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FiniteFinite--state Modelstate Model

Deterministic machines: next state S(t+1) determined uniquely by present 
t t S(t) d t i t (t)state S(t) and present input x(t)

S(t+1) =   {S(t), x(t)}
• : state transition function



Output function   :

z(t) =   {S(t), x(t)}: Mealy machine

z(t) = {S(t)}: Moore machine






z(t)    {S(t)}: Moore machine

Synchronous sequential machine M:

M {I O S }



 M = {I,O,S,  ,  }
• I: set of input symbols

• O: set of output symbols

 

• S: set of states

• : I x S -> S is the state transition function

• : I x S -> O for Mealy machines
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• : S -> O for Moore machines



InputInput--output Transformationsoutput TransformationsInputInput output Transformationsoutput Transformations

Example: four-state machine M with one input and one output variable 

S = {A,B,C,D},  I = {0,1},  O = {0,1}

A

0/0

B C D 0,1/0
1/0

0/1

1/0

0/0

1/0

• Suppose initial state is A: M transforms input sequence 110 to output 
sequence 001, and 01100 to 00010

• If last output symbol is 1 (0): the corresponding input sequence is said to

1/01/0

• If last output symbol is 1 (0): the corresponding input sequence is said to 
be accepted (rejected) by M

– 110 is accepted; 01100 is rejected

• If input sequence X takes machine from state S to S : S is said to be the• If input sequence X takes machine from state Si to Sj: Sj is said to be the 
X-successor of Si

• B: 1-successor of A

• (AD): 10-successor of (BC)
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(AD): 10 successor of (BC)

Terminal StateTerminal StateTerminal StateTerminal State

A state is called terminal if:
C f• Corresponding vertex is a sink vertex: no outgoing arcs emanating from it 
terminate in other vertices

• Corresponding vertex is a source vertex: no arcs emanating from other 
vertices terminate in itvertices terminate in it

A

0/0

B C D 0,1/0
1/0

0/1

1/0

0/0

1/0

• D: a sink vertex

Strongly connected machine: for every pair of states Si, Sj of machine M, 
there exists an input sequence which takes M from Si to Sj

• Any machine that has a terminal state is not strongly connected

4



Capabilities and Limitations of FSMsCapabilities and Limitations of FSMsCapabilities and Limitations of FSMsCapabilities and Limitations of FSMs

Apply a string of m 1’s to an n-state FSM, m > n: some state must be 
i it drevisited

• Output sequence becomes periodic, whose period cannot exceed n

Example: Design a machine that receives a long sequence of 1’s and 
produces output symbol 1 when and only when the number of input 
symbols received so far is k(k+1)/2, for k = 1, 2, 3, …, i.e.

Input    = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

Output = 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 …
• Since the output sequence does not become periodic: no FSM can produceSince the output sequence does not become periodic: no FSM can produce 

such an infinite sequence
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Capabilities and Limitations (Contd.)Capabilities and Limitations (Contd.)

Example: No FSM with a fixed number of states can multiply two arbitrarily 
l blarge numbers

• Suppose there exists an n-state machine capable of serially multiplying 
any two binary numbers

Select the two numbers to be 2p x 2p = 22p where p > n• Select the two numbers to be 2p x 2p = 22p, where p > n

• Input values are fed to the machine serially, LSB first

• 2p: 1 followed by p 0’s; 22p: 1 followed by 2p 0’s

Si th hi t h b t f th t t t i d i• Since p > n, the machine must have been at one of the states twice during 
tp+1 and t2p

– Thus, the output must become periodic and the period is smaller than 
p: hence it will never produce the 1 output symbolp: hence, it will never produce the 1 output symbol

t2p+1 = time. . .

01

t1t2tptp+1t2p
. . .

= first number. . . 00

= product

= second number
. . . . . .

. . .

00 0 0 0

0 0 0

1

1
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State Equivalence and Machine State Equivalence and Machine 
MinimizationMinimizationMinimizationMinimization

k-distinguishable: Two states Si and Sj of machine M are distinguishable if 
d l if th i t t l t fi it i t hi hand only if there exists at least one finite input sequence which, 

when applied to M, causes different output sequences, depending 
on whether Si or Sj is the initial state
S hi h di ti i h th t t di ti i hi f• Sequence which distinguishes these states: distinguishing sequence of 
pair (Si,Sj)

• If there exists a distinguishing sequence of length k for (Si,Sj): Si and Sj

are said to be k-distinguishableare said to be k distinguishable

Example: In machine M1

(A B) 1 di ti i h bl• (A,B): 1-distinguishable

• (A,E): 3-distinguishable since the minimum

sized sequence that distinguishes A

and E is 111
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Machine M1

State Equivalence (Contd.)State Equivalence (Contd.)

k-equivalence: States that are not k-distinguishable are k-equivalent
S f• States A and E of M1 are 2-equivalent

• States that are k-equivalent are also r-equivalent, for all r < k

• States that are k-equivalent for all k are said to be equivalent

States Si and Sj of machine M are equivalent (indicated by Si = Sj): if and 
only if, for every possible input sequence, the same output 
sequence is produced regardless of whether Si or Sj is the initial 
state

• Clearly, if Si = Sj and Sj = Sk, then Si = Skj j

– Thus, state equivalence is an equivalence relation

– The set of states of the machine can be partitioned into disjoint 
subsets, known as equivalence classes

• This definition can be generalized to the case: where Si is a possible initial 
state of machine M1, while Sj is an initial state of machine M2, where M1

and M2 have the same input alphabet
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State Minimization ProcedureState Minimization Procedure

If Si and Sj are equivalent states, their corresponding X-successors, for all 
X l i l t i th i it ld b t i i l tX, are also equivalent: since otherwise it would be trivial to 
construct a distinguishing sequence for (Si,Sj) by first applying an 
input sequence that transfers the machine to the distinguishable 
successors of S and S Machine Msuccessors of Si and Sj

Example: For machine M1

• P0, P1: 0-distinguishable, 1-distinguishable

Machine M1

• P2: two states placed in the same block if and

only if they are in the same block of P1, and

for each possible Ii, their Ii-successor is also

contained in a common block of P1

– 0- and 1-successor of (ACE): (CE), (BDF)

» Since both are contained in common

blocks of P1: states in (ACE) are 

2-equivalent

– 1-successor of (BDF): (DBC)
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» Since (DB) and (C) are not contained in a

single block of P1: (BDF) must be split into (BD) and (F), and so on

• Since P3 = P4: P3 is the equivalence partition

TheoremsTheorems

Theorem 10.1: The equivalence partition is unique

Proof: Suppose there exist two partitions, Pa and Pb, and that Pa = Pb.
• Then there exist two states, Si and Sj, which are in the same block of one 

partition and not in the same block of the other

• Since Si and Sj are in different blocks of (say) Pb, there exists at least one 
input sequence which distinguishes Si from Sj and, therefore, cannot be in 
the same block of Pa

Theorem 10 2: If two states S and S of machine M of n states areTheorem 10.2: If two states, Si and Sj, of machine M of n states are 
distinguishable, then they are distinguishable by a sequence of length n-1 
or smaller

P f P t i t l t t bl k l M i d ibl tProof: P1 contains at least two blocks, else M is reducible to a 
combinational circuit with a single state

• At each step, partition Pk+1 is smaller than or equal to Pk

If P i ll th P th it t i t l t bl k th– If Pk+1 is smaller than Pk, then it contains at least one more block than 
Pk

– However, since the number of blocks is limited to n, at most n-1 
partitions can be generated
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partitions can be generated

– Thus, if Si and Sj are distinguishable, they are distinguishable by a 
sequence of length n-1 or smaller



Machine EquivalenceMachine Equivalence

Two machines, M1 and M2, are said to be equivalent if and only if, for every  
t t i M th i di t t i M d istate in M1, there is a corresponding state in M2, and vice versa

• The machine that contains no equivalence states and is equivalent to M is 
called the minimal, or reduced, form of M

Example: Machine M1 Machine M1*
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Machine Equivalence (Contd.)Machine Equivalence (Contd.)

Example: Machine M2 Machine M2*
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Isomorphic MachinesIsomorphic Machines

If one machine can be obtained from another by relabeling its states: the 
hi id t b i hi t h thmachines are said to be isomorphic to each other

• To every machine M, there corresponds a minimal machine M* which is 
equivalent to M and is unique up to isomorphism

Example: Machine in standard form
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Simplification of Incompletely Specified Simplification of Incompletely Specified 
MachinesMachinesMachinesMachines

Incompletely specified machine: in which the next state or output symbol is 
l ft ifi dleft unspecified

• When a state transition is unspecified: the future behavior of the machine 
may become unpredictable

Assume that the input sequences are such that no unspecified next– Assume that the input sequences are such that no unspecified next 
state is encountered, except possibly at the final step

» Such an input sequence is said to be applicable to the starting 
state of the machinestate of the machine

Example: Machine M3 Equivalent description
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State/Machine CoveringState/Machine Covering

State Si of M1 is said to cover, or contain, state Sj of M2 if and only if every 
i t li bl t S i l li bl t Sinput sequence applicable to Sj is also applicable to Si

• Its application to both M1 and M2 when they are in Si and Sj, respectively, 
results in identical output sequences whenever the output symbols of M2

are specifiedare specified

Machine M1 is said to cover machine M2 if and only if, for every state Sj in 
M th i di t t S i M h th t S SM2, there is a corresponding state Si in M1 such that Si covers Sj

Example: 

covers
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Compatible StatesCompatible States

Two states, Si and Sj, of machine M are compatible if and only if, for every 
i t li bl t b th S d S th t tinput sequence applicable to both Si and Sj, the same output 
sequence will be produced whenever both output symbols are 
specified regardless of whether Si or Sj is the initial state
H S d S tibl if d l if th i t t b l t• Hence, Si and Sj are compatible: if and only if their output symbols are not 
conflicting and their Ii-successors, for every Ii for which both are specified, 
are either the same or also compatible

• A set of states (Si Sj Sk ) is called a compatible: if all its members areA set of states (Si, Sj, Sk, …) is called a compatible: if all its members are 
compatible

• A compatible Ci is said to be larger than, or to cover, another compatible 
Cj: if and only if every state contained in Cj is also contained in Cij y y j i

• A compatible is maximal: if is not covered by any other compatible

• In case of the incompletely specified machine: the analog to the 
equivalence relation is the compatibility relation
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Nonuniqueness of Reduced MachinesNonuniqueness of Reduced Machines

Example: Machine M4

• If we replace both dashes by 1’s: A and B become equivalent

• If we replace both dashes by 0’s: States A and E become equivalent; alsoIf we replace both dashes by 0 s: States A and E become equivalent; also, 
B, C, and D become equivalent

• Both reduced machines cover M4: thus reduced machines are nonunique

• States A and B of M are compatible and if C and D are also compatible
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• States A and B of M4 are compatible, and if C and D are also compatible, 
so are A and E.  However, B and E are 1-distinguishable, hence 
incompatible: thus compatibility relation is not an equivalence relation

Nonuniqueness of Minimal MachinesNonuniqueness of Minimal Machines

Example: Machine M5 Augmented machine

• Two minimal machines corresponding to M• Two minimal machines corresponding to M5

Whil th i l titi i t f di j i t bl k th b t f• While the equivalence partition consists of disjoint blocks, the subsets of 
compatibles may be overlapping
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Compatible/Implied PairCompatible/Implied Pair

Let the Ik-successors of Si and Sj be Sp and Sq, respectively: then (SpSq) is 

said to be the implied pair of the compatible pair (SiSj)

Example: (CF) is the implied pair of the compatible pair (AC)p ( ) p p p p ( )
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Merger GraphMerger Graph

Merger graph of an n-state machine M is an undirected graph defined as 
f llfollows:

1. It consists of n vertices, each of which corresponds to a state of M

2. For each pair of states (SiSj) in M, whose next-state and output entries are 
not conflicting an undirected arc is drawn between vertices S and Snot conflicting, an undirected arc is drawn between vertices Si and Sj

3. If, for a pair of states (SiSj), the corresponding output symbols under all 
input symbols are not conflicting, but the successors are not the same, an 
interrupted arc is drawn between Si and Sj and the implied pairs areinterrupted arc is drawn between Si and Sj, and the implied pairs are 
entered in the space

Example: Machine M6 Merger graph
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Nine compatible pairs: (AB), (AC), (AD), (BC), (BD), (BE), (CD), (CF), (EF)

Set of maximal compatibles: {(ABCD), (BE), (CF), (EF)} – complete polygons



Closed Sets of CompatiblesClosed Sets of Compatibles

A set of compatibles for machine M is said to be closed if: for every 
tibl t i d i th t ll it i li d tiblcompatible contained in the set, all its implied compatibles are 

also contained in the set
• A closed set of compatibles, which contains all states of M, is called a 

closed coveringclosed covering

Example: {(ABCD), (EF)} has the minimal number of compatibles covering  
all states of M6

It d fi l b d th b f t t i th i i l hi• It defines a lower bound on the number of states in the minimal machine 
that covers M6

• However, if we select maximal compatible (ABCD) to be a state in the 
reduced machine: then its I2- and I3-successors (CF) and (BE) must alsoreduced machine: then its I2- and I3-successors, (CF) and (BE), must also 
be selected – since these are not in the above set, set {(ABCD), (EF)} 
cannot be used to define the states of a minimal machine for M6
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Closed CoveringClosed Covering

Example (contd.): Closed covers:
{( ) ( ) (C )}• {(AD), (BE), (CF)}

• {(AB), (CD), (EF)}

Closed covering is not unique
• Aim is to find a closed covering that with a minimum number of compatibles

• Set of all maximal compatibles: clearly a closed coveringp y g

– This defines an upper bound on the number of states in the machine 
that covers the original one:

» The upper bound is meaningless when the number of maximal 
compatibles is larger than the number of states in the original 
machine

• For the example: the lower bound is 2 and upper bound 4

– Thus, a closed covering with three compatibles defines a minimal 
machine
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Compatibility GraphCompatibility Graph

Compatibility graph: a directed graph whose vertices correspond to all 
tibl i d l d f (S S ) t (S S ) if d l ifcompatible pairs, and an arc leads from (SiSj) to (SpSq) if and only if 

(SiSj) implies (SpSq)

Example: Machine M7 Merger graph          Compatibility graph
A (AC)A

BE

(BC)

(CE)
(BC)
(AE)

(AD)(BE)

(AC)

(AD) (BE)

A b h f th tibilit h i l d if f t i th
C

D

(BC)
(AB)

(BC)
(AD)

(DE)

(BE)
(BC)

(CD)
(DE)

A subgraph of the compatibility graph is closed: if, for every vertex in the 
subgraph, all outgoing arcs and their terminating vertices also belong to it

• If every state of the machine is covered by at least one vertex of the 
subgraph: then the subgraph forms a closed coveringsubgraph: then the subgraph forms a closed covering

– {(BC), (AD), (BE)}; {(AC), (BC), (AD), (BE)}; {(DE), (BC), (AD), (BE)}
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Minimal machine

Merger TableMerger Table

Merger table: more convenient alternative to the merger graph

Example: Machine M8 Merger table

EFB EFB

AC,
EF

BCC

BCAB BC

CD,
CF

EF

E

D

BC,
DE

AB,
DF

BD
BC,
CD

DE

EDCBA

F
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Finding the Set of Maximal CompatiblesFinding the Set of Maximal Compatibles

Tabular counterpart to finding complete polygons in the merger graph:
S f f1. Start in the rightmost column of the merger table and proceed left until a 
column containing a compatible pair is encountered – list all compatible 
pairs in that column

2 Proceed left to the next column containing at least one compatible pair2. Proceed left to the next column containing at least one compatible pair.  
If the state to which this column corresponds is compatible with all 
members of some previously determined compatible, add this state to 
that compatible to form a larger compatible.  If the state is not compatible 
with all members, but is compatible with some, form a new compatible 
that includes those members and the state in question.  Next, list all 
compatible pairs not included in any previously derived compatible

3 R t t 2 til ll l h b id d Th fi l t f3. Repeat step 2 until all columns have been considered. The final set of 
compatibles constitutes the set of maximal compatibles
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Maximal Compatibles (Contd.)Maximal Compatibles (Contd.)

Example:
EFB Column E: (EF)EFB

AC,
EF

EF

BC

D

C

( )

Column D: (EF), (DE)

Column C: (CEF), (CDE)

Col mn B (CEF) (CDE) (BC)

BCAB BC

CD,
CF

EF

E

D Column B: (CEF), (CDE), (BC)

Column A: (CEF), (CDE), (ABC), (ACF)

BC,
DE

AB,
DF

BD
BC,
CD

DE

EDCBA

F

• Set of maximal compatibles indicates that M8 can be covered by a four-
state machine, but not by a two-state machine
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Maximal Compatibles (Contd.)Maximal Compatibles (Contd.)

Example (contd.):  Compatibility graph

• Add (AB) to closed subgraph {(AC), (BC), (EF), (CD)}

– Reduces to the following closed covering: {(ABC), (CD), (EF)}

• Minimal machine:
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