
Process/CPU scheduling
(contd.)

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

The key concepts so far

• CPU burst, I/O burst
• CPU scheduler (which process should execute next)

The key concepts so far

• CPU burst, I/O burst
• CPU scheduler (which process should execute next)

• Non preemptive scheduling (a process runs uninterrupted)
• Pre-emptive scheduling (CPU forcibly taken from running

process)

The key concepts so far

• CPU burst, I/O burst
• CPU scheduler (which process should execute next)

• Non preemptive scheduling (a process runs uninterrupted)
• Pre-emptive scheduling (CPU forcibly taken from running

process)

• Dispatcher (gives control of CPU to scheduled process)

Scheduling criteria
• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution per
time unit

• Turnaround time – amount of time to execute a particular process

• Waiting time – amount of time a process has been waiting in the
ready queue

• Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for
time-sharing environment)

• Burst time – amount of time a process is executed

Scheduling algorithm optimization
criteria
• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

CPU scheduling algorithms

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 1. First Come First Serve
scheduling (FCFS)
• Non preemptive scheduling

• Process that requests CPU first is allocated the CPU first
• Ready list is maintained as a FIFO queue

Algo 1. First Come First Serve
scheduling (FCFS)
• Non preemptive scheduling

• Process that requests CPU first is allocated the CPU first
• Ready list is maintained as a FIFO queue
• Issue: Average waiting time is long

Example 1

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

Algo 1. First Come First Serve
scheduling (FCFS)
• Non preemptive scheduling

• Process that requests CPU first is allocated the CPU first
• Ready list is maintained as a FIFO queue
• Issue: Average waiting time is long

Example 1

Draw Gantt chart and calculate average waiting time for two
schedules: P1, P2, P3 and P2, P3, P1

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

Algo 1. First Come First Serve
scheduling (FCFS)
• Non preemptive scheduling

• Process that requests CPU first is allocated the CPU first
• Ready list is maintained as a FIFO queue
• Issue: Average waiting time is long

Example 1

Draw Gantt chart and calculate average waiting time for two
schedules: P1, P2, P3 and P2, P3, P1 (Ans: 17 ms and 3 ms)

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

Yet another example

Example 2

Draw Gantt chart and calculate average waiting time

Process P1 P2 P3 P4 P5
Arrival
time

0 2ms 3ms 5ms 9ms

CPU
burst

3ms 3ms 2ms 5ms 3ms

Yet another example

Example 2

Draw Gantt chart and calculate average waiting time

(Ans: 11/3 ms)

Process P1 P2 P3 P4 P5
Arrival
time

0 2ms 3ms 5ms 9ms

CPU
burst

3ms 3ms 2ms 5ms 3ms

Problems with FCFS

• Convoy effect

• A process with large CPU burst delays several process
with shorter CPU bursts

Problems with FCFS

• Convoy effect

• A process with large CPU burst delays several process
with shorter CPU bursts

• Prefers CPU bound processes

• Since burst times of I/O bound processes are small
• Lower device (e.g., I/O) utilization

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 2: Shortest Job First (SJF)

• Still non pre-emptive

• Idea: Execute the shortest processes first

• Challenge: How to know which one is “shortest”?

Algo 2: Shortest Job First (SJF)

• Still non pre-emptive

• Idea: Execute the shortest processes first

• Challenge: How to know which one is “shortest”?

• Associate with each process an estimate of the length of the
next CPU burst for the process

• When CPU is available, assign CPU to the process with
smallest estimate

SJF: example

What is the SJF schedule and corresponding wait time?

Compare with the following FCFS schedule: P1, P2, P3, P4

Process P1 P2 P3 P4
Arrival
time

0 0 0 0

CPU burst 6ms 8ms 7ms 3ms

SJF: example

What is the SJF schedule and corresponding wait time?

Compare with the following FCFS schedule: P1, P2, P3, P4

(Ans: SJF – 7 ms and FCFS – 10.25 ms)

Process P1 P2 P3 P4
Arrival
time

0 0 0 0

CPU burst 6ms 8ms 7ms 3ms

SJF: guarantee
• Optimality: The SJF algorithm minimizes the average waiting

time

• Prove it for a set of n processes which arrive at the same
time with CPU burst times t1 ≤ t2 ≤ t3 ≤ t4 … ≤ tn,
ignoring further arrivals.

SJF: guarantee
• Optimality: The SJF algorithm minimizes the average waiting

time

• Prove it for a set of n processes which arrive at the same
time with CPU burst times t1 ≤ t2 ≤ t3 ≤ t4 … ≤ tn,
ignoring further arrivals.

• Hint: Contradiction

SJF: Key issue
• How to estimate the next CPU burst time?

• A common approach is to use exponential average of the
measured length of previous CPU bursts

SJF: Key issue
• How to estimate the next CPU burst time?

• A common approach is to use exponential average of the
measured length of previous CPU bursts

!"# #$ = !"&'#ℎ)* &+, -./ 0123#
4$56 = 72"89:#"8 ;<=1")* #ℎ" &"># -./ 0123#
?ℎ"&, 4$56 = A#$ + 1 − A 4$, 0 ≤ A ≤ 1

SJF: Key issue
• How to estimate the next CPU burst time?

• A common approach is to use exponential average of the
measured length of previous CPU bursts

!"# #$ = !"&'#ℎ)* &+, -./ 0123#

4$56 = 72"89:#"8 ;<=1")* #ℎ" &"># -./ 0123#

?ℎ"&, 4$56 = A#$ + 1 − A 4$, 0 ≤ A ≤ 1

= A#$ + 1 − A A#$G6 + …+ 1 − A IA#$GI + …+ (1 − A)$564L

SJF: Key issue
• How to estimate the next CPU burst time?

• A common approach is to use exponential average of the
measured length of previous CPU bursts

!"# #$ = !"&'#ℎ)* &+, -./ 0123#

4$56 = 72"89:#"8 ;<=1")* #ℎ" &"># -./ 0123#

?ℎ"&, 4$56 = A#$ + 1 − A 4$, 0 ≤ A ≤ 1

= A#$ + 1 − A A#$G6 + …+ 1 − A IA#$GI + …+ (1 − A)$564L

A = 0 → 4$56 = 4$ → 2":"&# ℎ93#)2N ℎ<3 &) "**":#

A = 1 → 4$56 = #$ → O&=N #ℎ" P)3# 2":"&# -./ 0123# ℎ<3 "**":#

Shortest remaining time first scheduling

• Pre-emptive version of SJF

• A smaller CPU burst time process can evict a running
process

Shortest remaining time first scheduling

• Pre-emptive version of SJF

• A smaller CPU burst time process can evict a running
process

• Draw preemptive gantt chart and computing waiting time.

Process P1 P2 P3 P4
Arrival
time

0 1ms 2ms 3ms

CPU burst 8ms 4ms 9ms 5ms

Shortest remaining time first scheduling

• Pre-emptive version of SJF

• A smaller CPU burst time process can evict a running
process

• Draw preemptive gantt chart and computing waiting time.

(Ans: 6.5 ms)

Process P1 P2 P3 P4
Arrival
time

0 1ms 2ms 3ms

CPU burst 8ms 4ms 9ms 5ms

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 3. Priority scheduling

• A priority is assigned to each process

• CPU is allotted to the process with highest priority

• SJF is a type of priority scheduling

Algo 3. Priority scheduling

• A priority is assigned to each process

• CPU is allotted to the process with highest priority

• SJF is a type of priority scheduling

What is the average waiting time?

Process P1 P2 P3 P4 P5
Arrival time 0 0 0 0 0
CPU burst 10ms 1ms 2ms 1ms 5ms
Priority 3 1 4 5 2

Algo 3. Priority scheduling

• A priority is assigned to each process

• CPU is allotted to the process with highest priority

• SJF is a type of priority scheduling

What is the average waiting time?

(Ans: 8.2 ms)

Process P1 P2 P3 P4 P5
Arrival time 0 0 0 0 0
CPU burst 10ms 1ms 2ms 1ms 5ms
Priority 3 1 4 5 2

Assigning priority: static approach

• Each process has a static priority

• Large change of indefinite blocking

• Can lead to starvation

Assigning priority: dynamic approach

• Compute highest response time (RN)

!" = $%&' (%)*' +,,%-+. + 012 34,(5 5%&'
012 34,(5 5%&'

Assigning priority: dynamic approach

• Compute highest response time (RN)

!" = $%&' (%)*' +,,%-+. + 012 34,(5 5%&'
012 34,(5 5%&'

• For a waiting process

• “Time since arrival increase” -> RN increase

Assigning priority: dynamic approach

• Compute highest response time (RN)

!" = $%&' (%)*' +,,%-+. + 012 34,(5 5%&'
012 34,(5 5%&'

• For a waiting process

• “Time since arrival increase” -> RN increase

• For a short process

• “CPU burst time decrease” -> RN increase

Assigning priority in Linux

• Priority of a process is determined by nice value

• Nice value range from -20 to 19

• -20 is highest priority and 19 is lowest priority

• Default nice value is 0

Assigning priority in Linux

• Priority of a process is determined by nice value

• Nice value range from -20 to 19

• -20 is highest priority and 19 is lowest priority

• Default nice value is 0

• “nice” and “renice” used for set/change nice value

• A user can only decrease priority

• superuser can increase peiority

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 4. Round robin (RR) scheduling

• Designed for time-sharing systems

• A small unit of time, time quantum or time slice is defined

• Typically 10-100 ms

• READY queue is a circular queue in this case

• The CPU goes around each process in READY queue and
execute for 1 time slice

• A timer is set to interrupt the CPU at the end of each time slice

RR scheduling: more details

• Once a process gets the CPU two things might happen

• The process has CPU burst ≤ 1 time slice, so the process
release CPU voluntarily

RR scheduling: more details

• Once a process gets the CPU two things might happen

• The process has CPU burst ≤ 1 time slice, so the process
release CPU voluntarily

• If CPU burst is > 1 time slice then timer interrupt, context
switch, next process is loaded from READY queue

RR scheduling: more details

• Once a process gets the CPU two things might happen

• The process has CPU burst ≤ 1 time slice, so the process
release CPU voluntarily

• If CPU burst is > 1 time slice then timer interrupt, context
switch, next process is loaded from READY queue

Example:

If time quantum ! = 4 ms, then what is the avg. wait time?
(schedule P1, P2, P3,…)

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

RR scheduling: more details

• Once a process gets the CPU two things might happen

• The process has CPU burst ≤ 1 time slice, so the process
release CPU voluntarily

• If CPU burst is > 1 time slice then timer interrupt, context
switch, next process is loaded from READY queue

Example:

If time quantum ! = 4 ms, then what is the avg. wait time?
(schedule P1, P2, P3,…)
(Ans: 5.66ms)

Process P1 P2 P3
Arrival time 0 0 0
CPU burst 24ms 3ms 3ms

RR scheduling: Analysis
• n process in READY queue, time slice !

• Each process gets 1/n CPU time, each lasts for ! time or less

• Max. wait time for each process = (n - 1) (! + ")

• " = scheduling overhead

RR scheduling: Analysis
• n process in READY queue, time slice !

• Each process gets 1/n CPU time, each lasts for ! time or less

• Max. wait time for each process = (n - 1) (! + ")

• " = scheduling overhead

• Very large ! = FCFS (why?)

• Very small ! = Large number of context switch (why?)

RR scheduling: Analysis
• n process in READY queue, time slice !

• Each process gets 1/n CPU time, each lasts for ! time or less

• Max. wait time for each process = (n - 1) (! + ")

• " = scheduling overhead

• Very large ! = FCFS (why?)

• Very small ! = Large number of context switch (why?)

• Typically ! >>> " (e.g., ! = 10 ms, " = 10 µs)

Exercise

Compute average turnaround time for ! = 1,2,3,4,5,6,7ms

Compute average wait time for ! = 1,2,3,4,5,6,7ms

Assume the schedule is P1, P2, P3, P4

Process P1 P2 P3 P4
Arrival
time

0 0 0 0

CPU burst 6ms 3ms 1ms 7ms

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 5. Multi level queue scheduling

• Ready queue is partitioned into separate queues, eg:

• foreground (interactive)

• background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm

Algo 5. Multi level queue scheduling

• Ready queue is partitioned into separate queues, eg:

• foreground (interactive)

• background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm

• Scheduling must be done between the queues:

• Fixed priority scheduling: serve all from foreground then from
background. Possibility of starvation.

Algo 5. Multi level queue scheduling

• Ready queue is partitioned into separate queues, eg:

• foreground (interactive)

• background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm

• Scheduling must be done between the queues:

• Fixed priority scheduling: serve all from foreground then from
background. Possibility of starvation.

• Time slice: each queue gets a certain amount of CPU time which it
can schedule amongst its processes; i.e., 80% to foreground in RR,
20% to background in FCFS

Multi level queues

Today’s class

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Algo 6. Multi level feedback queue
scheduling
• We allow processes to move between queues

• I/O bound and interactive processes in high priority queue

• A process waiting too long in lower priority queue will move to
a higher priority queue

• Avoids starvation

Multi level feedback queue: Example
• Three queues:

• Q0 – RR with time quantum (!) 8
ms

• Q1 – RR with ! = 16ms

• Q2 – FCFS

Multi level feedback queue: Example
• Three queues:

• Q0 – RR with time quantum (!) 8
ms

• Q1 – RR with ! = 16ms

• Q2 – FCFS

• A process in Q1 can execute only when Q0 is empty

Multi level feedback queue: Example
• Three queues:

• Q0 – RR with time quantum (!) 8
ms

• Q1 – RR with ! = 16ms

• Q2 – FCFS

• A process in Q1 can execute only when Q0 is empty

• A process in Q0 can pre-empt a process in Q1 or Q2

Multi level feedback queue: Example
• Three queues:

• Q0 – RR with time quantum (!) 8
ms

• Q1 – RR with ! = 16ms

• Q2 – FCFS

• A process in Q1 can execute only when Q0 is empty

• A process in Q0 can pre-empt a process in Q1 or Q2

• If the CPU burst of a process exceeds ! its moved to lower priority queue

Issue with Multi level feedback queue
scheduling
• Long running processes may starve

• Permanent demotion of priority hurts processes that change
their behavior (e.g., lots of computation only at beginning)

• Eventually all long-running processes move to FCFS

Issue with Multi level feedback queue
scheduling
• Long running processes may starve

• Permanent demotion of priority hurts processes that change
their behavior (e.g., lots of computation only at beginning)

• Eventually all long-running processes move to FCFS

• Solution

• periodic priority boost: all processes moved to high priority
queue

• Priority boost with aging: recompute priority based on
scheduling history of a process

Summary

• Algo 1: First come first serve (FCFS)

• Algo 2: Shortest job first (SJF)

• Algo 3: Priority scheduling

• Algo 4: Round robin scheduling

• Algo 5: Multi level queue scheduling

• Algo 6: Multi level feedback queue scheduling

Next class

• Multithreading

