1
[0,0] [0.0]
25
After 1 lteration
(1.1 (1.1
[0,0] oo @ (2.9 (4.m)
[0,00] [0,00]
4
(o,) (7,m)
[0,00] [0,00]
o/
5 % (e
[0'% (2.2) ® /@ ’
[0.0] D Q_QT (00,00}
5 ®@ 5.0 an— []
[0, o] [0.,0] Qz
(.) (@.0) 3 5 o (@.m)
[e,] _j 8 @ [@]
[o,00] 1T>
1
ot (1N (1.1)
[0,0] [0.0]

26

8/22/2012

13

After 2 lterations

(1,1 (1.1
[0.0] o] @ (2.14) (4,0)
AR p [0,1] [0,2]
(9, m) (7.18)
[1.,0] / [0,1]

D Q= (9,m)
L7 Q1 [1,0]

ED@//@) (i

(3,9) (1,1
[0.1] [0.0] Q2 (5,0)
D o '
[1.2]
T>8 ®
1
(1.1
[0.0]
27
After 3 lterations
(1,1) (1,1)
[0,0] oo @ (2.14) (4,27)
P [0.1] [0,3]
(9,17 (7.15)
[1.21/ [0.1]
(1.1) @2./ / Z(4.27)
[0,0] — /6 [0.3]
o o
071(9.17)
(3,9) a7 (1.2]
1 0,0
[0,1] [0.0] - Q_Qg@(? 1)
2
T>8 [1
1
(1.1
[0.0]
28

8/22/2012

14

Stable Sequential Measures

(1.1) (1.1
[0,0] o] @ (2.14) (4,27)
A ; [0.1] [0,3]
(9,17) (7.15)
[1.2] [0.1]
(1,1 5 ®)'./ Z([4'27])
0.3
[0,) @ /@
i : Do a- (g 47
4%, 01([’2])
(3.9) (A '
.1 B 52 (5.1
'T>8 ®@11.2]
1
(1,1)
[0.0]
29
Final Sequential Observabilities
(1.1)26 1,1
[0,0]3 ([o,oﬁu G (2.14)17 (4,27)
R p [0,1]2 [0,3]0
(3.9)28 (7.15)12
[0,1]3 (9,17n0 | [0.1]2
(1.2
@2/ / Z(4,27)0
E’:ﬁiﬁ A [0.3]0
@ @22 I35y @ /e
[0.013 [0,1]2 D QO (9.17)10
qies—p | [1.21
[0.0]4
(5,11)22 b aRZ (5, 11)22
[1,2]2 \ E03:19])§4 'T>8 ®@11.2]12
L (1,1)36 t‘ (‘1,1)38
’ (3,9)18
[0.0]4 Sk [0,0]5
30

8/22/2012

15

Test Vector Length Prediction

» First compute testabilities for stuck-at
faults .
T (x s-a-0) = CC1 (x) + CO (x)
T (x s-a-1) = CCO (x) + CO (x)

Testability index =log X T (f)
all

31

Number Test Vectors vs. Testability
Index

1M -

NUMBER 100k~

OF 10k 3
VECTORS o
FOR90% 'K
COVERAGE 100 -

10 —
1

I I I I I
g0 2 4 6 8 10
TESTABILITY INDEX

32

8/22/2012

16

Summary

+ ATPG systems
— Methods to reduce test generation effort while generating
efficient test vectors.
» Testability approximately measures:
— Difficulty of setting circuit lines to 0 or 1.
— Difficulty of observing internal circuit lines.

+ Uses:

— Analysis of difficulty of testing internal circuit parts.

» Redesign circuit hardware or add special test hardware where
measures show bad CY and OY.

— Guidance for algorithms computing test patterns.
— Estimation of test vector length.

33

8/22/2012

17

