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Lecture 11
Binary Decision Diagrams (BDDs)
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Boolean Logic Functions Representations

Function can be represented in different ways
Truth table, equation, K-map, circuit, etc…
Some representations not unique (not canonical)
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Why BDDs
An Efficient Representation

Synthesis, optimization, verification, and testing algorithms/tools manipulate 
large Boolean functions

Important to have efficient way to represent these functions
Binary Decision Diagrams (BDDs) have emerged as a popular choice for representing 
these functions

BDDs
Graph representation similar to a binary tree (i.e. decision trees from previous 
lectures)
Able to efficiently represent large functions
Some representations are canonical (unique)
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Mux Representation of Boolean Functions

MUX circuit to implement logic 
function S
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Mux Representation of Boolean Functions
Relation to BDDs

Corresponding BDD to implement function S
One-to-one correspondence to the MUX gates in 
the flipped circuit
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Binary Decision Diagram (BDD)
Example 1

How does it work?
Line with bubble represent value = 0
Lines without bubble represent value = 1
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Binary Decision Diagram (BDD)
Edge Notations

Several ways to represent value = 1 and value = 0
Bubble vs. Non-bubble line
Dashed vs. Solid line
T (then) vs. E (else) labels

We will adopt T vs. E labels – consistent with most of the book (Hatchel) examples
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Binary Decision Diagram (BDD)
Example 2

Let’s consider another function 
f(a,b,c,d) = abc + b’d + c’d
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Ordered Binary Decision Diagram (OBDD)
What is a OBDD?

Ordered binary decision diagrams ensure the variables appear in 
the same order along all paths from the root to the leaves
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Ordered Binary Decision Diagram (OBDD)
Different Ordering Lead to Different Complexity – Example1

Variable ordering important, may result in a more complex (or simple) BDD
All three BDDs below represent the same function
Third ordering (b ≤ c ≤ a ≤ d) optimal because there is exactly one node for 
each variable
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Ordered Binary Decision Diagram (OBDD)
Different Ordering Lead to Different Complexity – Example 2

Consider F = ab + cd + ef, again both BDDs represent same function
Variable order has a large impact on resulting BDD, first variable ordering (a 
≤ b ≤ c ≤ d ≤ e ≤ f) yields a much simpler BDD

Order : a ≤ b ≤ c ≤ d ≤ e ≤ f Order : a ≤ c ≤ e ≤ b ≤ d ≤ f
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BDDs for Basic Logic Functions
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Formal Definition of BDDs

A BDD is a direct acyclic graph (DAG) representing a 
multiple-output switching function F

Nodes are partitioned into three subsets

Function node
Represents the function symbol (f)
Indegree = 0
Outdegree = 1 

Internal node
Represents variable in function (a, b, c, d)
Indegree ≥ 1
Outdegree = 2

Terminal node
Represents a value (1 or 0)
Indegree ≥ 1 
Outdegree = 0
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Function node

Internal 
nodes

Terminal nodes
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Formal Definition of BDDs

A BDD definition (cont’) 
Three types of edges

Incoming edge

From the function node and defines function
T edge

From an internal node and represents when 
the corresponding variable is 1

E edge

From an internal node and represents when 
the corresponding variable is 0
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E edge

T edge
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Formal Definition of BDDs

A BDD definition (cont’) 
The function f represented by a BDD is 
defined as follows

The function of the terminal node is a 
constant value (1 or 0)
The function of a T edge is the function of 
the head node
The function of a E edge is the complement 
of the function of the node
The function of a node v is given by vfT + 
v’fE, when fT is the function of the T edge and 
fE is the function of the E edge
The function of the function node is the 
function of it’s outgoing edge
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it’s outgoing edge

Function of this 
T edge is a

Function of this terminal node is 1

Function of this terminal 
node is 0

Function of this 
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BDD Canonical Form

BDDs are canonical (unique) for a representation of 
F given a variable ordering if

All internal nodes are descendants of some node
There are no isomorphic subgraphs
For every node fT ≠ fE

1

b

d

E

T

T

E

f

1 0

c
ET

d
T E

1 0

Isomorphic
Two graphs are isomorphic if there is a one-to-one correspondence between their vertices and there is an edge between 
two vertices of one graph if and only if there is an edge between the two corresponding vertices in the other graph

English – same subgraph - all vertices the same, all edges between vertices the same

Isomorphic subgraphs
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Building BDDs For a Function F

How do I build a BDD given a function F ?
Recursive use of Shannon’s Expansion Theorem

F = aFa + a’Fa’

We can keep applying expansion theorem, 
eventually we reach the unique canonical form , 
which uses only minterms 

F = a’b + abc’ + a’b’c

F = a(bc’) + a’(b+b’c)

Fa = (bc’)

Fa also called the cofactor of F w.r.t. 
(with respect to) a

Fa’ = (b+b’c)

F = a’b + abc’ + a’b’c
F = cFc + c’Fc’

F expanded w.r.t to c

F = c(a’b + a’b’) + c’(a’b + ab)

F = a’b + abc’ + a’b’c
F = bFb + b’Fb’

F expanded w.r.t to b

F = b(a’+ ac’) + b’(a’c)
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Building BDDs - Exercise 1

Build a BDD for f = abc + ab’c + a’bc’ + a’b’c’
Use the variable ordering a ≤ b ≤ c

f

Compute cofactors of f with respect 
to a (first variable in ordering)

f = abc + ab’c + a’bc’ + a’b’c’

fa’ = bc’ + b’c’

a
ET

f

fa fa’

partial expansion 
with respect to a

fa = bc + b’c



7

ECE 474a/575a
Susan Lysecky

19 of 31

Building BDDs - Exercise 1

Build a BDD for f = abc + ab’c + a’bc’ + a’b’c’
Use the variable ordering a ≤ b ≤ c

f

Compute cofactors of fa and fa’ with respect to b 
(second variable in ordering)

fa = bc + b’c

fa’ = bc’ + b’c’

(fa)b’ = fab’ = c

a
ET

f

partial expansion 
with respect to b

(fa)b = fab = c

b
ET

fab fab’

(fa’)b’ = fa’b’ = c’

(fa’)b = fa’b = c’

b
ET

fa’b fa’b’

a
ET

fa fa’
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Building BDDs - Exercise 1

Build a BDD for f = abc + ab’c + a’bc’ + a’b’c’
Use the variable ordering a ≤ b ≤ c

f

Compute cofactors of fab, fab’, fa’b, fa’b’ with respect 
to c (third variable in ordering)

fab’ = c

fab = c

fa’b’ = c’

fa’b = c’

expansion with 
respect to c, final 
BDD

fabc’ = 0
fabc = 1

a
ET

f

b
ET

b
ET

c
ET

1 0

fab’c = 1
fab’c’ = 0

c
ET

1 0fa’bc = 0
fa’bc’ = 1

c
ET

0 1

fa’b’c = 0
fa’b’c’ = 1

c
ET

0 1

a
ET

b
ET

fab fab’

b
ET

fa’b fa’b’
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Building BDDs - Exercise 1

f = abc + ab’c + a’bc’ + a’b’c’

a
ET

f

b
ET

b
ET

c
ET

c
ET

c
ET

c
ET

1 0 1 0 0 1 0 1

Does it work?

fb
0
0
1
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0
0
1
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c
0
1
0
1
0
1
0
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a
0
0
0
0
1
1
1
1

1
0
1
0
0
1
0
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Building BDDs - Exercise 2

Build a BDD for f = abc + b’d + c’d
Use the variable ordering b ≤ c ≤ d ≤ a

f

Compute cofactors of f with respect 
to b (first variable in ordering)

f = abc + b’d + c’d

fb’ = d + c’d

b
ET

f

fb fb’

partial expansion 
with respect to b

fb = ac + c’d

ECE 474a/575a
Susan Lysecky

23 of 31

Building BDDs - Exercise 2

Build a BDD for f = abc + b’d + c’d
Use the variable ordering b ≤ c ≤ d ≤ a

Compute cofactors of fb and fb’ with respect to c 
(second variable in ordering)

fb = ac + c’d

fb’ = d + c’d

b
ET

f

fb fb’

b
ET

f

fbc

c
ET

fbc’ = fb’c = fb’c’

equivalent 
cofactors, we can 
create a single 
node (reduced)

fb’c = d

fb’c’ = d

fb’c

c
ET

fb’c’fbc

c
ET

fbc’

b
ET

f

fbc = a

fbc’ = d

partial expansion 
with respect to c
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Building BDDs - Exercise 2

Build a BDD for f = abc + b’d + c’d
Use the variable ordering b ≤ c ≤ d ≤ a

Compute cofactors of fbc’, fb’c, and fb’c’ with 
respect to d (third variable in ordering)

fbc’ = fbc’ = fb’c’ = d

b
ET

f

fbc

c
ET

fbc’ = fb’c = fb’c’

fbc’d = fbc’d = fb’c’d = 1

fbc’d’ = fbc’d’ = fb’c’d’ = 0

b
ET

f

fbc

c
ET

d
ET

1 0

partial expansion 
with respect to d
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Building BDDs - Exercise 2

Build a BDD for f = abc + b’d + c’d
Use the variable ordering b ≤ c ≤ d ≤ a

Compute cofactors of fbc with respect to a (fourth 
variable in ordering)

b
ET

f

fbc

c
ET

fbc = a

d
ET

1 0

b
ET

f

c
ET

d
ET

1 0

fbca = 1

fbca’ = 0

a
ET

expansion with 
respect to a, final 
BDD
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Building BDDs - Exercise 2

Build a BDD for f = abc + b’d + c’d

Does it work?

b
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f

c
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d
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1 0

a
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0
0
0
0
1
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1
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0
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0
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0
1
0
1
0
1
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0
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0
1
0
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1
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BDD to Boolean Function – Exercise 1

Can we go from a BDD to a Boolean function ?
Sum all paths from function node to terminal nodes

b
ET

f

c
ET

d
ET

1 0

a
ET

F = bca + bc’d + b’d

= aFa + a’Fa’
= a(1) + a(0)
= a + 0
= a

= cFc + c’Fc’
= c(a) + c’(d)
= ca + c’d

= bFb + b’Fb’
= b(ca + c’d) + b’(d)
= bca + bc’d + b’d

= d
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BDD to Boolean Function – Exercise 2

Another Example

a ET

f

b
ET

0 1

c
ET

F = abc’ + ab’ + a’

= c’

= bFb + b’Fb’
= b(c’) + b’(1)
= bc’ + b’

= aFa + a’Fa’
= a(bc’ + b’) + a’(1)
= abc’ + ab’ + a’
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Reducing BDDs

a
ET

f

b
ET

b
ET

c
ET

1 0

c
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1 0

c
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0 1

c
ET

0 1

isomorphic subgraphs

a
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b
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b
ET

c
ET

1 0

c
ET

1 0

c
ET

0 1

a
ET

f

b
ET

c
ET

1 0

c
ET

1 0

c
ET

0 1

When building BDDs, result not always reduced (Example 1 - slide 19)
We have isomorphic subgraphs, potential for reduction

Transform a non-reduced BDD into a reduced BDD by iteratively applying
Identify isomorphic subgraphs
Remove redundant nodes

A ordered reduced BDD (ROBDD) is unique so we have a canonical form

Fb = Fb’

(redundant node)
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Reducing BDDs
Example 2

isomorphic subgraphs

a
T

f

b
ET

c
ET

1 0

c
ET

1 0

E

c
ET

0 1

a
T

f

b
ET

c
ET

1 0

E

c
ET

0 1

a
T

f

E

c
ET

0 1

c
ET

1 0

Let’s try to reduce and OBDD
Iterative apply

Identify isomorphic subgraphs
Remove redundant nodes

Fb = Fb’

(redundant node)
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Summary, and then some…

Binary Decision Diagrams (BDDs)
Efficient mechanism to representation of Boolean functions in terms of memory and 
CPU
Translating function→BDD and BDD→function
Importance of variable ordering
Method to reduced OBDDs, getting a ROBDD

We said that BDDs can be efficiently stored and manipulated – HOW?
Refer to handwritten notes
Supplemental materials attached
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ITE Operator
Two argument operators expressed in terms of ITE

FFF0011

ITE(F, G’, 0)FG’F > G0010

ITE(F, G, 0)FGAND(F, G)0001

0000000

GGG0101

ITE(F, 0, G)F’GF < G0100

ITE(F, 1, G)F + GOR(F, G)0111

ITE(F, G’, G)F ⊕ GXOR(F, G)0110

ITE(F, G, G’)(F ⊕ G)’XNOR(F, G)1001

ITE(F, 0, G’)(F + G)’NOR(F, G)1000

ITE(F, 1, G’)F + G’F ≥ G1011

ITE(G, 0, 1)G’NOT(G)1010

ITE(F, G, 1)F’ + GF ≤ G1101

ITE(F, 0, 1)F’NOT(F)1100

ITE(F, G’, 1)(FG)’NAND(F, G)1110

1111111

Equivalent FormExpressionNameTable
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ITE Algorithm

ITE(F, G, H) = FG + F’H

= v(FG + F’H)v + v’(FG + F’H)v’

= v(FvGv + F’vHv) + v’(Fv’Gv’ + F’v’Hv’)

= ITE( v, ITE(Fv, Gv, Hv), ITE(Fv’, Gv’, Hv’) )

Terminal cases are as follows

Most standard manipulation of BDDs can be done with ITE
Algorithm recursive, based on formulation where v is the top variable of F, G, H

ITE(1, F, G) = ITE(0, G, F) = ITE(F, 1, 0) = ITE(G, F, F) = F
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Pseduo-code of the ITE Algorithm

ITE(F, G, H){

(result, terminal_case) = TERMINAL_CASE(F, G, H)

if (terminal_case) return (result)

(result, in_computed_table) = COMPUTED_TABLE_HAS_ENTRY(F, G, H)

if (in_computed_table) return (result)

v = TOP_VARIABLE(F, G, H)

T = ITE(Fv, Gv, Hv)

E = ITE(Fv’, Gv’, Hv’)

R = FIND_OR_ADD_UNIQUE_TABLE(v, T, E)

INSERT_COMPUTED_TABLE((F, G, H), R)

return (R)

}

// did we find a terminal case?

// have we already calculated this value?

// recursively calculate this value

// see if subtree already present

// record the calculated value


