
Chapter 4: ThreadsChapter 4:  Threads

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Chapter 4: Threads

 Overview
M lti P i Multicore Programming

 Multithreading Models
 Thread Libraries Thread Libraries
 Implicit Threading
 Threading Issues
 Operating System Examples

4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Objectives

 To introduce the notion of a thread—a fundamental unit of CPU 
utilization that forms the basis of multithreaded computerutilization that forms the basis of multithreaded computer 
systems

 To discuss the APIs for the Pthreads, Windows, and Java 
th d lib ithread libraries

 To explore several strategies that provide implicit threading
 To examine issues related to multithreaded programmingTo examine issues related to multithreaded programming
 To cover operating system support for threads in Windows and 

Linux

4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Motivation

 Most modern applications are multithreaded
Th d ithi li ti Threads run within application

 Multiple tasks with the application can be implemented by 
separate threads
 Update display
 Fetch data
 Spell checking
 Answer a network request

 Process creation is heavy weight while thread creation is Process creation is heavy-weight while thread creation is 
light-weight

 Can simplify code, increase efficiency
 Kernels are generally multithreaded

4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Multithreaded Server Architecture

4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Benefits

 Responsiveness – may allow continued execution if part of 
process is blocked especially important for user interfacesprocess is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier 
than shared memory or message passing

 Economy – cheaper than process creation, thread switching 
lower overhead than context switching

 Scalability – process can take advantage of multiprocessorScalability process can take advantage of multiprocessor 
architectures

4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Multicore Programming

 Multicore or multiprocessor systems putting pressure on 
programmers challenges include:programmers, challenges include:
 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

 Parallelism implies a system can perform more than one task 
simultaneouslyy

 Concurrency supports more than one task making progress
 Single processor / core, scheduler providing concurrency

4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Multicore Programming (Cont.)

 Types of parallelism 
D t ll li di t ib t b t f th d t Data parallelism – distributes subsets of the same data 
across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each 
thread performing unique operation

 As # of threads grows, so does architectural support for threading
 CPUs have cores as well as hardware threads CPUs have cores as well as hardware threads
 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core

4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Concurrency vs. Parallelism
 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Single and Multithreaded Processes

4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Amdahl’s Law

 Identifies performance gains from adding additional cores to an 
application that has both serial and parallel components

 S is serial portion
 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 
cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect onSerial portion of an application has disproportionate  effect on 
performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

p y y



User Threads and Kernel Threads

 User threads - management done by user-level threads library
Th i th d lib i Three primary thread libraries:
 POSIX Pthreads
 Windows threads Windows threads
 Java threads

 Kernel threads - Supported by the Kernel
 Examples – virtually all general purpose operating systems, including:

 Windows 
 Solaris
 Linux
 Tru64 UNIX Tru64 UNIX
 Mac OS X

4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Many-to-One

 Many user-level threads mapped to 
single kernel threadsingle kernel thread

 One thread blocking causes all to block
 Multiple threads may not run in parallel 

on muticore system because only one 
may be in kernel at a time

 Few systems currently use this modelFew systems currently use this model
 Examples:

 Solaris Green Threads
 GNU Portable Threads

4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



One-to-One

 Each user-level thread maps to kernel thread
C ti l l th d t k l th d Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one
 Number of threads per process sometimes Number of threads per process sometimes 

restricted due to overhead
 Examples

 Windows
 Linux
 Solaris 9 and later Solaris 9 and later

4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Many-to-Many Model

 Allows many user level threads to be 
mapped to many kernel threadspp y

 Allows the  operating system to create 
a sufficient number of kernel threads
S l i i t i 9 Solaris prior to version 9

 Windows  with the ThreadFiber
package

4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Two-level Model

 Similar to M:M, except that it allows a user thread to be 
bound to kernel thread

 Examples
 IRIX
 HP-UX
 Tru64 UNIX

Solaris 8 and earlier Solaris 8 and earlier

4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Thread Libraries

 Thread library provides programmer with API for creating 
and managing threadsand managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Pthreads

 May be provided either as user-level or kernel-level
A POSIX t d d (IEEE 1003 1 ) API f th d ti d A POSIX standard (IEEE 1003.1c) API for thread creation and 
synchronization

 Specification, not implementation
 API specifies behavior of the thread library, implementation is 

up to development of the library
 Common in UNIX operating systems (Solaris Linux Mac OS X) Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Pthreads Example

4.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Pthreads Example (Cont.)

4.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Pthreads Code for Joining 10 Threads

4.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



OpenMP
 Set of compiler directives and an 

API for C, C++, FORTRAN 
 Provides support for parallel Provides support for parallel 

programming in shared-memory 
environments

 Identifies parallel regions – Identifies parallel regions –
blocks of code that can run in 
parallel

#pragma omp parallel #p g p p

Create as many threads as there are 
cores

#pragma omp parallel for#pragma omp parallel for 
for(i=0;i<N;i++) { 

c[i] = a[i] + b[i]; 

}} 

Run for loop in parallel

4.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



Scheduler Activations
 Both M:M and Two-level models require 

communication to maintain the appropriate 
n mber of kernel threads allocated to thenumber of kernel threads allocated to the 
application

 Typically use an intermediate data structure 
between user and kernel threads – lightweight 
process (LWP)
 Appears to be a virtual processor on which pp p

process can schedule user thread to run
 Each LWP attached to kernel thread

H LWP t t ? How many LWPs to create?
 Scheduler activations provide upcalls - a 

communication mechanism from the kernel to 
the upcall handler in the thread library

 This communication allows an application to 
maintain the correct number kernel threads

4.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition



End of Chapter 4End of Chapter 4

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition


