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Switching Algebra

Basic postulate: existence of two-valued switching variable that takes two 
distinct values 0 and 1

Switching algebra: algebraic system of set {0,1}, binary operations OR and 
AND, and unary operation NOT

OR operation                 AND operation

0 + 0 = 0                          0 . 0 = 0

0 + 1 = 1                          0 . 1 = 0

1 + 0 = 1                          1 . 0 = 0

1 + 1 = 1                          1 . 1 = 1

NOT operation (complementation): 0’ = 1 and 1’ = 0

OR: also called logical sum

AND: also called logical product
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Basic Properties

Idempotency: x + x = x

x . x = x

Perfect induction: proving a theorem by verifying every combination of 
values that the variables may assume

Proof of x + x = x: 1 + 1 = 1 and 0 + 0 = 0

If x is a switching variable, then: x + 1 = 1

x . 0 = 0

x + 0 = x

x . 1 = x

Commutativity: x + y = y + x

x . y = y . x
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Basic Properties (Contd.)

Associativity: (x + y) + z = x + (y + z)

(x . y) . z  = x . (y . z)

Complementation: x + x’ = 1

x . x’ = 0

Distributivity: x . (y + z) = x . y + x . z

x + y . z = (x + y) . (x + z)

Proof by perfect induction using a truth table:
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Basic Properties (Contd.)

Principle of Duality: 
• Preceding properties grouped in pairs

• One statement can be obtained from the other by interchanging 
operations OR and AND and constants 0 and 1

• The two statements are said to be dual of each other

• This principle stems from the symmetry of the postulates and definitions 
of switching algebra w.r.t. the two operations and constants

• Implication: necessary to prove only one of each pair of statements
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Switching Expressions and Their 
Manipulation

Switching expression: combination of finite number of switching variables 
and constants via switching operations (AND, OR, NOT)

• Any constant or switching variable is a switching expression

• If T1 and T2 are switching expressions, so are T1’, T2’, T1+T2 and T1T2

• No other combination of constants and variables is a switching expression

Absorption law: x + xy = x

x(x + y) = x

Proof: x + xy = x1 + xy [basic property]

= x(1 + y)  [distributivity]

= x1  [commutativity and basic property]

= x [basic property]



4

7

Laws of Switching Algebra

Another important law: x + x’y = x + y

x(x’ + y) = xy

Proof: x + x’y = (x + x’)(x + y)  [distributivity]

= 1(x + y)  [complementation]

= x + y [commutativity and basic property]

Consensus theorem: xy + x’z + yz = xy + x’z

(x + y)(x’ + z)(y + z) = (x + y)(x’ + z)

Proof: xy + x’z + yz = xy + x’z + yz1

= xy + x’z + yz(x+x’)

= xy(1 + z) + x’z(1 + y)

= xy + x’z
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Switching Expression Simplification

Literal: variable or its complement

Redundant literal: if value of switching expression is independent of literal 
xi then xi is said to be redundant

Example: Simplify T(x,y,z) = x’y’z + yz + xz

x’y’z + yz + xz = z(x’y’ + y + x)

= z(x’ + y + x)

= z(y + 1)

= z1

= z

Thus, literals x and y are redundant in T(x,y,z)

Important note: Since no inverse operations are defined in Switching 
Algebra, cancellations are not allowed

• A + B = A + C does not imply B = C

• Counterexample: A = B = 1 and C = 0

• Similarly, AB = AC does not imply B = C
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De Morgan’s Theorems

Involution: (x’)’ = x

De Morgan’s theorem for two variables:

(x + y)’ = x’ . y’

(x . y)’ = x’ + y’

Proof by perfect induction:

De Morgan’s theorems for n variables:

[f(x1, x2, …, xn, 0, 1, +, .)]’ = f(x1’, x2’, …, xn’, 1, 0, ., +)
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Simplification Examples

Example: Simplify T(x,y,z) = (x + y)[x’(y’ + z’)]’ + x’y’ + x’z’

(x + y)[x’(y’ + z’)]’ + x’y’ + x’z’ = (x + y)(x + yz) + x’y’ + x’z’

= (x + xyz + yx + yz) + x’y’ + x’z’

= x + yz + x’y’ + x’z’

= x + yz + y’ + z’

= x + z + y’ + z’

= x + y’ + 1

= 1

Thus, T(x,y,z) = 1, independently of the values of the variables

Example: Prove xy + x’y’ + yz = xy + x’y’ + x’z
• From consensus theorem, x’z can be added to LHS

• Consensus theorem can be applied again to first, third and fourth terms in 
xy + x’y’ + yz + x’z to eliminate yz and reduce it to RHS
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Switching Functions

Let T(x1, x2, …, xn) be a switching expression: 
• Since each variable can assume 0 or 1, 2n combinations are possible

Determining the value of an expression for an input combination:

Example: T(x,y,z) = x’z + xz’ + x’y’

T(0,0,1) = 0’1 + 01’ + 0’0’ = 1

Truth table for T
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Switching Function (Contd.)

Switching function f(x1, x2, …, xn): values assumed by an expression for all 
combinations of variables x1, x2, …, xn

Complement function: f’(x1, x2, …, xn) assumes value 0 (1) whenever 

f(x1, x2, …, xn) assumes value 1 (0)

Logical sum of two functions: f(x1, x2, …, xn) + g(x1, x2, …, xn) = 1 for every 
combination in which either f or g or both equal 1

Logical product of two functions: f(x1, x2, …, xn) . g(x1, x2, …, xn) = 1 for 
every combination for which both f and g equal 1
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Switching Function (Contd.)

Illustrating sum, product and complementation of functions:
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Simplification of Expressions

Example: Simplify T(x,y,z) = A’C’ + ABD + BC’D + AB’D’ + ABCD’
• Apply consensus theorem to first three terms -> BC’D is redundant

• Apply distributive law to last two terms -> AD’(B’ + BC) -> AD’(B’ + C)

• Thus, T = A’C’ + A[BD + D’(B’ + C)]

Example: Simplify T(A,B,C,D) = A’B + ABD + AB’CD’ + BC
• A’B + ABD = B(A’ + AD) = B(A’ + D)

• AB’CD’ + BC = C(B + AB’D’) = C(B + AD’)

• Thus, T = A’B + BD + ACD’ + BC

• Expand BC to (A + A’)BC to obtain T = A’B + BD + ACD’ + ABC + A’BC

• From absorption law: A’B + A’BC = A’B

• From consensus theorem: BD + ACD’ + ABC = BD + ACD’

• Thus, T = A’B + BD + ACD’
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Canonical Forms

Deriving an expression from a truth table:
• Find the sum of all terms that correspond to combinations for which 

function is 1

• Each term is a product of the variables on which the function depends

• Variable xi appears in uncomplemented (complemented) form in the 
product if has value 1 (0) in the combination

Truth table for f = x’y’z’ + x’yz’ + x’yz + xyz’ + xyz
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Canonical Sum-of-products

Minterm: a product term that contains each of the n variables as factors in 
either complemented or uncomplemented form

• It assumes value 1 for exactly one combination of variables

Canonical sum-of-products: sum of all minterms derived from combinations 
for which function is 1

• Also called disjunctive normal expression

Compact representation of switching functions:    (0,2,3,6,7)
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Canonical Product-of-sums

Maxterm: a sum term that contains each of the n variables in either 
complemented or uncomplemented form

• It assumes value 0 for exactly one combination of variables

• Variable xi appears in uncomplemented (complemented) form in the sum 
if it has value 0 (1) in the combination

Canonical product-of-sums: product of all maxterms derived from 
combinations for which function is 0

• Also called conjunctive normal expression

Compact representation of switching functions:    (1,4,5)

f = (x + y + z’)(x’ + y + z)(x’ + y + z’)
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Shannon’s Expansion to Obtain 
Canonical Forms

Shannon’s expansion theorem: 

f(x1, x2, …, xn) = x1 . f(1, x2, …, xn) + x1’ . f(0, x2, …, xn)

f(x1, x2, …, xn) = [x1 + f(0, x2, …, xn)] . [ x1’ + f(1, x2, …, xn)]

Proof by perfect induction: Plug in x1 = 1 and then x1 = 0 to reduce RHS to 
LHS

Shannon’s expansion around two variables:

f(x1, x2, …, xn) = x1x2f(1, 1, x3,…, xn) + x1x2’f(1, 0, x3, …, xn)

+ x1’x2f(0, 1, x3, …, xn) + x1’x2’f(0, 0, x3, …, xn)

Similar Shannon’s expansion around all n variables yields the canonical 

sum-of-products

Repeated expansion of the dual form yields the canonical product-of-sums
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Simpler Procedure for Canonical Sum-of-
products

1. Examine each term: if it is a minterm, retain it; continue to next term

2. In each product which is not a minterm: check the variables that do not 
occur; for each xi that does not occur, multiply the product by (xi + xi’)

3. Multiply out all products and eliminate redundant terms

Example: T(x,y,z) = x’y + z’ + xyz

= x’y(z + z’) + (x + x’)(y + y’)z’ + xyz

= x’yz + x’yz’ + xyz’ + xy’z’ + x’yz’ + x’y’z’ + xyz

= x’yz + x’yz’ + xyz’ + xy’z’ + x’y’z’ + xyz

Canonical product-of-sums obtained in a dual manner

Example:

T = x’(y’ + z)

= (x’ + yy’ + zz’)(y’ + z + xx’)

= (x’ + y + z)(x’ + y + z’)(x’ + y’ + z)(x’ + y’ + z’)(x + y’ + z)(x’ + y’ + z)

= (x’ + y + z)(x’ + y + z’)(x’ + y’ + z)(x’ + y’ + z’)(x + y’ + z)
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Transforming One Form to Another

Example: Find the canonical product-of-sums for

T(x,y,z) = x’y’z’ + x’y’z + x’yz + xyz + xy’z + xy’z’

T = (T’)’ = [(x’y’z’ + x’y’z + x’yz + xyz + xy’z + xy’z’)’]’

Complement T’ consists of minterms not contained in T. Thus,

T = [x’yz’ + xyz’]’

= (x + y’ + z)(x’ + y’ + z)

Canonical forms are unique

Two switching functions are equivalent if and only if their corresponding 
canonical forms are identical
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Functional Properties

Let binary constant ai be the value of function f(x1, x2, …, xn) for the 
combination of variables whose decimal code is i. Thus,

f(x1, x2, …, xn) = a0x1’x2’…xn’ + a1x1’x2’…xn + … + arx1x2…xn

Factor ai is set to 1 (0) if the corresponding minterm is (is not) in the 
canonical form

Since there are 2n coefficients, each of which can have two values, 0 and 
1, there are 2^2n possible switching functions of n variables

Example: Canonical sum-of-products form for two variables

f(x,y) = a0x’y’ + a1x’y + a2xy’ + a3xy

There are 2^22 functions corresponding to the 16 possible assignments of 
0’s and 1’s to a0, a1, a2, and a3
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List of Functions of Two Variables
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The Exclusive-OR Operation

Exclusive-OR: modulo-2 addition, i.e., A    B = 1 if either A or B is 1, but not 
both

Commutativity: A    B = B    A

Associativity: (A    B) C = A    (B    C) = A    B    C

Distributivity: (AB)    (AC) = A(B C)

If A    B = C, then

A    C = B

B    C = A

A    B    C = 0

Exclusive-OR of an even (odd) number of elements, whose value is 1, is 0 
(1)
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Functionally Complete Operations

Every switching function can be expressed in canonical form consisting of 
a finite number of switching variables, constants and operations 
+, ., ’

A set of operations is functionally complete (or universal) if and only if 
every switching function can be expressed by operations from this 
set

Example: Set {+, ., ’}

Example: Set {+, ’} since using De Morgan’s theorem, x . y = (x’ + y’)’. 
Thus, + and ’ can replace the . in any switching function

Example: Set {., ’} for similar reasons

Example: NAND since NAND(x,x) = x’ and NAND[NAND(x,y),NAND(x,y)] = 
xy

Example: NOR since NOR(x,x) = x’ and NOR[NOR(x,y),NOR(x,y)] = x + y
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Isomorphic Systems

Isomorphism: Two algebraic systems are isomorphic if
• For every operation in one system, there exists a corresponding operation 

in the second system

• To each element xi in one system, there corresponds a unique element yi

in the other system, and vice versa

• If each operation and element in every postulate of one system is 
replaced by the corresponding operation and element in the other system, 
then the resulting postulate is valid in the second system

Thus, two algebraic systems are isomorphic if and only if they are identical 
except the labels and symbols used to represent the operations 
and elements
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Series-parallel Switching Circuits

Gate: a two-state device capable of switching from one state, which 
permits flow of information, to another, which blocks it, and vice 
versa

Primed (unprimed) two-valued variable: denotes flowing (blocked) 
information

If a gate permits (blocks) the flow of information: literal associated with it 
takes value 1 (0)

Elementary series-parallel switching circuits

Parallel connection x + y       Series connection xy

Series-parallel circuits: any circuit constructed of either a series or parallel 
connection of two or more elementary series-parallel circuits
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Transmission Function

Transmission function for a circuit: assumes value 1 (0) when there is 
(there is not) a path from one terminal of the circuit to the other 
through which information flows

Definition of transmission functions

Analogy: OR <-> parallel; AND <-> series

Complement of a given circuit: one that blocks all paths of information flow 
whenever the given circuit permits any

Thus, algebraic system for switching circuits isomorphic to switching algebra            
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Switching Circuit Simplification

Circuit realizing T = xy’ + (x’+ y)z Simplified circuit realizing 

T = xy’ + x’z + yz

= xy’ + x’z + y’z + yz

= xy’ + x’z + z

= xy’ + z

Important application of theory of switching circuits: CMOS
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Propositional Calculus

Proposition: declarative statement which may be either true or false

Example: temperature is 100 degree Celsius

turtle runs faster than the hare

sum of 2 and 3 equals 5

Proposition variable: 1 (0) if proposition is true (false)

Negation p’ of proposition p: 1 (0) if p is 0 (1)

Conjunction of propositions p and q is pq: true when both p and q are true 
and false whenever either one or both p and q are false

Disjunction of propositions p and q is p + q: true when either p or q or both 
are true and false whenever both p and q are false

30

Propositional Calculus (Contd.)

Definition of conjunction and disjunction of p and q

Analogy: OR <-> disjunction; AND <-> conjunction

Thus, algebraic system for switching circuits is isomorphic to propositional 
calculus                    
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Propositional Calculus Example

Example: Air-conditioning of a storage warehouse to be turned on if one or 
more of the following three conditions occurs:

1. Weight of stored material is less than 100 kg, relative humidity is at least 
60%, and temperature is above 60 degrees Celsius

2. Weight of stored material is 100 kg or more and temperature is above 60 
degrees Celsius

3. Weight of the stored material is less than 100 kg and the barometer 
stands at 30 inches of mercury  or over

A: proposition that air-conditioning is turned on

W: weight of 100 kg or more

H: relative humidity of at least 60%

T: temperature above 60 degrees Celsius

P: barometric pressure is 30 inches of mercury or more

A = W’HT + WT + W’P           

= HT + WT + W’P

= T(H+W) + W’P

Thus, air-conditioning is on if the temperature

is above 60 degrees Celsius and either the 

weight is at least 100 kg or the humidity is at

least 60%, or if the weight is less than 100 kg and

the barometer stands at 30 inches or over
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Electronic Gate Networks

Electronic gates: generally receive voltages as inputs and produce output 
voltages

Precise values of voltages not significant: restricted to value ranges – high 
(value 1) and low (value 0)

Electronic gates constructed with two-state switching devices: each 
capable of permitting the flow of current or blocking it

To implement arbitrary switching functions: gates must be able to 
implement a functionally complete set of operations

Functionally complete set
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Gate Network for Air-conditioning 
Function
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Boolean Algebras

Boolean algebra B: a distributive and complemented lattice
• A set of elements a, b, c, …, and binary operations + and . that satisfy the 

idempotent, commutative, absorption, and associative laws, and are 
mutually distributive

• It contains two bounds, 0 and 1, which are the least and greatest 
elements, respectively

• It has a unary operation of complementation, which assigns to every 
element in B its complement

Complement a’ of any element a in B is unique, i.e., there exists only 
element a’ such that a + a’ = 1 and a . a’ = 0

• Suppose there exists element a which has two complements, b1 and b2, 
i.e., a + b1 = 1, a . b1 = 0, a + b2 = 1, a . b2 = 0

• Then b1 = b1 . 1 = b1 . (a + b2) = b1 . a + b1 . b2 = 0 + b1 . b2 = b1 . b2

• Similar arguments show b2 = b1 . b2.  

• Thus, b1 = b2, proving the uniqueness of the complement

Complements of elements 0 and 1: since by definition 0 + 0’ = 1, from the 
definition of the lub, 0’ = 1.  Similarly, 1’ = 0
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De Morgan’s Theorem

Prove De Morgan’s theorem for two variables:

(a + b)’ = a’ . b’

(a . b)’ = a’ + b’
• We have to show that (a + b)(a’ . b’) = 0 and (a + b) + a’ . b’ = 1

• Applying the distributive law:

(a + b) + a’b’ = (a + b + a’)(a + b + b’) = (b + 1)(a + 1) = 1

• Dual property proved similarly

Definition of a Boolean algebra isomorphic to switching algebra

Example of Boolean 

algebra:


