Chapter 4. Threads

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

o Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries
Implicit Threading
Threading Issues

Operating System Examples

Operating System Concepts — 9t" Edition 4.2 Silberschatz, Galvin and Gagne ©2013

s

1‘?::‘

v

o Objectives

® To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer
systems

B To discuss the APIs for the Pthreads, Windows, and Java
thread libraries

m To explore several strategies that provide implicit threading
To examine issues related to multithreaded programming

To cover operating system support for threads in Windows and
Linux

7 i

Operating System Concepts — 9t" Edition 4.3 Silberschatz, Galvin and Gagne ©2013

s

1‘?::‘

.

® Most modern applications are multithreaded
Threads run within application

Multiple tasks with the application can be implemented by
separate threads

e Update display

e Fetch data

e Spell checking

e Answer a network request

®m Process creation is heavy-weight while thread creation is
light-weight

m Can simplify code, increase efficiency
m Kernels are generally multithreaded

7 J“{.‘f
A A9% 7

Operating System Concepts — 9t" Edition 4.4 Silberschatz, Galvin and Gagne ©2013

=N

-

m’;—’ﬁ Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

Y

Y

client server thread

(3) resume listening
for additional
client requests

ﬁk
r ['v“
_l L

Operating System Concepts — 9t Edition 45 Silberschatz, Galvin and Gagne ©2013

GF Benefits

B Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process, easier
than shared memory or message passing

®m Economy — cheaper than process creation, thread switching
lower overhead than context switching

B Scalability — process can take advantage of multiprocessor
architectures

Wy
A

Operating System Concepts — 9t" Edition 4.6 Silberschatz, Galvin and Gagne ©2013

: =
i ,ﬂm"}‘j
(e
| -
S

7 Multicore Programming

m Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

e Dividing activities

e Balance

e Data splitting

e Data dependency

e Testing and debugging

m Parallelism implies a system can perform more than one task
simultaneously

m Concurrency supports more than one task making progress
e Single processor / core, scheduler providing concurrency

£ % """':n}
£3 =N
L P 4

Operating System Concepts — 9t" Edition 4.7 Silberschatz, Galvin and Gagne ©2013

) mmd-?—'r:\ _ .
«¢%»7 Multicore Programming (Cont.)

m Types of parallelism

e Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

e Task parallelism — distributing threads across cores, each
thread performing unique operation

m As # of threads grows, so does architectural support for threading
e CPUs have cores as well as hardware threads

e Consider Oracle SPARC T4 with 8 cores, and 8 hardware
threads per core

£)
£3 =N
A A9

Operating System Concepts — 9t" Edition 4.8 Silberschatz, Galvin and Gagne ©2013

=
.

‘”»‘" Concurrency vs. Parallelism

m Concurrent execution on single-core system:

single core | Ty ‘ To ‘ T3 ‘ Ty ‘ T4 ‘ To ‘ Ts ‘ Ty ‘ T4 ‘ ‘

time

>
>

m Parallelism on a multi-core system:

core 1 T4 T3 T4 Ty T4

core 2 Ts Ty To Ty To

A 4

Operating System Concepts — 9t" Edition 4.9 Silberschatz, Galvin and Gagne ©2013

«%> Single and Multithreaded Processes

stack stack stack

thread

A

thread — ;

single-threaded process multithreaded process

Operating System Concepts — 9t" Edition 4.10 Silberschatz, Galvin and Gagne ©2013

r & Amdahl’'s Law

®m Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

m S is serial portion
® N processing cores

1

speedup < ———
s+

m That s, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

m As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

m But does the law take into account contemporary multicore systems?

AN

Operating System Concepts — 9t" Edition 4.11 Silberschatz, Galvin and Gagne ©2013

"

.
~4»/ User Threads and Kernel Threads

m User threads - management done by user-level threads library
® Three primary thread libraries:
e POSIX Pthreads
e Windows threads
e Javathreads
Kernel threads - Supported by the Kernel
Examples — virtually all general purpose operating systems, including:
e Windows
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X

R ———

a WA)
gt ALY
A e gl
S5 SN
Oa
“A -*-‘-"',":1

Operating System Concepts — 9t" Edition 4.12 Silberschatz, Galvin and Gagne ©2013

G5 Multithreading Models

® Many-to-One

B One-to-One

® Many-to-Many

Operating System Concepts — 9" Edition 413 Silberschatz, Galvin and Gagne ©2013

g Many-to-One

m Many user-level threads mapped to
single kernel thread

One thread blocking causes all to block

on muticore system because only one
may be in kernel at a time

<«— user thread

Multiple threads may not run in parallel ; ;

Few systems currently use this model
Examples:

e Solaris Green Threads

e GNU Portable Threads

<«— kernel thread

E el N
=i

Silberschatz, Galvin and Gagne ©2013

e

Operating System Concepts — 9t Edition 4.14

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread
More concurrency than many-to-one

Number of threads per process sometimes
restricted due to overhead

m Examples
e Windows

e Linux
e Solaris 9 and later ‘ ‘ ‘

Operating System Concepts — 9t Edition 4.15

<«— user thread

A%

Silberschatz, Galvin and Gagne ©2013

- Many-to-Many Model

m Allows many user level threads to be
mapped to many kernel threads

m Allows the operating system to create
a sufficient number of kernel threads

Solaris prior to version 9 ; ;

Windows with the ThreadFiber ;

34— user thread
package

<«— kernel thread

ol
R 4
A

Operating System Concepts — 9t" Edition 4.16 Silberschatz, Galvin and Gagne ©2013

REN

R
L Two-level Model

® Similar to M:M, except that it allows a user thread to be
bound to kernel thread

m Examples
e |RIX ; ;
e HP-UX ;
e Tru64 UNIX
e Solaris 8 and eatrlier

; ; <«— user thread

Operating System Concepts — 9t" Edition 4.17 Silberschatz, Galvin and Gagne ©2013

G5 Thread Libraries

m Thread library provides programmer with API for creating
and managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

Operating System Concepts — 9t" Edition 4.18 Silberschatz, Galvin and Gagne ©2013

m May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

m Specification, not implementation

B API specifies behavior of the thread library, implementation is
up to development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Al

X
SN

Operating System Concepts — 9t" Edition 4.19 Silberschatz, Galvin and Gagne ©2013

S
. W<

Ay

il Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])

{

pthread t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv([1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[1]));
return -1;

}

Operating System Concepts — 9t" Edition 4.20 Silberschatz, Galvin and Gagne ©2013

=

s »35 Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread exit(0);

Operating System Concepts — 9t" Edition 4.21 Silberschatz, Galvin and Gagne ©2013

=

‘«fj}yf Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

o e
gl
\!\
A

Operating System Concepts — gth Edition 4.22 Si|beI’SChatZ, Galvin and Gagne ©2013

=

O OpenMP

>

m Set of compiler directives and an
API for C, C++, FORTRAN

® Provides support for parallel
programming in shared-memory
environments

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv[])

®m |dentifies parallel regions — {
blocks of code that can run in /* sequential code */
parallel
#pragma omp parallel iEpragma omp parallel
Create as many threads as there are printf("I am a parallel region.");
cores)
#pragma omp parallel for
for(1=0;i<N;i++) { /* sequential code */
c[i] = a[1] + b[i];
return 0;
¥ }

Run for loop in parallel

: 4"");;\\}
7 "\‘,\."{
A T

Operating System Concepts — 9t" Edition 4.23 Silberschatz, Galvin and Gagne ©2013

=
A\

v

g T Scheduler Activations

® Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the 3 +—— user thread
application

m Typically use an intermediate data structure
between user and kernel threads — lightweight o
LWP | =—— lightwaight process
process (LWP) |

e Appears to be a virtual processor on which
| Kk |*=—kemel thread

process can schedule user thread to run ol
e Each LWP attached to kernel thread
e How many LWPs to create?
m Scheduler activations provide upcalls - a

communication mechanism from the kernel to
the upcall handler in the thread library

® This communication allows an application to
maintain the correct number kernel threads

- "_‘) -‘.‘ \
- .)ﬁ-'f
i “ y W

Operating System Concepts — 9t" Edition 4.24 Silberschatz, Galvin and Gagne ©2013

End of Chapter 4

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

