Multithreading (contd.)

Indranil Sen Gupta (odd section)

and Mainack Mondal (even section)
CS39002

Spring 2019-20



The story so far

 \What is a thread?

* \Why do you need threads”
* How are threads used in real-world?
* Multithreading models

» POSIX Pthread library



Today’s class

* Arecap of pthread

* Thread scheduling

 Thread cancellation
 Signal handling

 Thread mutex



Today’s class

* Arecap of pthread



What is pthread?

« POSIX standard for describing a thread model
« POSIX?



What is pthread?

« POSIX standard for describing a thread model
« POSIX? Portable Operating System Interface (POSIX)



What is pthread?

« POSIX standard for describing a thread model

« POSIX? Portable Operating System Interface (POSIX)

« Family of standards for maintaining OS compatibility

» Basically tells OS you need to support these function calls
* Increase portability

 All major thread libraries in unix are POSIX compatible



How to use pthread?

* Include pthread.h in the main file

« Compile program with —1pthread
* gcc -0 test test.c —-lpthread

e may not report compilation errors otherwise but calls will
fall
« (Good idea to check return values on common functions



Recap: thread creation

* Types: pthread t —type of athread

 Function calls:

int pthread create (&tid, &attr, runner, argv[1l]);
int pthread join(tid, NULL);

int pthread detach(();

void pthread exit();

* Callpthread exit inmain

» Detached threads are those which cannot be joined (can also
set this at creation)



exit () Vs. pthread exit()

 exit() kills all threads

* Including the main() thread

« pthread_exit() only kills the running thread but keep the
task alive



Attributes

* Type:pthread attr t (See previous day’s example)

o Attributes define the state of the new thread



Attributes

* Type:pthread attr t (See previous day’s example)
« Attributes define the state of the new thread

o State: system scope, joinable, stack size, inheritance

« Default behaviors with NULL inpthread create ()



Attributes

* Type:pthread attr t (See previous day’s example)
« Attributes define the state of the new thread

o State: system scope, joinable, stack size, inheritance

« Default behaviors with NULL inpthread create ()

int pthread attr init (&attr);
pthread attr { set/get} {attribute}



Attributes

* Type:pthread attr t (See previous day’s example)
« Attributes define the state of the new thread

o State: system scope, joinable, stack size, inheritance

« Default behaviors with NULL inpthread create ()

int pthread attr init (&attr);
pthread;att:_{set/get}{attribute}

« Example:

pthread attr t attr;
pthread attr init (&attr);



Attributes

* Type:pthread attr t (See previous day’s example)
« Attributes define the state of the new thread

« State: system scope, joinable, stack size, inheritance

« Default behaviors with NULL inpthread create ()

int pthread attr init (&attr);
pthread;att:_{set/get}{attribute}

« Example:

pthread attr t attr;
pthread attr init (&attr);



Today’s class

* Thread scheduling



Thread scheduling with pthread

 (One distinction between user level and kernel level threads
* How are they scheduled
« Two scheduling paradigms

* Process contention scope (PCS)
« System contention scope (SCS)



Process contention scope (PCS)

« The thread library schedules user-level threads to run with
assigned time quantum for the process
* |In many-to-one and many-to-many models

« Competition for CPU takes place among threads belonging to
same process

e Also called unbound thread



System contention scope (SCS)

« Deciding which kernel-level thread to schedule in CPU

« Competition for CPU takes place among all threads in the
process

* Also called bound thread



Contention scope with pthread

 pthread identifies the following contention scope values

« PTHREAD SCOPE PROCESS > PCS
« PTHREAD SCOPE SYSTEM -> SCS



Contention scope with pthread

 pthread identifies the following contention scope values

« PTHREAD SCOPE PROCESS > PCS
« PTHREAD SCOPE SYSTEM -> SCS

 pthread defines two functions

* pthread attr setscope(pthread attr t *attr, int scope)
* pthread attr getscope(pthread attr t *attr, int *scope)



Contention scope with pthread

 pthread identifies the following contention scope values

« PTHREAD SCOPE PROCESS > PCS
« PTHREAD SCOPE SYSTEM -> SCS

 pthread defines two functions

* pthread attr setscope(pthread attr t *attr, int scope)
* pthread attr getscope(pthread attr t *attr, int *scope)

* scope can be:

- PTHREAD SCOPE PROCESS
e PTHREAD SCOPE_SYSTEM



Today’s class

 Thread cancellation



Thread cancellation with pthread

« Terminates a thread before it has completed
* pthread cancel(pthread t tid)



Thread cancellation with pthread

* Terminates a thread before it has completed
* pthread cancel(pthread t tid)

* The exact effect of calling pthread cancel depends

« How the target thread is set up to handle the request
« Basically this invoks something called a signal



Today’s class

 Signal handling



Signal handling

« Signals are used in UNIX systems to notify a process that a
particular event has occurred.



Signal handling

« Signals are used in UNIX systems to notify a process that a
particular event has occurred.

« A signal handler is used to process signals

« Signal is generated by particular event
« Signal is delivered to a process
« Signal is handled by signal handlers



Signal handling

« Signals are used in UNIX systems to notify a process that a
particular event has occurred.

« A signal handler is used to process signals

« Signal is generated by particular event
« Signal is delivered to a process
« Signal is handled by signal handlers

« Every signal has a default handler that kernel runs when handling
signal

« User-defined signal handler can override default
« [For single-threaded, signal delivered to process



So, signals and interrupts are similar,
right?

Not exactly!



So, signals and interrupts are similar,
right?

Not exactly!
» Interrupts are used for « signals are used for
communication between CPU communication between CPU

and OS and OS



So, signals and interrupts are similar,
right?

Not exactly!

Interrupts are used for
communication between CPU
and OS

Initiated by CPU (page fault),
devices (input available), CPU
instr. (syscalls)

signals are used for
communication between CPU
and OS

Initiated by kernel or by process.



So, signals and interrupts are similar,
right?

Not exactly!

» Interrupts are used for « signals are used for
communication between CPU communication between CPU
and OS and OS

» Initiated by CPU (page fault), » Initiated by kernel or by process.

devices (input available), CPU
instr. (syscalls)

» Eventually managed by CPU, « Eventually managed by kernel
which interrupts the current which delivers them to the target
task and invokes kernel process (using either default or

provided ISR user provided routine)



So, signals and interrupts are similar,

right?

Not exactly!

» Interrupts are used for
communication between CPU
and OS

» Initiated by CPU (page fault),
devices (input available), CPU
instr. (syscalls)

» Eventually managed by CPU,
which interrupts the current
task and invokes kernel
provided ISR

signals are used for
communication between CPU
and OS

Initiated by kernel or by process.

Eventually managed by kernel
which delivers them to the target
process (using either default or
user provided routine)

ctrl-c sends a signal SIGINT, is it signal or interrupt?



Some of the POSIX signals

« SIGABRT - Abort

« SIGBUS - Bus error

« SIGIILL - lllegal instr.

« SIGKILL - Kill process

o SIGQUIT - Terminal quit

o SIGSEGV - Invalid memory reference

o SIGUSR1/ SIGUSR2 - user defined signal
* SIGINT = Interrupt (ctrl-c)



Let’s write a signal handler

#include<stdio.h>
#include<signal.h>
#include<unistd.h>

void sig handler(int signo){
if(signo == SIGINT)
printf("\n Received SIGINT\n");
}

void main(){
signal (SIGINT, sig handler);
while(1)
sleep(l);



How to send signal to a specific
process?

// via c code

kill(pid t pid, int signal);

//via shell
kill -signalNumber <pid>
kill -signalName <pid>

kill —s signalName <pid>



How to send signal to a specific
thread?

Sending signal to a specific thread of same process

pthread kill(pthread t tid, int signal)



Today’s class

 Thread mutex



General working principle

acquire mutex
while (condition is true)
wait on condition variable
perform computation on shared variable
update conditional;
signal sleeping thread(s)

Release mutex



pthread mutex

int pthread mutex init(pthread mutex t *mutex,
const pthread mutexattr t

*attr) ;

int pthread mutex destroy (pthread mutex t

*mutex) ;

int pthread mutex lock (pthread mutex t *mutex);

int pthread mutex unlock (pthread mutex t *mutex);

int pthread mutex trylock (pthread mutex t

*mutex) ;

Used for protecting (locking) shared variables



pthread conditional
varliables

int pthread cond init (pthread cond t *cond,

const pthread condattr t
*attr) ;

int pthread cond destroy (pthread cond t *cond);

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);

int pthread cond singal (pthread cond t *cond);

int pthread cond broadcast (pthread cond t *cond);



Example

pthread mutex lock (&m);

while (WAITING CONDITION IS TRUE)
pthread cond wait (&var this thread, &m);
/* now execute*/

pthread mutex unlock (&m);
pthread cond signal (&var other thread);



Next class

* Process synchronization



