
Multithreading (contd.)

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

The story so far

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

What is pthread?
• POSIX standard for describing a thread model

• POSIX?

What is pthread?
• POSIX standard for describing a thread model

• POSIX? Portable Operating System Interface (POSIX)

What is pthread?
• POSIX standard for describing a thread model

• POSIX? Portable Operating System Interface (POSIX)
• Family of standards for maintaining OS compatibility
• Basically tells OS you need to support these function calls
• Increase portability

• All major thread libraries in unix are POSIX compatible

How to use pthread?

• Include pthread.h in the main file

• Compile program with –lpthread

• gcc –o test test.c –lpthread
• may not report compilation errors otherwise but calls will

fail

• Good idea to check return values on common functions

Recap: thread creation
• Types: pthread_t – type of a thread

• Function calls:

int pthread_create (&tid, &attr, runner, argv[1]);
int pthread_join(tid, NULL);
int pthread_detach();
void pthread_exit();

• Call pthread_exit in main

• Detached threads are those which cannot be joined (can also
set this at creation)

exit() Vs. pthread_exit()

• exit() kills all threads

• Including the main() thread

• pthread_exit() only kills the running thread but keep the
task alive

Attributes
• Type: pthread_attr_t (see previous day’s example)

• Attributes define the state of the new thread

Attributes
• Type: pthread_attr_t (see previous day’s example)

• Attributes define the state of the new thread

• State: system scope, joinable, stack size, inheritance

• Default behaviors with NULL in pthread_create()

Attributes
• Type: pthread_attr_t (see previous day’s example)

• Attributes define the state of the new thread

• State: system scope, joinable, stack size, inheritance

• Default behaviors with NULL in pthread_create()
int pthread_attr_init(&attr);
pthread_attr_{set/get}{attribute}

Attributes
• Type: pthread_attr_t (see previous day’s example)

• Attributes define the state of the new thread

• State: system scope, joinable, stack size, inheritance

• Default behaviors with NULL in pthread_create()
int pthread_attr_init(&attr);
pthread_attr_{set/get}{attribute}

• Example:

pthread_attr_t attr;
pthread_attr_init(&attr);

Attributes
• Type: pthread_attr_t (see previous day’s example)

• Attributes define the state of the new thread

• State: system scope, joinable, stack size, inheritance

• Default behaviors with NULL in pthread_create()
int pthread_attr_init(&attr);
pthread_attr_{set/get}{attribute}

• Example:

pthread_attr_t attr;
pthread_attr_init(&attr);

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

Thread scheduling with pthread
• One distinction between user level and kernel level threads

• How are they scheduled
• Two scheduling paradigms

• Process contention scope (PCS)
• System contention scope (SCS)

Process contention scope (PCS)

• The thread library schedules user-level threads to run with
assigned time quantum for the process

• In many-to-one and many-to-many models

• Competition for CPU takes place among threads belonging to
same process

• Also called unbound thread

System contention scope (SCS)

• Deciding which kernel-level thread to schedule in CPU

• Competition for CPU takes place among all threads in the
process

• Also called bound thread

Contention scope with pthread

• pthread identifies the following contention scope values

• PTHREAD_SCOPE_PROCESS à PCS
• PTHREAD_SCOPE_SYSTEM à SCS

Contention scope with pthread

• pthread identifies the following contention scope values

• PTHREAD_SCOPE_PROCESS à PCS
• PTHREAD_SCOPE_SYSTEM à SCS

• pthread defines two functions

• pthread_attr_setscope(pthread_attr_t *attr, int scope)
• pthread_attr_getscope(pthread_attr_t *attr, int *scope)

Contention scope with pthread

• pthread identifies the following contention scope values

• PTHREAD_SCOPE_PROCESS à PCS
• PTHREAD_SCOPE_SYSTEM à SCS

• pthread defines two functions

• pthread_attr_setscope(pthread_attr_t *attr, int scope)
• pthread_attr_getscope(pthread_attr_t *attr, int *scope)

• scope can be:

• PTHREAD_SCOPE_PROCESS
• PTHREAD_SCOPE_SYSTEM

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

Thread cancellation with pthread

• Terminates a thread before it has completed

• pthread_cancel(pthread_t tid)

Thread cancellation with pthread

• Terminates a thread before it has completed
• pthread_cancel(pthread_t tid)

• The exact effect of calling pthread_cancel depends

• How the target thread is set up to handle the request
• Basically this invoks something called a signal

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

Signal handling
• Signals are used in UNIX systems to notify a process that a

particular event has occurred.

Signal handling
• Signals are used in UNIX systems to notify a process that a

particular event has occurred.

• A signal handler is used to process signals

• Signal is generated by particular event

• Signal is delivered to a process

• Signal is handled by signal handlers

Signal handling
• Signals are used in UNIX systems to notify a process that a

particular event has occurred.

• A signal handler is used to process signals

• Signal is generated by particular event

• Signal is delivered to a process

• Signal is handled by signal handlers

• Every signal has a default handler that kernel runs when handling
signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

So, signals and interrupts are similar,
right?
Not exactly!

So, signals and interrupts are similar,
right?
Not exactly!

• Interrupts are used for
communication between CPU
and OS

• signals are used for
communication between CPU
and OS

So, signals and interrupts are similar,
right?
Not exactly!

• Interrupts are used for
communication between CPU
and OS

• Initiated by CPU (page fault),
devices (input available), CPU
instr. (syscalls)

• signals are used for
communication between CPU
and OS

• Initiated by kernel or by process.

So, signals and interrupts are similar,
right?
Not exactly!

• Interrupts are used for
communication between CPU
and OS

• Initiated by CPU (page fault),
devices (input available), CPU
instr. (syscalls)

• Eventually managed by CPU,
which interrupts the current
task and invokes kernel
provided ISR

• signals are used for
communication between CPU
and OS

• Initiated by kernel or by process.

• Eventually managed by kernel
which delivers them to the target
process (using either default or
user provided routine)

So, signals and interrupts are similar,
right?
Not exactly!

• Interrupts are used for
communication between CPU
and OS

• Initiated by CPU (page fault),
devices (input available), CPU
instr. (syscalls)

• Eventually managed by CPU,
which interrupts the current
task and invokes kernel
provided ISR

• signals are used for
communication between CPU
and OS

• Initiated by kernel or by process.

• Eventually managed by kernel
which delivers them to the target
process (using either default or
user provided routine)

ctrl-c sends a signal SIGINT, is it signal or interrupt?

Some of the POSIX signals

• SIGABRT à Abort

• SIGBUS à Bus error

• SIGIILL à Illegal instr.

• SIGKILL à Kill process

• SIGQUIT à Terminal quit

• SIGSEGV à Invalid memory reference

• SIGUSR1/ SIGUSR2 à user defined signal

• SIGINT à Interrupt (ctrl-c)

Let’s write a signal handler
#include<stdio.h>
#include<signal.h>
#include<unistd.h>

void sig_handler(int signo){
if(signo == SIGINT)

printf("\n Received SIGINT\n");
}

void main(){
signal(SIGINT, sig_handler);
while(1)

sleep(1);

}

How to send signal to a specific
process?
// via c code

kill(pid_t pid, int signal);

//via shell

kill -signalNumber <pid>

kill -signalName <pid>

kill –s signalName <pid>

How to send signal to a specific
thread?
Sending signal to a specific thread of same process

pthread_kill(pthread_t tid, int signal)

Today’s class

• A recap of pthread

• Thread scheduling

• Thread cancellation

• Signal handling

• Thread mutex

General working principle

acquire mutex

while (condition is true)

wait on condition variable

perform computation on shared variable

update conditional;

signal sleeping thread(s)

Release mutex

pthread mutex

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t

*attr);
int pthread_mutex_destroy(pthread_mutex_t
*mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t
*mutex);

Used for protecting (locking) shared variables

pthread conditional
variables

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t

*attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_singal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Example

…
pthread_mutex_lock (&m);
…
while (WAITING_CONDITION_IS_TRUE)

pthread_cond_wait (&var_this_thread, &m);
/* now execute*/
…
pthread_mutex_unlock (&m);
pthread_cond_signal (&var_other_thread);
…

Next class

• Process synchronization

