

Switching algebra: algebraic system of AND, and unary operation NC	set {0,1}, binary operations OR ar)T
OR operation	AND operation
0 + 0 = 0	0.0=0
0 + 1 = 1	0.1=0
1 + 0 = 1	1.0=0
1 + 1 = 1	1 . 1 = 1

										_
Associativity: ((x +	y) ·	+ Z	= X +	+ (y -	+ <i>z</i>)				
	(x .	y) .	. Z	= X .	(y .	<i>z</i>)				
a										
Complementa	tion	: x	+ X'	= 1						
		X	. x'	= 0						
Distributivity: >	ĸ. (J	/ +	z) =	• x . j	y + x	. Z				
	х -	<i>⊦у</i> .	Z =	= (x +	⊦ <i>y</i>).	(x + z)				
Proof by perfe	ct ir	ndu	ctio	n us	ing a	truth t	able:			
	x	y	z	xy	xz	y + z	x(y+z)	xy + xz	-	
	0	0	0	0	0	0	0	0	-	
	0	0	1	0	0	1	0	0		
	0	1	0	0	0	1	0	0		
	0	1	1	0	0	1	0	0		
		0	0	0	0	0	0	0		
	1	0	0	-						
	$\frac{1}{1}$	0	1	0	1	1	1	1		
	1 1 1	$0\\1$	$1 \\ 0$	0 1	$\begin{array}{c} 1\\ 0\end{array}$	1 1	1 1	1 1		

Shannon's Expansion to Obtain Canonical Forms

Shannon's expansion theorem: $\begin{aligned}
f(x_1, x_2, ..., x_n) &= x_1 \cdot f(1, x_2, ..., x_n) + x_1' \cdot f(0, x_2, ..., x_n) \\
f(x_1, x_2, ..., x_n) &= [x_1 + f(0, x_2, ..., x_n)] \cdot [x_1' + f(1, x_2, ..., x_n)]
\end{aligned}$ Proof by perfect induction: Plug in $x_1 = 1$ and then $x_1 = 0$ to reduce RHS to LHS Shannon's expansion around two variables: $\begin{aligned}
f(x_1, x_2, ..., x_n) &= x_1 x_2 f(1, 1, x_3, ..., x_n) + x_1 x_2' f(1, 0, x_3, ..., x_n) \\
&+ x_1' x_2 f(0, 1, x_3, ..., x_n) + x_1' x_2' f(0, 0, x_3, ..., x_n)
\end{aligned}$ Similar Shannon's expansion around all *n* variables yields the canonical sum-of-products Repeated expansion of the dual form yields the canonical product-of-sums

<i>a</i> ₂	<i>a</i> _o	<i>a</i> ₁	<i>a</i> ₀	f(x, y)	Name of function	Sumbol
0	0	0	0	$\int \left(\omega, g \right)$	Inconsistency	2 9/1000
0	0	0	1	x'y'	NOR(dagger)	$x \downarrow y$
0	0	1	0	x'y		* 0
0	0	1	1	x'	NOT	x'
0	1	0	0	xy'		
0	1	0	1	y'		
0	1	1	0	x'y + xy'	EXCLUSIVE OR	$x\oplus y$
					(modulo-2 addition)	
0	1	1	1	x' + y'	NAND(Sheffer stroke)	x y
1	0	0	0	xy	AND	$x \cdot y$
1	0	0	1	xy + x'y'	Equivalence	$x \equiv y$
1	0	1	0	y		
1	0	1	1	x' + y	Implication	$x \rightarrow y$
1	1	0	0	x		
1	1	0	1	x + y'	Implication	$y \to x$
1	1	1	0	x + y	OR	x + y
1	1	1	1	1	Tautology	

