
1

Zvi Kohavi and Niraj K. Jha
1

Logical Design

2

Design with Basic Logic Gates

Logic gates: perform logical operations on input signals

Positive (negative) logic polarity: constant 1 (0) denotes a high voltage and
constant 0 a low (high) voltage

Synchronous circuits: driven by a clock that produces a train of equally
spaced pulses

Asynchronous circuits: are almost free-running and do not depend on a
clock; controlled by initiation and completion signals

Fanout: number of gate inputs driven by the output of a single gate

Fanin: bound on the number of inputs a gate can have

Propagation delay: time to propagate a signal through a gate

2

3

Analysis of Combinational Circuits

Circuit analysis: determine the Boolean function that describes the circuit
• Done by tracing the output of each gate, starting from circuit inputs and

continuing towards each circuit output

Example: a multi-level realization of a full binary adder

C0 = AB + (A + B)C

= AB + AC + BC

S = (A + B + C)[AB + (A + B)C]’ + ABC

= (A + B + C)(A’ + B’)(A’ + C’)(B’ + C’)
+ ABC

= AB’C’ + A’BC’ + A’B’C + ABC

= A B C

4

Simple Design Problems

Parallel parity-bit generator: produces output value 1 if and only if an odd
number of its inputs have value 1

P = x’y’z + x’yz’ + xy’z’ + xyz

0

0 1

1 0

1

xy
z

0

1

00 01 11 10

1

0

z xy

P

(a) Map. (b) Implementation.

3

5

Simple Design Problems (Contd.)

Serial-to-parallel converter: distributes a sequence of binary digits on a
serial input to a set of different outputs, as specified by external
control signals

C1C2

L1

L4

L3

L2

x

6

Logic Design with Integrated Circuits

Small scale integration (SSI): integrated circuit packages containing a few
gates; e.g., AND, OR, NOT, NAND, NOR, XOR

Medium scale integration (MSI): packages containing up to about 100
gates; e.g., code converters, adders

Large scale integration (LSI): packages containing thousands of gates;
arithmetic unit

Very large scale integration (VLSI): packages with millions of gates

4

7

Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and
has three outputs f1, f2, and f3

• f1 = 1 iff X > Y

• f2 = 1 iff X = Y

• f3 = 1 iff X < Y

x1

f1

y2

x2

y1

x1

y1

00 01 11 10

(b) Map for f1, f2, and f3.

00

01

11

10

3

x1x2

y1y2

2

3

3

1

2

3

3

1

1

2

1

1

1

3

2

x1

f3f2f1

y2y1x2

(a) Block diagram.

(c) Circuit for f1.

2-bit comparator

f1 = x1x2y2’ + x2y1’y2’ + x1y1’

= (x1 + y1’)x2y2’ + x1y1’

f2 = x1’x2’y1’y2’ + x1’x2y1’y2 +

x1x2’y1y2’ + x1x2y1y2

= x1’y1’(x2’y2’ + x2y2) +

x1y1(x2’y2’ + x2y2)

= (x1’y1’ + x1y1)(x2’y2’ + x2y2)

f3 = x2’y1y2 + x1’x2’y2 + x1’y1

= x2’y2(y1 + x1’) + x1’y1

8

4-bit/12-bit Comparators

Four-bit comparator: 11 inputs (four for X, four for Y, and three connected
to outputs f1, f2 and f3 of the preceding stage)

12-bit comparator:

x1

f3

f2

f1

y4y1x4

(a) A 4-bit comparator.

Inputs from
preceding

stage

x1

f3

f2

f1

y4y1x4 y8y5 y12y9x12x9x8x5

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

(b) A 12-bit comparator.

0

0
1

5

9

Data Selectors

Multiplexer: electronic switch that connects one of n inputs to the output

Data selector: application of multiplexer
• n data input lines, D0, D1, …, Dn-1

• m select digit inputs s0, s1, …, sm-1

• 1 output

10

Implementing Switching Functions with
Data Selectors

Data selectors: can implement arbitrary switching functions

Example: implementing two-variable functions

6

11

Implementing Switching Functions with
Data Selectors (Contd.)

To implement an n-variable function: a data selector with n-1 select inputs
and 2n-1 data inputs

Implementing three-variable functions:

z = s2’s1’D0 + s2’s1D1 + s2s1’D2 + s2s1D3

Example: s1 = A, s2 = B, D0 = C, D1 = 1, D2 = 0, D3 = C’

z = A’B’C + AB’ + ABC’

= AC’ + B’C

General case: Assign n-1 variables to the select inputs and last variable
and constants 0 and 1 to the data inputs such that desired
function results

12

Priority Encoders

Priority encoder: n input lines and log2n output lines
• Input lines represent units that may request service

• When inputs pi and pj, such that i > j, request service simultaneously, line
pi has priority over line pj

• Encoder produces a binary output code indicating which of the input lines
requesting service has the highest priority

Example: Eight-input, three-output priority encoder

z4 = p4p5’p6’p7’ + p5p6’p7’ + p6p7’ + p7 = p4 + p5 + p6 + p7

z2 = p2p3’p4’p5’p6’p7’ + p3p4’p5’p6’p7’ + p6p7’ + p7 = p2p4’p5’ + p3p4’p5’ + p6 + p7

z1 = p1p2’p3’p4’p5’p6’p7’ + p3p4’p5’p6’p7’ + p5p6’p7’ + p7 = p1p2’p4’p6’ + p3p4’p6’ + p5p6’ + p7

Enable

z1

p0

z4

z0

(a) Block diagram.

Priority
encoder

z2

p7

p6

p5

p4

p3

p1

p2

z4p7

(b) Truth table.

z2p6

0 0 0 00

0 0

1

0

1

1 0 1 0

1

1

11

01 1

0

0

0

1

0 0

0

0 1

0

1 0

10

Input lines Outputs
p5p4 z1

0 00

0

000

0

0

0

0

0

0

0

0

0

0

0

0

1

1

11

1

1

p3p2p1p0

7

13

Priority Encoders (Contd.)

(c) Logic diagram.

z1

Enable

z4

z2

p7

p6

p5

p4

p3

p2

p1

p0

z0

Request
indicator

14

Decoders

Decoders with n inputs and 2n outputs: for any input combination, only one
output is 1

Useful for:
• Routing input data to a specified output line, e.g., in addressing memory

• Basic building blocks for implementing arbitrary switching functions

• Code conversion

• Data distribution

Example: 2-to-4- decoder xw

f0 = w x

f3 = wx

f2 = wx

f1 = w x

8

15

Decoders (Contd.)

Example: 4-to-16 decoder made of two 2-to-4 decoders and a gate-
switching matrix

16

Decimal Decoder

BCD-to-decimal: 4-to-16 decoder made of two 2-to-4 decoders and a gate-
switching matrix x y

f0

f3

f2

f1

(c) Logic diagram.

f4

f7

f6

f5

f9

f8

w z

Enable

9

17

Decimal Decoder (Contd.)

Implementation using a partial-gate matrix:

18

Implementing Arbitrary Switching
Functions

Example: Realize a distinct minterm at each output

10

19

Demultiplexers

Demultiplexers: decoder with1 data input and n address inputs
• Directs input to any one of the 2n outputs

Example: A 4-output demultiplexer

C1C2

L1

L4

L3

L2

x

20

Seven-segment Display

Seven-segment display: BCD to seven-segment decoder and seven LEDs

Seven-segment pattern and code:

A = x1 + x2’x4’ + x2x4 + x3x4

B = x2’ + x3’x4’ + x3x4

C = x2 + x3’ + x4

D = x2’x4’ + x2’x3 + x3x4’ + x2x3’x4

E = x2’x4’ + x3x4’

F = x1 + x2x3’ + x2x4’ + x3’x4’

G = x1 + x2’x3 + x2x3’ + x3x4’

11

21

Sine Generators

Combinational sine generators: for fast and repeated evaluation of sine
• Input: angle in radians converted to binary

• Output: sine in binary

z1 = x1’x2 + x1x2’ + x2x3’ + x1’x3x4

z2 = x1x2’ + x3x4’ + x1’x2x4

z3 = x3x4’ + x2x3 + x2x4’ +

x2’x3’x4 + x1x4’

z4 = x2’x3’x4 + x2x3’x4’ + x1x2’x3’ +

x1x3x4 + x1’x2x4

z1x4

(a) Truth table.

z2x3

0 0 0 00

0 0 1 0 1

1

1

0 1 0

1

1

1 11

1 01 1 0

1

0

0

0

1

0 1

0

01

0 1

1

10

Angle x sin(x)
x2x1 z4z3

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

1

1

1

1

11

1

1

11

0

0

00

111

111

11

111

11

11

1

1111

11

111

111

1111

1111

11

11

1

1

00

000

0

0

0

00

22

NAND/NOR Circuits

Switching algebra: not directly applicable to NAND/NOR logic

NAND and NOR gate symbols

12

23

Analysis of NAND/NOR Networks

Example: circles (inversions) at both ends of a line cancel each other

B + C

A

(EF)

D + EF

[(B + C)(D + EF)]

(a) NAND-logic circuit.

F
E

D

T = A + (B + C)(D + EF)
B
C

5

4

2

B + C

A

EF

D + EF

(B + C)(D + EF)

(b) Logically equivalent AND-OR circuit.

F
E

D

T = A + (B + C)(D + EF)
B
C

1

3

24

Synthesis of NAND/NOR Networks

Example: Realize T = w(y+z) + xy’z’

y

y
z

[w(y + z)]

y + z

(a) First realization.

(xy z)

w

x

z

T = w(y + z) + xy z

1 2

3

4

y

y
z

[w(y + z)]
y + z

(b) Realization with two-input gates.

y z

w

x

z

T = w(y + z) + xy z

1 2

3

4

(y z)
3

(xy z)

13

25

Design of High-speed Adders

Full adder: performs binary addition of three binary digits
• Inputs: arguments A and B and carry-in C

• Outputs: sum S and carry-out C0

Example:

Truth table, block diagram and expressions:
S = A’B’C + A’BC’ + AB’C’ + ABC

= A B C

C0 = A’BC + ABC’ + AB’C + ABC

= AB + AC + BC

26

Ripple-carry Adder

Ripple-carry adder: Stages of full adders
• Cf: forced carry

• C0(n-1): overflow carry

Si = Ai Bi Ci

C0i = AiBi + AiCi + BiCi

Time required:

• Time per full adder: 2 units

• Time for ripple-carry adder: 2n units

14

27

Carry-lookahead Adder

Carry-lookahead adder: several stages simultaneously examined and their
carries generated in parallel

• Generate signal Di = AiBi

• Propagate signal Ti = Ai Bi

• Thus, C0i = Di + TiCi

To generate carries in parallel: convert recursive form to nonrecursive

C0i = Di + TiCi

Ci = C0(i-1)

C0i = Di + Ti(Di-1 + Ti-1Ci-1)

= Di + TiDi-1 + TiTi-1(Di-2 + Ti-2Ci-2)

= Di + TiDi-1 + TiTi-1Di-2 + TiTi-1Ti-2Ci-2

... ……..

C0i = Di + TiDi-1 + TiTi-1Di-2 + … + TiTi-1Ti-2…T0Cf

Thus, C0i = 1 if it has been generated in the ith stage or originated in a

preceding stage and propagated to all subsequent stages

28

Carry-lookahead Adder (Contd.)

Implementation of lookahead for the complete adder impractical:
• Divide the n stages into groups

• Full carry lookahead within group

• Ripple carry between groups

Example: Three-digit adder group with full carry lookahead

B

A2

Cg1 = C02

S2
B2

SN2

C2

CN2

(a) Block diagram of initial three-stage group

Cf

A B

A1

C01

S1
B1

SN1

CN1

A B0

A0

C00

S0
B0

SN0

CN0

A0

C1

Time taken:

• 4 time units for Cg1

• Only 2 time units for Cg2 and other

group carries

15

29

30-bit Adder

Example: divide n stages into groups of three stages
• Time taken: 4 + 2n/3 time units

• 50% additional hardware for a threefold speedup

30

Metal-oxide Semiconductor (MOS)
Transistors and Gates

Complementary metal-oxide semiconductor (CMOS): currently the
dominant technology

• Two types of transistors: nMOS and pMOS

x

x

(a) nMOS transistor

x

x

(d) pMOS transistor

(g) Complementary
switch

x = 0

x = 1

(b) nMOS operation

x = 1

x = 0

(e) pMOS operation

x = 0

x = 1

(h) Complementary
switch operation

a b

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

xa b

(c) nMOS model

x b

(f) pMOS model

a

x

(i) Complementary
switch model

a b

16

31

Transmission Function of a Network

CMOS inverter and its transmission functions:

x

1 (Vdd)

x f

x

0 (Vss)

f

1

0

32

CMOS NAND/NOR Gates

x y

1 (Vdd)

x f

0 (Vss)

y

1

x

f

0

y

(a) CMOS NAND gate and its transmission functions.

x

y

1 (Vdd)

x

f

0 (Vss)

y

1

x

f

0

y

(b) CMOS NOR gate and its transmission functions.

17

33

Analysis of Series-parallel Networks

Algebra of MOS networks: isomorphic to switching algebra

Example: Find the transmission function of the network and its
complementary switch based and complex gate CMOS implementations

(a) Tab = x [(y z + z y)w + w + y + x z].

b

y

b

z

z

y

z

xa

w

w

z x
y

w
yxa

(b) Tab = x (w + y + z).

x

w y z
dc

(c) Tcd = Tab = x + w yz.

Tab

x

x

y

y
z

z

w

w

1

x

1 (Vdd)

x

Tab

w

0 (Vss)

y

w

z

z

y

pMOS network

nMOS network

Complementary

switch based

Complex

gate

34

Analysis of Non-series-parallel Networks

Obtaining the transmission function:
• Tie sets: minimal paths between two terminals

• Cut sets: minimal sets of branches, when open, ensure no transmission
between the two terminals

w

i j

(a) Tie sets. Tij = wx + wvz + yvx + yz.

zy

v

x

w

i j

(b) Cut sets. Tij = (w + y)(w + v + z)(x + v + y)(x + z).

zy

v

x

18

35

Synthesis of MOS Networks

Sneak paths in non-series-parallel networks: undesired paths that may
change the transmission function

• Occur because of bilateral nature of MOS transistors

Example: Design a minimal network with BCD inputs that produces a 1
whenever the input is 3 or a multiple of 3

Sneak path: z’xx’w – OK since it has no effect on the transmission function

yz

z
w

x

x y

(b) Series-parallel realization of T.

z

z
w

x

x y

(c) Minimal realization of T.

(a) Map for T = wz + xyz + x yz.

1

1

00 01 11 10

00

01

11

10

wx

1

yz

36

Synthesis of MOS Networks (Contd.)

Example: Design a minimal network to realize T(w,x,y,z) = (0,3,13,14,15)

