ECE 474A/57A
Computer-Aided Logic Design

Lecture 11

Binary Decision Diagrams (BDDs)

103

ECE 474a/575a
Susan Lysecky

Boolean Logic Functions Representations

Function can be represented in different ways

Truth table, equation, K-map, circuit, etc...
Some representations not unique (not canonical)

Equation 1 Flab) =a'b' + a'b
Equation 2: F(a.b) = a' b
F
Circuit 1
Truth table \ / a-—{>_F
Circuit 2
20031

ECE 474215758
Susan Lysecky

Why BDDs

An Efficient Representation
Synthesis, optimization, verification, and testing algorithms/tools manipulate

.
large Boolean functions

= Important to have efficient way to represent these functions
= Binary Decision Diagrams (BDDs) have emerged as a popular choice for representing

these functions

lectures)
Able to efficiently represent large functions

Some representations are canonical (unique)

= BDDs
Graph representation similar to a binary tree (i.e. decision trees from previous

3or3t

ECE 474a/575a
Susan Lysecky.

Mux Representation of Boolean Functions

= MUX circuit to implement logic

10
function S)

x1(0)

50.0,1=0

ECE 474a/575a 4of3t
Susan Lysecky

Mux Representation of Boolean Functions
Relation to BDDs

= Corresponding BDD to implement function S

= One-to-one correspondence to the MUX gates in
the flipped circuit

S(cL, %2, x3)

S(cL, %2, x3)

S(x1,x2,x3)

~~ ~

Same cirut, just
cce araasrsa COMESPONding BDD
Susan Lysecky

50131

Binary Decision Diagram (BDD)

Example 1

= How does it work? S(c1,x2,%3)
= Line with bubble represent value = 0
= Lines without bubble represent value = 1

x2
)
0
1
1
0
0
1
1

ECE 474a/575a
Susan Lysecky.

Edge Notations

= Bubbl

Binary Decision Diagram (BDD)

Several ways to represent value = 1 and value = 0

= Dash
T (then) vs. E (else) labels
We will adopt T vs. E labels — consistent with most of the book (Hatchel) examples

le vs. Non-bubble line
ed vs. Solid line

S(x1,x2,x3)

S(x1, %2, x3)

S(x1, %2, x3)

7of31

ECE 474a/575a
Susan Lysecky

Binary Decision Diagram (BDD)

Example 2

= Let’s consider another function
f(a,b,c,d) = abc + b'd + c'd

What is the value of f(1,1,0,1)?

What i the value of (1,0,1,0)?

Notice that if a=1 and b=0, the

function does not depend on a
value for ¢
Bof31

ECE 474215758
Susan Lysecky

Ordered Binary Decision Diagram (OBDD)

What is a OBDD?
Ordered binary decision diagrams ensure the variables appear in
the same order along all paths from the root to the leaves

Not ordered

Ordering:as<csb

ECE 474a/575a
Susan Lysecky.

9or31

Ordered Binary Decision Diagram (OBDD)

Different Ordering Lead to Different Complexity — Example1

= Variable ordering important, may result in a more complex (or simple) BDD
= All three BDDs below represent the same function
= Third ordering (b < c < a < d) optimal because there is exactly one node for
each variable

Order:asbscsd Order:asdsbsc Order:b<c<asd

ECE 474a/575a 100131
Susan Lysecky

Ordered Binary Decision Diagram (OBDD)

Different Ordering Lead to Different Complexity — Example 2

= Consider F = ab + cd + ef, again both BDDs represent same function

= Variable order has a large impact on resulting BDD, first variable ordering (a
<b <c<d < e <f)yields a much simpler BDD

Order:asbscsd<esf Order:a<c<esbs<d<f
ECE 47415750 Torat
Susan Lysecky

BDDs for Basic Logic Functions

AND

NOT a b |F
alF T oo
o 1 0

o 1 10 [
o 11

ECE 474a/575a 120131
Susan Lysecky.

Formal Definition of BDDs

= ABDD is a direct acyclic graph (DAG) representing a
multiple-output switching function F
= Nodes are partitioned into three subsets

«—— Function node

Internal
= Function node nodes
« Represents the function symbol (f)
= Indegree = 0

= Outdegree = 1

= Internal node
= Represents variable in function (a, b, ¢, d)
= Indegree > 1
= Outdegree = 2

«— Terminal nodes

= Terminal node
= Represents a value (1 or 0)
= Indegree > 1
= Outdegree = 0

ECE 474a/575a 130131
Susan Lysecky

Formal Definition of BDDs

= A BDD definition (cont’)
= Three types of edges
« Incoming edge
= From the function node and defines function

<«— Incoming edge

T edge
« Tedge cdae
. i T
From an |ntem§il node_ and represents when £ edge
the corresponding variable is 1
* Eedge

= From an internal node and represents when
the corresponding variable is 0

ECE 474215758 140131
Susan Lysecky

Formal Definition of BDDs

= A BDD definition (cont’)

= The function f represented by a BDD is
defined as follows

<—— Function of the function
node s the function of

it's outgoing edge

= The function of the terminal node is a
constant value (1 or 0)

‘The function of a T edge is the function of
the head node

‘The function of a E edge is the complement
of the function of the node

The function of a node v is given by vfy +
Vg, when fr is the function of the T edge and
. is the function of the E edge

The function of the function node is the
function of its outgoing edge

Function of this
Eedgeisa

Function of this
‘ Tedgeisa

Function of this terminal
node is

Function of this terminal node is 1

ECE 474a/575a 150131
Susan Lysecky.

BDD Canonical Form

= BDDs are canonical (unique) for a representation of
F given a variable ordering if
= Allinternal nodes are descendants of some node
= There are no isomorphic subgraphs
= For every node f; # f.

Isomorphic subgraphs

Isomorphic
Two graphs are isomorphic f there is a one-to-one correspondence between their vertices and there is an edge between
two vertices of one graph if and only if there is an edge between the two corresponding vertices in the other graph

English - same subgraph - all vertices the same, all edges between vertices the same

ECE 474a/575a 16031
Susan Lysecky

Building BDDs For a Function F

= How do I build a BDD given a function F ? F=ab+abc +abc

= Recursive use of Shannon’s Expansion Theorem F = a(bc') + a'(b+b'c)

= F=aF, +aF, *

= We can keep applying expansion theorem, / N
eventually we reach the unique canonical form , (b+b'e)

which uses only minterms F,=(bc)

F, also called the cofactor of Fw.r.t.
(with respect to) a

F=ab+abc' +ab'c F=ab+abc +ab'c
F = bF, + b'F, F=cF, +cF,
F =Db(a+ ac’) + b'(a’c) F=c(@b+ab’)+c(ab+ab)
J
F expanded w.r.tto b F expanded w.rttoc
ECE 47415750 170131

Susan Lysecky

Building BDDs - Exercise 1

= Build a BDD for f = abc + ab'c + a'bc’ + a'b’c’ m
= Use the variable orderinga < b < ¢

partial expansion
with respectto a

Compute cofactors of f with respect
to a (first variable in ordering)

f=abc +ab'c +abc +a'b'c’

fy=bc’ +b'c’

ECE 474a/575a 180131
Susan Lysecky.

Building BDDs - Exercise 1

= Build a BDD for f = abc + ab'c + a'bc’ + a’b’c’ M
= Use the variable orderinga < b < ¢ o)

f, f partial expansion
. with respect to b
Compute cofactors of f, and f_. with respect to b

(second variable in ordering)

bc+b'c

(s =fu=c

ECE 474a/575a 190131
Susan Lysecky

Building BDDs - Exercise 1

= Build a BDD for f = abc + ab'c + a'bc’ + a'b’c’
= Use the variable orderinga < b < c

Compute cofactors of f,,, f,,, f., f,, With respect
to c (third variable in ordering)

‘expansion with
respect to c, final
D

iab‘c
fal:c =
fw=¢
ia‘bc =0
'a oc =
faw=¢
fave =0
's ve = ECE 474a/575a 200f31

Susan Lysecky

Building BDDs - Exercise 1

= f=abc+abc+abc +abc

0oL R MR

Does it work?

ECE 474a/575a 210131
Susan Lysecky.

Building BDDs - Exercise 2

= Build a BDD for f = abc + b'd + c'd m
= Use the variable orderingb <c<d<a

partial expansion
with respect to b

Compute cofactors of f with respect
to b (first variable in ordering)

f=abc+b'd+cd

f,=ac+cd

fy=d+cd

ECE 474a/575a 220131
Susan Lysecky

Building BDDs - Exercise 2

= Build a BDD for f = abc + b'd + c'd M
= Use the variable orderingb <c<d<a ®
RN

Compute cofactors of f, and f,, with respect to ¢
(second variable in ordering)

ac+c'd

equivalent
cofactors, we can
create a single
node (reduced)

fye =d
©
fye =d S
f,
ECE 47415750 be 230131
Susan Lysecky
Building BDDs - Exercise 2
= Build a BDD for f = abc + b'd + c'd
= Use the variable orderingb<c<d<a HON
POK Fveris
Compute cofactors of f,.., f,, and f,.. with f
respect to d (third variable in ordering) be

6= fooa = foee =1

f,

oca = fbcd = fb‘t'd' =0

ECE 474a/575a 240131
Susan Lysecky.

Building BDDs - Exercise 2

= Build a BDD for f = abc + b'd + c'd
= Use the variable orderingb <c<d<a

Compute cofactors of f,, with respect to a (fourth
variable in ordering)

expansion with
respect 10 a, final
D

ECE 474a/575a 250131
Susan Lysecky

Building BDDs - Exercise 2

= Build a BDD for f = abc + b'd + c'd

a b c d]|f
000 0|0
000 1|1
001 0|0
00 1 1|1
01 00|0
01 0 1|1
01 1 0|0
01 1 1|0
100 0|0
100 1|1
10100
101 1|1
11000
110 1
111 01
111 1|1 Does it work?

ECE 474215758 260131
Susan Lysecky

BDD to Boolean Function — Exercise 1

= Can we go from a BDD to a Boolean function ?
= Sum all paths from function node to terminal nodes

F=bca+bc'd+b'd
=bca +bc'd + b'd

=a(1) +a(0)
=a+0
=a

ECE 474a/575a 270131
Susan Lysecky.

BDD to Boolean Function — Exercise 2

= Another Example

F=abc' +ab' +a'

ECE 474a/575a 280131
Susan Lysecky

Reducing BDDs

= When building BDDs, result not always reduced (Example 1 - slide 19)
= We have isomorphic subgraphs, potential for reduction

= Transform a non-reduced BDD into a reduced BDD by iteratively applying
= Identify isomorphic subgraphs
= Remove redundant nodes

= A ordered reduced BDD (ROBDD) is unique so we have a canonical form

isomorphic subgraphs F,=Fy
(redundant node)
ECE 47415750 290131
Susan Lysecky

Reducing BDDs

Example 2

= Let’s try to reduce and OBDD
= Iterative apply
= Identify isomorphic subgraphs
= Remove redundant nodes

- F,=F,
o= Fy
isomorphic subgraphs (redundant node)
EoE 4740575 s00r31
Susan Lysecky

10

Summary, and then some...

= Binary Decision Diagrams (BDDs)

Efficient mechanism to representation of Boolean functions in terms of memory and
CPU

Translating function—BDD and BDD—function

Importance of variable ordering

Method to reduced OBDDs, getting a ROBDD

= We said that BDDs can be efficiently stored and manipulated — HOW?
= Refer to handwritten notes
= Supplemental materials attached

ECE 474a/575a EEE
Susan Lysecky

ITE Operator

Two argument operators expressed in terms of ITE

Table Name Expression Equivalent Form
0000 0 [0

0001 AND(F, G) FG ITE(F, G, 0)

0010 F>G FG' ITE(F, G, 0)

0011 F F F

0100 F<G FG ITE(F, 0, G)

0101 G G G

0110 XOR(F, G) FOG TTE(F, G, G)

o111 OR(F, G) F+G ITE(F, 1, G)

1000 NOR(F, G) (F+G) ITE(F, 0,)

1001 XNOR(F, G) (Fo 6y ITE(F, G,)

1010 NOT(G) [ITE(G, 0, 1)

1011 F>G F+G ITE(F, 1,)

1100 NOT(F) F ITE(F, 0, 1)

1101 F<G F+G ITE(F, G, 1)

1110 NAND(F, G) (FG)' ITE(F, G, 1)

1111 1 1 1

Ece araaisTs 2031
Susan Lysecky
ITE Algorithm

= Most standard manipulation of BDDs can be done with ITE
= Algorithm recursive, based on formulation where v is the top variable of F, G, H

ITE(F, G, H) = FG + FH
= V(FG + FH), + V(FG + FH),
= V(F,G, + F,H) + V(F,G, + F\H,)
= ITE(v, ITE(F,, G,, H,), ITE(F,, G,, H,))
= Terminal cases are as follows
ITE(1, F, G) = ITE(O, G, F) = ITE(F, 1, 0) = ITE(G, F, F) = F

ECE 474a/575a o3
Susan Lysecky.

11

Pseduo-code of the ITE Algorithm

ITE(F, G, H){
(result, terminal_case) = TERMINAL_CASE(F, G, H) // did we find a terminal case?
if (terminal_case) return (result)

(result, in_computed_table) = COMPUTED_TABLE_HAS_ENTRY(F, G, H) // have we already calculated this value?
if (in_computed_table) return (result)

v = TOP_VARIABLE(F, G, H) /] recursively calculate this value
T = ITE(F,, Gy, Hy)
E = ITE(F,, G, Hy)

R = FIND_OR_ADD_UNIQUE_TABLE(v, T, E) /1 see if subtree already present
INSERT_COMPUTED_TABLE((F, G, H), R) // record the calculated value
return (R)
i
ECE 474215752 o3t

Susan Lysecky

12

