
Multithreading

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

But first, we will do some problem

solving and recap

Scheduling criteria
• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution per
time unit

• Turnaround time – amount of time to execute a particular process

• Waiting time – amount of time a process has been waiting in the
ready queue

• Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for
time-sharing environment)

• Burst time – amount of time a process is executed

Recap: Multi level feedback queue
• Three queues:

• Q0 – RR with time quantum (!) 8
ms

• Q1 – RR with ! = 16ms

• Q2 – FCFS

• A process in Q1 can execute only when Q0 is empty

• A process in Q0 can pre-empt a process in Q1 or Q2

• If the CPU burst of a process exceeds ! its moved to lower priority queue

Issue with Multi level feedback queue
scheduling
• Long running processes may starve

• Permanent demotion of priority hurts processes that change
their behavior (e.g., lots of computation only at beginning)

• Eventually all long-running processes move to FCFS

Issue with Multi level feedback queue
scheduling
• Long running processes may starve

• Permanent demotion of priority hurts processes that change
their behavior (e.g., lots of computation only at beginning)

• Eventually all long-running processes move to FCFS

• Solution

• periodic priority boost: all processes moved to high priority
queue

• Priority boost with aging: recompute priority based on
scheduling history of a process

Ex 1: First Come First Serve scheduling
(FCFS)

Example 1

Draw Gantt chart and calculate average waiting time for two
schedules: P1, P2, P3 and P2, P3, P1 (Ans: 17 ms and 3 ms)

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

Ex 2: Another FCFS

Example 2

Draw Gantt chart and calculate average waiting time

(Ans: 11/5 ms)

Process P1 P2 P3 P4 P5
Arrival
time

0 2ms 3ms 5ms 9ms

CPU
burst

3ms 3ms 2ms 5ms 3ms

Ex 3: SJF

What is the SJF schedule and corresponding wait time?

Compare with the following FCFS schedule: P1, P2, P3, P4

(Ans: SJF – 7 ms and FCFS – 10.25 ms)

Process P1 P2 P3 P4
Arrival
time

0 0 0 0

CPU burst 6ms 8ms 7ms 3ms

Ex 4: Shortest remaining time first

• Pre-emptive version of SJF

• A smaller CPU burst time process can evict a running
process

• Draw preemptive gantt chart and computing waiting time.

(Ans: 6.5 ms)

Process P1 P2 P3 P4
Arrival
time

0 1ms 2ms 3ms

CPU burst 8ms 4ms 9ms 5ms

Ex 5: Priority scheduling

• A priority is assigned to each process

• CPU is allotted to the process with highest priority

• SJF is a type of priority scheduling

What is the average waiting time?

(Ans: 8.2 ms)

Process P1 P2 P3 P4 P5
Arrival time 0 0 0 0 0
CPU burst 10ms 1ms 2ms 1ms 5ms
Priority 3 1 4 5 2

Ex 6: RR scheduling

Example:

If time quantum ! = 4 ms, then what is the avg. wait time?
(schedule P1, P2, P3,…)

(Ans: 5.66ms)

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

Try this Exercise

Compute average turnaround time for ! = 1,2,3,4,5,6,7ms

Compute average wait time for ! = 1,2,3,4,5,6,7ms

Assume the schedule is P1, P2, P3, P4

Process P1 P2 P3 P4
Arrival
time

0 0 0 0

CPU burst 6ms 3ms 1ms 7ms

Now let’s go into multithreading

Rest of today’s class

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

Rest of today’s class

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

What is a thread?
• Process is a program in execution with single thread of control

What is a thread?
• Process is a program in execution with single thread of control

• All modern OS allows process to have multiple threads of
control

What is a thread?
• Process is a program in execution with single thread of control

• All modern OS allows process to have multiple threads of
control

• Multiple tasks within an application can be implemented by
separate threads

• Update display
• Fetch data
• Spell checking
• Answer a network request

How is a thread created?

• Can be considered a basic unit of CPU utilization

• Unique thread ID, Program counter (PC), register set &
stack

How is a thread created?

• Can be considered a basic unit of CPU utilization

• Unique thread ID, Program counter (PC), register set &
stack

• Shares with other threads from same process the code
section, data section and other OS resources like open files

How is a thread created?

• Can be considered a basic unit of CPU utilization

• Unique thread ID, Program counter (PC), register set &
stack

• Shares with other threads from same process the code
section, data section and other OS resources like open files

• Essentially same virtual memory address space

• Process creation is heavy-weight while thread creation is light-
weight

Comparison: single and multi
threaded processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

Comparison: single and multi
threaded processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

Thread: The benefits
• Context switching among threads of same process is faster

• OS needs to reset/store less memory locations/registers

Thread: The benefits
• Context switching among threads of same process is faster

• OS needs to reset/store less memory locations/registers

• Responsiveness is better (important for interactive applications)

• E.g., even if part of process is busy the interface still works

Thread: The benefits
• Context switching among threads of same process is faster

• OS needs to reset/store less memory locations/registers

• Responsiveness is better (important for interactive applications)

• E.g., even if part of process is busy the interface still works

• Resource sharing is better for peer threads

• Many possible threads of activity in same address space
• Sharing variable is more efficient than pipe, shared memory

Thread: The benefits
• Context switching among threads of same process is faster

• OS needs to reset/store less memory locations/registers

• Responsiveness is better (important for interactive applications)

• E.g., even if part of process is busy the interface still works

• Resource sharing is better for peer threads

• Many possible threads of activity in same address space
• Sharing variable is more efficient than pipe, shared memory

• Thread creation:10-30 times faster than process creation

Thread: The benefits
• Context switching among threads of same process is faster

• OS needs to reset/store less memory locations/registers

• Responsiveness is better (important for interactive applications)

• E.g., even if part of process is busy the interface still works

• Resource sharing is better for peer threads

• Many possible threads of activity in same address space
• Sharing variable is more efficient than pipe, shared memory

• Thread creation:10-30 times faster than process creation

• Better scalability for multiprocessor architecture

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

Thread: The applications

• A typical application is implemented as a separate process
with multiple threads of control

• Ex 1: A web browser
• Ex 2: A web server
• Ex 3: An OS

Thread example: Web browser

• Think of a web browser (e.g., chrome)

• Thread 1: retrieve data

• Thread 2: display image or text (render)

• Thread 3: waiting for user input (your password)

• …

Thread example: Web server

• A single instance of web server (apache tomcat, nginx) may
be required to perform several similar tasks

• One thread accepts request over network
• New threads service each request: one thread per request
• The main process create these threads

Thread example: OS

• Most OS kernels are multithreaded

• Several threads operate in kernel
• Each thread performing a specific task
• E.g., managing memory, managing devices, handling

interrupts etc.

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

User threads and kernel threads
• User threads: management done by user-level threads

library

• A few well extablished primary thread libraries
• POSIX Pthreads, Windows threads, Java threads

User threads and kernel threads
• User threads: management done by user-level threads

library

• A few well extablished primary thread libraries
• POSIX Pthreads, Windows threads, Java threads

• Kernel threads - Supported by the Kernel

• Exists virtually in all general purpose OS
• Windows, Linux, Mac OS X

User threads and kernel threads
• User threads: management done by user-level threads

library

• A few well extablished primary thread libraries
• POSIX Pthreads, Windows threads, Java threads

• Kernel threads - Supported by the Kernel

• Exists virtually in all general purpose OS
• Windows, Linux, Mac OS X

As you might have guessed: Even user threads will ultimately
need kernel thread support

Multithreading Models
• There are multiple models to map users to kernel threads

• Many-to-One
• One-to-One
• Many-to-Many

Many-to-One
• Many user-level threads mapped

to single kernel thread

• Blocking one thread causes all to
block

• Multiple threads may not run in
parallel on multicore system
because only one may be in
kernel at a time

• Old model: Only few systems
currently use this model

user thread

kernel threadk

One-to-One
• Each user-level thread maps to one kernel thread

• A user-level thread creation -> a kernel thread creation

• More concurrency than many-to-one

• #threads per process sometimes restricted due to
overhead on kernel

• Windows. Linux user thread

kernel threadkkkk

Many-to-Many Model

• Allows many user level threads to be mapped to many
kernel threads

• Allows the operating system to create sufficient number of
kernel threads

• Windows with the ThreadFiber package

user thread

kernel threadkkk

• What is a thread?

• Why do you need threads?

• How are threads used in real-world?

• Multithreading models

• POSIX Pthread library

POSIX Pthread: basics

• May be provided either as user level or kernel level library

• Global data: Any variable/data declared globally are shared
among all threads of the same process

• Local data: Data local to a function (running in a thread)
are stored in thread stack

• Example:

• A separate thread in created that calculates the sum of N
natural numbers (N is an input)

• The parent thread waits for the child thread to end

Now the code
#include<stdio.h>
#include<pthread.h>

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){

}

void *runner (void *param){

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes

}

void *runner (void *param){

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread

}

void *runner (void *param){

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread
pthread_join(tid, NULL); //wait for the thread to exit

}

void *runner (void *param){

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread
pthread_join(tid, NULL); //wait for the thread to exit
printf(“\n sum = %d”, sum); // print accumulated sum

}

void *runner (void *param){

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread
pthread_join(tid, NULL); //wait for the thread to exit
printf(“\n sum = %d”, sum); // print accumulated sum

}

void *runner (void *param){
int I , N = atoi(param); // get input value
sum = 0;

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread
pthread_join(tid, NULL); //wait for the thread to exit
printf(“\n sum = %d”, sum); // print accumulated sum

}

void *runner (void *param){
int I , N = atoi(param); // get input value
sum = 0;
for(i = 1; i<=N;i++){sum = sum+i;}

}

Now the code
#include<stdio.h>
#include<pthread.h>

int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init (&attr); // get default attributes
pthread_create(&tid, &attr, runner, argv[1]); // create the thread
pthread_join(tid, NULL); //wait for the thread to exit
printf(“\n sum = %d”, sum); // print accumulated sum

}

void *runner (void *param){
int i , N = atoi(param); // get input value
sum = 0;
for(i = 1; i<=N;i++){sum = sum+i;}
pthread_exit(0); // terminate the thread

}

You can also create many threads
#include<stdio.h>
#include<pthread.h>
#define N_THR 10
Int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t mythreads[N_THR];
…
…
for (int i=0; i< N_THR; i++)

pthread_create(&mythreads[i], &attr, runner, argv[1]); // create the threads

}

void *runner (void *param){
…
}

You can also create many threads
#include<stdio.h>
#include<pthread.h>
#define N_THR 10
Int sum; // data shared over threads

void *runner (void *param); // child process calls this

int main(int argc, char *argv[]){
pthread_t mythreads[N_THR];
…
…
for (int i=0; i< N_THR; i++)

pthread_create(&mythreads[i], &attr, runner, argv[1]); // create the threads
for (int i=0; i< N_THR; i++)

pthread_join(mythreads[i], NULL); //wait for the threads to exit
printf(“\n sum = %d”, sum); // print accumulated sum

}

void *runner (void *param){
…
}

Next class

• More on POSIX Pthread library
• Thread scheduling
• Thread cancellation
• Signal handling

