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Finite-state Model

Deterministic machines: next state S(t+1) determined uniquely by present
state S(t) and present input x(t)
S(t+1) = &{S(1), x(V)}
* 0 state transition function
Output function A:
z(t) = 2{S(t), x(t)}: Mealy machine
z(t) = A{S(t)}: Moore machine

Synchronous sequential machine M:
M ={l,0,S,0,4}
» |: set of input symbols
» O: set of output symbols
» S: set of states
e 5:1xS ->Sis the state transition function
* 1:1xS ->0 for Mealy machines
e 1:S ->0 for Moore machines




Input-output Transformations

Example: four-state machine M with one input and one output variable

S={AB,C,D}, I={0,1}, O ={0,1}
0/0

1/0

0/1
0/0

- ;( ) )0,1/0
> » D !
1/0 \CJ 1/0

e Suppose initial state is A: M transforms input sequence 110 to output
sequence 001, and 01100 to 00010

 If last output symbol is 1 (0): the corresponding input sequence is said to
be accepted (rejected) by M

— 110 is accepted; 01100 is rejected

« If input sequence X takes machine from state S; to S;: S; is said to be the
X-successor of S;

e B: 1-successor of A
* (AD): 10-successor of (BC)

Terminal State

A state is called terminal if:

» Corresponding vertex is a sink vertex: no outgoing arcs emanating from it
terminate in other vertices

e Corresponding vertex is a source vertex: no arcs emanating from other
vertices terminate in it

0/0

* D: a sink vertex

Strongly connected machine: for every pair of states S;, S; of machine M,
there exists an input sequence which takes M from S; to S;
» Any machine that has a terminal state is not strongly connected




Capabillities and Limitations of FSMs

Apply a string of m 1's to an n-state FSM, m > n: some state must be
revisited
» Output sequence becomes periodic, whose period cannot exceed n

Example: Design a machine that receives a long sequence of 1's and
produces output symbol 1 when and only when the number of input
symbols received so far is k(k+1)/2, fork =1, 2, 3, ..., i.e.
lnput =111111111111111...

Output=101001000100001 ...

» Since the output sequence does not become periodic: no FSM can produce
such an infinite sequence

Capabillities and Limitations (Contd.)

Example: No FSM with a fixed number of states can multiply two arbitrarily

large numbers

» Suppose there exists an n-state machine capable of serially multiplying
any two binary numbers

» Select the two numbers to be 2P x 2P = 22P, where p > n

* Input values are fed to the machine serially, LSB first

« 2p: 1 followed by p 0's; 22°: 1 followed by 2p 0’s

« Since p > n, the machine must have been at one of the states twice during
to1 and ty,

— Thus, the output must become periodic and the period is smaller than
p: hence, it will never produce the 1 output symbol

toprr fop o o oo T2 T = time

1 0 --- 0 O =first number

1 0 --- 0 0 =second number
1 0 -0 0 ---0 O =product




State Equivalence and Machine
Minimization

k-distinguishable: Two states S; and S; of machine M are distinguishable if

and only if there exists at least one finite input sequence which,
when applied to M, causes different output sequences, depending
on whether S; or S; is the initial state

e Sequence which distinguishes these states: distinguishing sequence of
pair (S;,S))

« If there exists a distinguishing sequence of length k for (S;,S): S; and S;
are said to be k-distinguishable

Example: In machine M, NS

* (A,B): 1-distinguishable PS|lz=0 z=1

« (AE): 3-distinguishable since the minimum A | EO0 D1
) _ . B | F0 Do

sized s'equence that distinguishes A c| Eo BI
and E is 111 D F.0 B.0

E .0 Fi1

F B.0O .0

Machine M,

State Equivalence (Contd.)

k-equivalence: States that are not k-distinguishable are k-equivalent
 States A and E of M, are 2-equivalent
» States that are k-equivalent are also r-equivalent, for all r < k
e States that are k-equivalent for all k are said to be equivalent

States S; and S; of machine M are equivalent (indicated by S;= S): if and
only if, for every possible input sequence, the same output
sequence is produced regardless of whether S; or S; is the initial
state

 Clearly, if ;= S;and S; = S,, then S; = S,
— Thus, state equivalence is an equivalence relation

— The set of states of the machine can be partitioned into disjoint
subsets, known as equivalence classes
 This definition can be generalized to the case: where S; is a possible initial
state of machine My, while S; is an initial state of machine M,, where M,
and M, have the same input alphabet




State Minimization Procedure

If S; and S; are equivalent states, their corresponding X-successors, for all
X, are also equivalent: since otherwise it would be trivial to
construct a distinguishing sequence for (S;,S)) by first applying an
input sequence that transfers the machine to the distinguishable

successors of S; and S Machine M,
Example: For machine M, NS, =
« P,, P;: O-distinguishable, 1-distinguishable PS5 |2=0 z=1
« P,: two states placed in the same block if and g ‘ES gé
only if they are in the same block of P, and c | E0 B.1
for each possible |, their [,-successor is also D F;O B0
contained in a common block of P, E | co  Fl
— 0- and 1-successor of (ACE): (CE), (BDF) Fl B0 G0
» Since both are contained in common Py = (ABCDEF)
blocks of P,: states in (ACE) are Py = (ACE)(BDF)
2-equivalent Py = (ACE)(BD)(F)
— 1-successor of (BDF): (DBC) Py = (AC)(E)(BD)(F)
» Since (DB) and (C) are not contained in a Py (AC)(E)(BD)(F)

single block of P,: (BDF) must be split into (BD) and (F), and so on 9
» Since P; = P, P; is the equivalence partition

Theorems

Theorem 10.1: The equivalence patrtition is unique

Proof: Suppose there exist two partitions, P, and P,, and that P, = P,.
» Then there exist two states, S, and Sj, which are in the same block of one
partition and not in the same block of the other

* Since S; and S; are in different blocks of (say) P,, there exists at least one
input sequence which distinguishes S; from S; and, therefore, cannot be in
the same block of P,
Theorem 10.2: If two states, S; and Sj, of machine M of n states are
distinguishable, then they are distinguishable by a sequence of length n-1
or smaller
Proof: P, contains at least two blocks, else M is reducible to a
combinational circuit with a single state
» At each step, partition P, , is smaller than or equal to P,
— If Py, is smaller than P, then it contains at least one more block than
F)k
— However, since the number of blocks is limited to n, at most n-1
partitions can be generated

— Thus, if S; and S; are distinguishable, they are distinguishable by a
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sequence of length n-1 or smaller




Machine Equivalence

Two machines, M, and M,, are said to be equivalent if and only if, for every
state in M,, there is a corresponding state in M,, and vice versa

» The machine that contains no equivalence states and is equivalent to M is
called the minimal, or reduced, form of M

Example: Machine M; Machine M*

NS,z NS,z
r=0 x=1 PS|la=0 z=1
E0 D o 4,0 )
F.0 D.0 I} a0 4,
E.0 B, Y~ 180 A
£ B.0 d 7,0 o,
.0 F.1
B.0 .0

|
iR B A

P ABCUDEF)
ACE)BDF)

(
(
(ACE)(BD)(F)
(4
(4

e
o

P
Py

CYE)BD)(F)
C)E)(BD)(F)

Machine Equivalence (Contd.)

Example: Machine M, Machine M,*
NS,z NS, =z
PS|lz=0 2=1 PS r=0 x=1
A E.0 .0 (A)— a £,0 8,0
B | Co0 A0 (F)= 8 | 0  ~0
C | B,0 G0 (BDy—~ | 460 a0
D | G0 A0 (CGYy—6 | 7.0 40
E F B.0 (E)— ¢ a1 ~,0
F | EO0 DO
G | D0 G0
Py, = (ABCDEFG)
P, = (ABCDFG)(E)
P, = (AF)(BCDG)(E)

Py = (AF)(BD)(CG)(E)
Py = (A)(F)BD)(CG)E)
P = (A)(F)(BD)(CG)(E)




Isomorphic Machines

If one machine can be obtained from another by relabeling its states: the
machines are said to be isomorphic to each other

» To every machine M, there corresponds a minimal machine M* which is
equivalent to M and is unique up to isomorphism

Example: Machine in standard form

NS, = NS,z
Ps r=0 =1 Ps r=0 x=1
(A)—.‘L'}' E,U 5,ﬂ Q'—}_f‘-l B.D C,D
(F)y— 3 £,0 7,0 e—=B | D1 EO
(BD)—~ | 4,0 o, 0 6 —C | E0 L0
(CGYy—4d | ~,0 8,0 B—=D]| B.0 E.0
(F)— ¢ A1 ~,0 ~v— FE | C0 A0
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Simplification of Incompletely Specified
Machines

Incompletely specified machine: in which the next state or output symbol is
left unspecified
* When a state transition is unspecified: the future behavior of the machine
may become unpredictable

— Assume that the input sequences are such that no unspecified next
state is encountered, except possibly at the final step

» Such an input sequence is said to be applicable to the starting
state of the machine

Example: Machine M, Equivalent description

NS, - NS,
PSlez=0 z=1 PS|z=0 z=1
A | B1 — A | B1 T,
B| 0 Co B | T0 €0
C | A1 B c | A1 BoO

T\|T. T,
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State/Machine Covering

State S;of M, is said to cover, or contain, state S; of M, if and only if every
input sequence applicable to S; is also applicable to S;

* lIts application to both M; and M, when they are in S; and S, respectively,
results in identical output sequences whenever the output symbols of M,
are specified

Machine M, is said to cover machine M, if and only if, for every state S; in
M,, there is a corresponding state S; in M, such that S; covers S;

Example: — -
N 5_.-'3 N 5., z
PS|lxz=0 2=1 PSlz=0 z=1
B | T.,0 0 B| -0 Co
| A1 B0 C | A1 B,
T - T.—

Compatible States

Two states, S; and S of machine M are compatible if and only if, for every
input sequence applicable to both S; and S;, the same output
sequence will be produced whenever both output symbols are
specified regardless of whether S; or S; is the initial state

 Hence, S;and S; are compatible: if and only if their output symbols are not
conflicting and their |.-successors, for every I, for which both are specified,
are either the same or also compatible

« Asetof states (S;, S;, Sy, ...) is called a compatible: if all its members are
compatible

» Acompatible C, is said to be larger than, or to cover, another compatible
C;: if and only if every state contained in C; is also contained in C;

» A compatible is maximal: if is not covered by any other compatible

* In case of the incompletely specified machine: the analog to the
equivalence relation is the compatibility relation




Nonuniqueness of Reduced Machines

Example: Machine M, bl . _"3 b’é 1
Al C1 E-
B| Cc- E|
c| Bo Al
D | Do E1
E | Di1oAd

 If we replace both dashes by 1's: A and B become equivalent

 If we replace both dashes by 0's: States A and E become equivalent; also,
B, C, and D become equivalent

NS, z NS,z
PS|lrx=0 z=1 Ps r=0 x=1
A Cc1 EA1 AE) —a | B.1 a0
| AD Al (BCDY— 3| 3.0 a, 1
D | Do EA1
E | D1 Ao

» Both reduced machines cover M,: thus reduced machines are nonunique

» States A and B of M, are compatible, and if C and D are also compatible,
so are A and E. However, B and E are 1-distinguishable, hence
incompatible: thus compatibility relation is not an equivalence relation o

Nonuniqueness of Minimal Machines

Example: Machine Mg Augmented machine
NS, = NS,z
PS|lz=0 z=1 PS|lz=0 z=1
AT A0 CO AT A0 o
B | B0 B- B | B0 B"-
C | B0 Al B" | Bt,0 B,
C | Bt 0 Al

« Two minimal machines corresponding to Mg

NS,z NS,z
PS r=0 == Ps r=0 z=1
(AB") — a | «,0 3,0 (AB") — o | @,0 3.0
(B"CY— 3| a0 a, 1 (B"CY— p | 3#.0 a, 1
{a) Setting Bt = B, ib) Setting Bt = B".

» While the equivalence partition consists of disjoint blocks, the subsets of
compatibles may be overlapping
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Compatible/Implied Pair

Let the I,-successors of S;and S; be S, and S, respectively: then (S,S;) is
said to be the implied pair of the compatible pair (S;S)

Example: (CF) is the implied pair of the compatible pair (AC)

NS, z
P5S| I4 I I Iy
A — (1 E/1 B,
B |E0 — — —
¢ |0 F1 — —
D — — B1 —
E — o A0 DI
|y co — B0 C1
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Merger Graph

Merger graph of an n-state machine M is an undirected graph defined as
follows:
1. It consists of n vertices, each of which corresponds to a state of M
2. For each pair of states (S;S) in M, whose next-state and output entries are
not conflicting, an undirected arc is drawn between vertices S; and SJ-

3. If, for a pair of states (S;S)), the corresponding output symbols under all
input symbols are not conflicting, but the successors are not the same, an
interrupted arc is drawn between S; and S;, and the implied pairs are
entered in the space

Example: Machine Mg Merger graph
NS, =
PS I I I3 I
Al — C1 E1 B.1
B |E0O — —
¢ | F0o F1 —  —
|- — Bi —
E | — Fo0 A0 D1
FlCo — B0 C1

Nine compatible pairs: (AB), (AC), (AD), (BC), (BD), (BE), (CD), (CF), (EF)
Set of maximal compatibles: {{ABCD), (BE), (CF), (EF)} — complete polygoné0




Closed Sets of Compatibles

A set of compatibles for machine M is said to be closed if: for every
compatible contained in the set, all its implied compatibles are
also contained in the set

» Aclosed set of compatibles, which contains all states of M, is called a
closed covering

Example: {(ABCD), (EF)} has the minimal number of compatibles covering
all states of Mg

* It defines a lower bound on the number of states in the minimal machine
that covers Mg

* However, if we select maximal compatible (ABCD) to be a state in the
reduced machine: then its |,- and I;-successors, (CF) and (BE), must also
be selected — since these are not in the above set, set {{ABCD), (EF)}
cannot be used to define the states of a minimal machine for Mg

NS,z
Ps | I I: I I
A — 1 E,1 B,
B |E0 — — —
C | Fo F1 — —
D — — b1 —
E — Fo0o 40 Da 21
F 10 — B0 C1

Closed Covering

Example (contd.): Closed covers:
* {(AD), (BE), (CF)}
* {(AB), (CD), (EF)}

Closed covering is not unique 5
» Aim is to find a closed covering that with a minimum number of compatibles
+ Set of all maximal compatibles: clearly a closed covering
— This defines an upper bound on the number of states in the machine
that covers the original one:

» The upper bound is meaningless when the number of maximal
compatibles is larger than the number of states in the original

machine

» For the example: the lower bound is 2 and upper bound 4

— Thus, a closed covering with three compatibles defines a minimal

machine NSz

PS L L, I3 I
(AB) — a | 0 5,1 1
I:(__‘D) — .'3 s 0 "Ir'_.l ¥, 1 —
(EF)y—~ | 5,0 ~,0 o0 |
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Compatibility Graph

Compatibility graph: a directed graph whose vertices correspond to all
compatible pairs, and an arc leads from (S;S)) to (S,S) if and only if
(SiS)) implies (S,S,)

Example: Machine M, Merger graph Compatibility graph
NS,z
PS| L L Ih L
A — — E1 —
B |Co0 A1 B0 —
¢ |co D1 — A0
D| — E1 B~ —
E|BO0O — C- B0

. : , (0B)
A subgraph of the compatibility graph is closed: if, for every vertex in the
subgraph, all outgoing arcs and their terminating vertices also belong to it
* If every state of the machine is covered by at least one vertex of the
subgraph: then the subgraph forms a closed covering

— {(BC), (AD), (BE)}; {(AC), (BC), (AD), (BE)}; {(DE), (BC), (AD), (BE)}

NS,z
.. . P.S‘ .LI]_ Iz _|i_r3 _|i_r4
Minimal machine opy=aT— 1 .1 —
(BC)— 3| 8,0 o1 F/v,0 a0 23
(BE) =~ | 5,0 a1l B0 B/4.0

Merger Table

Merger table: more convenient alternative to the merger graph

Example: Machine Mg Merger table
_-"'\-"5',.“: B EF
Ps| 1, I
A |E0 BoO c | e | AC
B | F.o A0 EF
C |E~ .o D | X | X | EF
D |F1 Do
E|c1 cCo Elx | x|v |
I | D~ B0 — -
k| PE :%{ DE >‘< cD
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Finding the Set of Maximal Compatibles

Tabular counterpart to finding complete polygons in the merger graph:

1. Start in the rightmost column of the merger table and proceed left until a
column containing a compatible pair is encountered — list all compatible
pairs in that column

2. Proceed left to the next column containing at least one compatible pair.
If the state to which this column corresponds is compatible with all
members of some previously determined compatible, add this state to
that compatible to form a larger compatible. If the state is not compatible
with all members, but is compatible with some, form a new compatible
that includes those members and the state in question. Next, list all
compatible pairs not included in any previously derived compatible

3. Repeat step 2 until all columns have been considered. The final set of
compatibles constitutes the set of maximal compatibles
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Maximal Compatibles (Contd.)

Example:

B | EF Column E: (EF)
o |5 2 Column D: (EF), (DE)
EF Column C: (CEF), (CDE)
D | X | X |eF Column B: (CEF), (CDE), (BC)
e [ x| x| /| Column A: (CEF), (CDE), (ABC), (ACF)
7| BC, BC,
k| PE }{ DE >‘< cD

A B C D E

» Set of maximal compatibles indicates that Mg can be covered by a four-
state machine, but not by a two-state machine
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Maximal Compatibles (Contd.)

Example (contd.): Compatibility graph

» Add (AB) to closed subgraph {(AC), (BC), (EF), (CD)}
— Reduces to the following closed covering: {(ABC), (CD), (EF)}
* Minimal machine:

NS>

Ps L5
(ABC) —a | 7.0 a0
(CD)— 3 |~1 A0
(EF) =~ | .1 a0
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