
Process synchronization:
a few advanced topics

not for exam J

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

Uses of CAS
(source: http://www.cs.cornell.edu/courses/cs4410/2015su/lectures/lec06-spin.html)

http://www.cs.cornell.edu/courses/cs4410/2015su/lectures/lec06-spin.html

Compare and swap
int compare _and_swap(int *value, int expected, int
new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

How is CAS used?

• Optimistic transactional data structures
• all updates are performed on a copy of the data

structure
• when the operations are finished, a compare and

swap replace the data structure in one fell swoop

Example: concurrent balanced binary
search tree

Shared state:
root = pointer to the root of the tree

Insert code:
do

old_root = root
new_root = new Tree
copy old_root into new_root
do insertion into new_root

while compare_and_swap (root, old_root, new_root) == old_root
Balance code:

do
old_root = root
new_root = balanced_copy_of (old_root)

while compare_and_swap (root, old_root, new_root) == old_root

How does it work?

• If an insertion is performed while a balance is in progress

• update the root to point to its new root

• When the balancing thread completes, the CAS will fail

• If balance finishes before the insertion

• CAS in the insertion code will fail

• insertion will be retried on the new balanced root

Locking in Linux kernel : pre-emptive

(source: http://www.informit.com/articles/article.aspx?p=101760&seqNum=3)

http://www.informit.com/articles/article.aspx?p=101760&seqNum=3

What does it mean?

• In a non-preemptive kernel
• Code runs till completion
• Scheduler is not capable of rescheduling a process while it is in the kernel
• Kernel code is scheduled cooperatively, not preemptively
• version 2.6 onwards this is NOT the case with linux

• Good : Linux kernel is Symmetric Multi Processing (SMP) safe
• In other words "thread safe"

How does pre-emption happen in
implementation?
• Addition of a preemption counter, preempt_count, to each

process's task_struct

• Counter begins at zero

• Increments for each lock that is acquired

• Decrements for each lock that is released

• When the counter is zero, the kernel is preemptible

How does pre-emption happen in
implementation? (contd.)
• The kernel checks the values of need_resched and
preempt_count
• If need_resched is set and preempt_count is zero

=> more important task is runnable and it is safe to preempt

• Then the scheduler is onvoked

• If preempt_count is nonzero, a lock is held and it is unsafe to
reschedule

How is mutex implemented in linux?

Resources

• https://en.wikipedia.org/wiki/Futex

• https://linux.die.net/man/2/futex

• https://stackoverflow.com/a/5870415

• https://eli.thegreenplace.net/2018/basics-of-futexes/

https://en.wikipedia.org/wiki/Futex
https://linux.die.net/man/2/futex
https://stackoverflow.com/a/5870415
https://eli.thegreenplace.net/2018/basics-of-futexes/

