
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid‐Spring Semester 2019‐20

Date of Examination: 17/02/2020 Session: FN Duration: 2 hours Full Marks: 80

Subject No.: CS30002 Subject: Operating Systems

Department: Computer Science and Engineering

Instructions: Answer all the questions

All parts of the same question must be answered together

1. Answer	the	following	questions	in	brief.	 	 	 	 													 	 										[10	×	2	=	20]	

a) State	two	ways	in	which	the	processor	mode	can	be	changed	from	user	mode	to	supervisor	mode.	

(i) A	program	invoking	a	system	call	instruction	

(ii) An	interrupt	signal	arrives	to	the	processor	(timer,	I/O,	etc.)	

b) With	respect	to	the	state	transition	diagram	of	a	process,	state	two	ways	in	which	the	process	state	
can	switch	from	Running	to	Ready.	

(i) The	time	slice	of	a	process	elapses	in	round‐robin	scheduling	

(ii) An	 I/O	 (completion)	 interrupt	 arrives,	 for	 which	 the	 currently	 running	
process	has	to	be	suspended	and	the	interrupt	request	serviced.	

c) Justify	with	reasons	which	of	the	following	is	a	privileged	instruction:	

i) Switch	from	user	mode	to	supervisor	mode.	

This	 happens	when	 a	 program	 executes	 the	 syscall	 instruction	 in	 user	mode.	
This	 is	 not	 a	 privileged	 instruction,	 as	 otherwise	 user	 programs	 can	 never	
execute	this.	

ii) Initialize	the	timer	value	in	round‐robin	scheduling.	

This	must	 be	 a	 privileged	 instruction,	 as	 otherwise	 a	 user	 level	 program	 can	
modify	 the	 value	 loaded	 in	 the	 timer,	 and	 hence	 tamper	with	 the	 scheduling	
policy	of	the	operating	system.	

d) The	primary	objective	of	multiprogramming	is	to	minimize	user	response	time,	while	the	primary	
objective	of	time	sharing	is	to	maximize	processor	utilization.	Justify	or	contradict.	

The	statement	is	FALSE.	

In	multiprogramming,	a	context	switch	from	one	program	to	another	happens	only	when	the	
first	 program	 gets	 blocked	 due	 to	 an	 I/O	 operation.	As	 such,	 the	 primary	 objective	 is	 to	
maximize	 processor	 utilization;	 processor	 should	 not	 lie	 idle,	 no	 unnecessary	 context	
switches.	

In	 time	 sharing	 system,	 there	 are	 a	 number	 of	 interactive	 users	 sitting	 on	 terminals.	
Minimizing	the	user	response	time	is	the	main	objective	here.	

e) What	do	you	mean	by	CPU	Burst	time	and	I/O	Burst	time	of	a	process?	

During	the	execution	of	a	process,	the	process	can	continue	to	use	the	CPU	until	it	issues	a	
system	call	 to	request	 for	some	service	 from	OS;	this	typically	will	result	 in	the	process	to	
move	to	Waiting	state.	This	time	is	called	the	CPU	burst	time.	

Similarly,	when	a	process	issues	an	I/O	request,	it	moves	to	Waiting	state	and	remains	there	
while	the	I/O	operation	is	going	on.	Upon	completion,	it	moves	to	Ready	state.	This	time	is	
called	I/O	burst	time.	

f) State	four	events	that	may	lead	to	process	context	switch	in	a	time	sharing	operating	system.	

(i) A	timer	interrupt	arrives	

(ii) An	I/O	interrupt	arrives	

(iii) The	process	executes	a	syscall	instruction	

(iv) The	process	terminates	execution	

	

	

g) How	many	times	will	“Hello”	be	printed	by	the	following	code	segment?	

if (fork() && (!fork())) // 2nd condition not evaluated if 1st is false

 if (fork() || fork()) // 2nd condition evaluated only if 1st is false

 fork();

printf (“\nHello”);

The	message	“Hello”	will	be	printed	7	times.	

h) What	is	a	zombie	process	in	Linux?	How	are	such	processes	cleaned	by	the	operating	system?	

i) Justify	 with	 reasons	 whether	 the	 following	 CPU	 scheduling	 algorithms	 can	 result	 in	 process	
starvation:	(A)	first‐come	first‐serve,	(B)	shortest‐job	next.	

(A) The	FCFS	scheduling	algorithm	can	lead	to	increased	waiting	time	for	processes	
if	a	long	process	starts	executing,	but	there	will	be	no	starvation.	

(B) The	SJF	algorithm	on	the	other	hand	can	lead	to	starvation,	where	a	continuous	
stream	of	processes	with	shorter	CPU	bursts	can	prevent	a	process	with	longer	
CPU	burst	from	getting	the	CPU.	

j) Why	is	thread	scheduling	faster	than	process	scheduling?	

When	context	switch	happens	with	process,	all	registers,	code	area,	data	area,	stack	area,	
open	files,	etc.	must	be	saved	and	restored.	

In	threads,	the	code	area,	data	area,	open	files,	etc.	are	all	shared	among	the	threads.	Thus	
during	context	switch,	only	registers	and	stack	area	need	to	be	saved	and	restored.	

For	this	reason,	thread	scheduling	is	faster	than	process	scheduling.	

2. Answer	the	following.	 	 																													 	 	 																 														[4	+	3	+	4	+	4	=	15]	

a) Consider	a	variant	of	the	round‐robin	scheduling	algorithm	in	which	the	entries	in	the	ready	queue	
are	pointers	to	the	PCBs.	

i) What	would	be	the	effect	of	putting	two	or	more	pointers	in	the	ready	queue	to	the	same	
process	PCB?	

This	 way	 some	 process	may	 get	more	 CPU	 time	 per	 cycle	 in	 the	 round‐robin	
scheduling.	If	a	process	has	3	pointers,	then	it	will	get	3	times	more	CPU	time	as	
compared	to	a	process	that	has	only	1	pointer.	

ii) How	 would	 you	 modify	 the	 basic	 round‐robin	 algorithm	 to	 achieve	 the	 same	 effect	
without	using	duplicate	pointers?	

The	 same	 effect	 can	 be	 implemented	 by	 incorporating	 priority	 values	 to	 the	
processes.	When	the	despatchers	selects	a	process	for	execution,	it	sets	the	timer	
value	depending	upon	 the	process	priority.	A	higher	priority	process	will	 get	 a	
higher	δ value	as	compared	to	a	lower	priority	process.	

b) Consider	a	time	sharing	operating	system	that	uses	the	round‐robin	scheduling	algorithm.	Suppose	
there	are	N	processes	in	the	ready	queue,	with	time	quantum	∆	and	context‐switch	overhead	of	δ.	
Assume	that	the	average	CPU	burst	time	of	a	process	is	β.	Estimate	the	average	waiting	time	for	a	
process	before	it	again	gets	chance	to	run	on	the	CPU.	Clearly	state	any	assumptions	you	make.	

After	a	process	gets	 time	 to	 run	on	 the	CPU,	 it	will	be	waiting	 for	all	 the	 remaining	 (N‐1)	
processes	to	run	before	 it	gets	back	the	CPU	again.	On	the	average,	a	process	will	be	using	
the	CPU	for	min(∆,	β)	time	before	it	relinquishes	the	CPU.	

Hence,	average	waiting	time	=	(N	–	1)	*	[δ + min(∆,	β)]	

c) Suggest	a	CPU	scheduling	algorithm	that	tries	to	reduce	the	waiting	time	of	the	processes	and	at	the	
same	time	avoids	starvation.	Comment	on	whether	the	algorithm	will	give	preference	to	processes	
with	short	CPU	bursts	or	long	CPU	bursts.	

We	 can	use	 the	Highest	Response	Ratio	Next	 scheduling	 algorithm.	 In	 this	 algorithm,	 the	
priority	 of	 a	process	 increases	 as	 its	waiting	 time	 increases.	Also,	 the	 rate	 of	 increase	 of	
priority	is	faster	for	short	CPU	burst	processes	as	compared	to	long	CPU	burst	processes.	

Hence,	the	algorithm	gives	preference	to	short	CPU	burst	processes.	

d) Consider	 the	 following	 set	 of	 processes.	 Calculate	 the	 average	 waiting	 time	 and	 average	
turnaround	 time	 for	 the	 following	 scheduling	 algorithms:	 (i)	 FCFS,	 (ii)	 non‐preemptive	 SJF,	 (iii)	
pre‐emptive	SJF,	and	(iv)	round‐robin	with	time	quantum	of	3	msec.	

Process	 P1 P2 P3 P4 P5	 P6	
Arrival	Time	(msec)	 0 2 3 5 6	 8	
CPU	Burst	(msec)	 7 4 6 2 8	 5	

	

The	Gantt	chart	for	the	four	scheduling	algorithms	are	shown	below:	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14 15 16 17 18 19 20 21 22 23 24	 25	 26	 27	 28 29 30 31 32

I	 P1	 P2 P3 P4 P5 P6

Ii	 P1	 P4	 P2	 P6 P3 P5

iii	 P1	 P2	 P4	 P1	 P6 P3 P5

iv	 P1	 P2	 P3	 P1	 P4	 P5 P2 P6 P3 P1	 P5	 P6 P5

	

(i) FCFS	
AWT	=	(0	+	5	+	8	+	12	+	13	+	19)	/	6	=	9.5	
ATT	=	(7	+	9	+	14	+	14	+	21	+	24)	/	6	=	14.83	

(ii) Non‐preemptive	SJF	
AWT	=	(0	+	7	+	15	+	2	+	18	+	5)	/	6	=	7.83	
ATT	=	(7	+	11	+	21	+	4	+	26	+	10)	/	6	=	13.17	

(iii) Preemptive	SJF	
AWT	=	(6	+	0	+	15	+	1	+	18	+	5)	/	6	=	7.5	
ATT	=	(13	+	4	+	21	+	3	+	26	+	10)	/	6	=	12.83	

(iv) Round‐robin	
AWT	=	(18	+	12	+	15	+	7	+	18	+	17)	/	6	=	14.5	
ATT	=	(25	+	16	+	6	+	9	+	26	+	22)	/	6	=	17.33	

	

3. Answer	the	following.	 	 	 	 	 																															 																				[5	+	4	+	6	=	15]	

a) Write	 a	 code	 segment	 in	 C/C++	where	 a	 parent	 process	 forks	 three	 child	 processes.	 Each	 child	
process	prints	a	welcome	message	“I AM A NEW CHILD”,	waits	for	a	random	delay	between	1	
and	10	seconds,	and	then	terminates.	The	parent	process	will	check	the	termination	status	of	the	
child	processes,	and	print	messages	like	“CHILD WITH PID *** TERMINATED”,	before	finally	
printing	the	message	“PARENT PROCESS EXITING …”.	

b) Write	 a	 code	 segment	 in	 C/C++	 where	 a	 parent	 process	 creates	 a	 shared	 memory	 segment,	
allocates	an	integer	array	X	of	size	10,	and	populates	it	with	random	integers.	It	then	creates	two	
child	 processes	C1	 and	C2.	C1	will	 update	 the	 array	 by	 subtracting	 the	 average	 of	 the	 numbers	
from	each	of	 the	numbers	(i.e.	X[i] = X[i] – average(X)).	C2	will	wait	 for	1	second,	and	
then	print	the	contents	of	the	array	X.	Finally,	the	parent	process	will	remove	the	shared	memory	
segment.	

c) Clear	 explain	 the	 differences	 between	 the	 following	 with	 the	 help	 of	 examples:	 (i)	 System	 call,							
(ii)	Exception,	(iii)	Internal	hardware	interrupt.	

A	system	call	or	syscall	 is	a	machine	 level	 instruction	 that	cause	 the	mode	 to	switch	 from	
user	to	supervisor,	and	transfer	control	to	a	service	routine	(typically	inside	the	OS).	

An	exception	is	an	interrupt	that	is	caused	due	to	the	execution	of	an	instruction.	Examples	
include:	 trying	 to	 execute	 a	privileged	 instruction	 in	user	mode,	divide	 by	 zero,	memory	
access	violation,	etc.	

Interrupt	hardware	 interrupt	 in	a	hardware	 interrupt	 that	 is	originating	 from	within	 the	
processor.	An	example	in	the	timer	interrupt	in	round‐robin	scheduling.	

4. Answer	the	following.	 	 	 	 	 	 	 						 														[4	+	3	+	4	+	4	=	15]	

a) Three	 concurrent	 processes	 P1,	 P2	 and	 P3	 are	 concurrently	 updating	 a	 shared	 variable	xyz	
(with	initial	value	of	100)	as	follows:	

P1:	 xyz = xyz + 10;	

P2:	 xyz = xyz – 20;	

P3:	 xyz = xyz * 2;	

What	will	be	the	maximum	and	minimum	values	of	xyz	after	execution	of	the	three	processes?	

Each	 instruction	 will	 translate	 into	 a	 sequence	 of	 machine‐level	 instructions.	 For	
example,	

P1:	 LOAD	 	 R1,0(xyz)	

	 ADD	 	 R1,R1,10	

	 STORE		 R1,0(xyz)	

P2:	 LOAD	 	 R2,0(xyz)	

	 SUB	 	 R2,R2,20	

	 STORE		 R2,0(xyz)	

P1:	 LOAD	 	 R3,0(xyz)	

	 MUL	 	 R3,R3,2	

	 STORE		 R3,0(xyz)	

Inconsistency	may	occur	when	a	process	P	loads	xyz	into	the	register,	and	then	there	is	a	
context	switch	to	another	process	that	uses	the	previous	value	of	xyz	to	update	it.	After	P	
resumes,	it	uses	the	old	value	of	xyz	to	carry	out	the	updation.	

Minimum	Value:		 P2	loads	xyz,	then	P1	&	P3	finishes,	then	P1	resumes.	

	 	 	 The	final	value	of	xyz	will	be	80.	

Maximum	Value:	 P1	finishes,	P3	loads	xyz,	then	P2	finishes,	then	P3	resumes.	

	 	 	 The	final	value	of	xyz	will	be	220.	

b) Consider	the	following	pseudo‐code	for	a	process	Pi,	where	“shared boolean flag[2]” is	a	
variable	declared	in	shared	memory,	initialized	as:	flag[0] = flag[1] = FALSE;	

P (int i) { // i=0 for P0, i=1 for P1

 while (TRUE) {

 flag[i] = TRUE;

 while (flag[(i+1) % 2) == TRUE);

 < Critical Section >

 flag[i] = FALSE;

 < Remainder Section >

 }

}

Explain	whether	this	code	solves	the	critical	section	problem	for	two	processes	P0	and	P1.	

This	solution	may	result	in	a	deadlock	between	the	two	processes,	where	neither	P0	nor	
P1	can	proceed	to	enter	their	critical	section.	

This	will	happen	when	P0	makes	flag[0] = TRUE,	and	then	there	is	a	context	switch.	
P1	makes	flag[1] = TRUE.	Now	both	P0	and	P1	will	be	waiting	indefinitely	in	the	while	
loop	before	entry	to	the	critical	section.	

c) The	classical	Peterson’s	algorithm	for	providing	mutual	exclusion	among	processes	apply	to	a	2‐
process	 system	 only.	 Extend	 the	 algorithm	 for	 providing	 mutual	 exclusion	 between	 three	
concurrent	processes.	

d) Suppose	that	an	instruction	swap(int R, int *mem)	is	added	to	a	processor	that	swaps	the	
contents	 of	 a	 register	 R	 and	 a	 memory	 location	 mem	 in	 a	 single	 indivisible	 step.	 Suggest	 a	
solution	to	the	critical	section	problem	using	this	instruction.	

Suppose	a	memory	location	“lock”	is	used	to	implement	the	lock,	where	lock=1	indicates	
that	some	process	is	already	inside	the	critical	section.	

The	entry	and	exit	sections	of	a	process	may	look	like	this:	

do {

lock = 1;

swap (R, &lock);

 } while (R == 1);

 < Critical Section>

 lock = 0;	

5. Justify	with	reasons	whether	the	following	statements	are	true	or	false.	 						 													[5	x	3	=	15]	

a) The	kernel	routines	are	written	as	functions	that	are	called	from	user‐level	programs	whenever	
some	sevice	is	required	from	the	operating	system.	

FALSE:	The	kernel	routines	are	written	as	 interrupt	handlers,	 that	are	 invoked	when	a	
user‐level	program	executes	the	syscall	instruction	or	there	is	an	interrupt	or	exception.	

b) We	need	special	 support	 from	 the	hardware	 to	provide	mutual	 exclusion	among	a	number	of	
concurrent	processes.	

TRUE:	We	need	some	special	atomic	instruction	that	carries	out	a	READ‐WRITE	operation	
on	a	memory	word	 in	a	single	 indivisible	step.	Examples	are	test‐and‐set	and	compare‐
and	swap	instructions.	

c) The	SJF	algorithm	minimizes	the	average	waiting	time	of	a	set	of	running	processes,	assuming	
that	all	processes	arrive	at	time	t	=	0.	

TRUE:	This	can	be	proved	by	contradiction.	Suppose	we	start	with	a	SJF	schedule.	 If	we	
swap	any	pair	of	processes	 in	 the	schedule,	 it	 is	easy	 to	show	 that	 the	average	waiting	
time	can	never	decrease.		

d) The	Swapped-Out	states	in	a	process	state	transition	diagram	are	required	to	keep	track	of	the	
processes	that	do	not	require	CPU	time.	

FALSE:	 The	 Swapped‐Out	 states	 are	 used	 to	 temporarily	move	 some	 processes	 in	 the	
Ready	 or	Waiting	 states	 to	 the	 corresponding	 Swapped‐Out	 states	 in	 disk,	 when	 the	
memory	space	to	accommodate	the	processes	is	deemed	insufficient.	

e) Race	condition	is	possible	when	we	use	pipes	to	communicate	between	two	or	more	processes.	

FALSE:	Pipes	uses	message	communication	among	processes,	and	as	such	 the	read	and	
write	operations	in	the	pipe	are	atomic	operations.	There	can	be	no	race	conditions	here.	

