
Process (contd.)

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

So far on processes

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

Process Representation in Linux
Represented by the C structure task_struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this pro */

Doubly
linked list

Process scheduling

Process scheduling

• The process scheduler selects an available
process for execution on the CPU

• Dispatcher: The kernel process that assigns CPU to a
process

Recap: Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

I/O or event waitI/O or event
completion

exit

Recap: Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

I/O or event waitI/O or event
completion

exit
Job queue

Recap: Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

I/O or event waitI/O or event
completion

exit
Job queue

Ready queue

Recap: Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

I/O or event waitI/O or event
completion

exit
Job queue

Ready queue

Device queue

Process scheduling

• Several scheduling queues exist in OS
• A PCB is linked to one of the queues at any given tome
• The PCBs in a queue are connected as a linked list

Structure of process queues

Structure of process queues

Structure of process queues

Structure of process queues

Structure of process queues

Characteristics of process queues

• Each I/O device has its own device queue
• Each event also has its own queue

• Process scheduling can be represented as a queueing
diagram
• Queueing diagram represents queues, resources, flows
• We will discuss actual scheduling algorithm later

Representation of process scheduling

Representation of process scheduling

Operations on processes

Process creation

• During execution a process may create several new processes
• Each process has a unique process identifier (pid)
• Other than the first process (init), all other processes are created

by fork system call
• Parent process create children processes, which, in turn create

other processes, forming a tree of processes

Process creation (contd.)

• Address space

• Child duplicate of parent

• Child has a program loaded into it

• UNIX example

• fork() : creates a new process

• exec(): replace new process’s memory with new code

Process creation (contd.)

• Address space

• Child duplicate of parent

• Child has a program loaded into it

• UNIX example

• fork() : creates a new process

• exec(): replace new process’s memory with new code

pid > 0

pid = 0

Process creation example

Error condition

child process

parent process

Process termination

• A child process executes last statement

• exit() call for deleting the process

• return status data from child to parent via wait()

• Deallocate the resources

Process termination

• A child process executes last statement

• exit() call for deleting the process

• return status data from child to parent via wait()

• Deallocate the resources

Child process
.
.
exit(2) // Exit with status code

Parent process
pid_t pid;
Int status;
.
pid = wait (&status) // pid of
terminated child

Process termination: Corner cases

• In some OS
• All child must terminate when a process terminates
• Cascading termination: All children, grandchildren

etc. must be terminated
• OS takes care of this cascade

• Combinations of exit() and wait()
• If no parent is waiting then zombie process
• If parent terminated without invoking wait then

orphan process

Zombie and orphan process

• Zombie process

• A process that has terminated, but who parent had not
not yet called wait()

• All processes move to this state when they terminate and
remain there until parent calls wait()

• Entry in process table removed only after calling wait()

Zombie and orphan process

• Zombie process
• A process that has terminated, but who parent had not

not yet called wait()
• All processes move to this state when they terminate and

remain there until parent calls wait()
• Entry in process table removed only after calling wait()

• Orphan process
• parent terminated without invoking wait
• Immediately “init” process assigned as parent
• “init” periodically invokes wait()

Inter-process communication (IPC)

• Processes executing concurrently in OS may be
independent or cooperating

• Cooperating process
• Affect or be affected by other processes, e.g., sharing data

Inter-process communication (IPC)

• Processes executing concurrently in OS may be
independent or cooperating

• Cooperating process
• Affect or be affected by other processes, e.g., sharing data
• Can share information
• Speed-up in computation
• Design can be modular

Inter-process communication (IPC)

• Processes executing concurrently in OS may be
independent or cooperating

• Cooperating process
• Affect or be affected by other processes, e.g., sharing data
• Can share information
• Speed-up in computation
• Design can be modular

• Cooperating processes need IPC
• shared memory
• Message passing

Inter-process communication (IPC)

• Ways to do IPC
• way 1: shared memory - shmget(), shmcat(), shmaddr(),

shmat(), shmdt(), shmctl()
• way 2: message passing (pipe) - pipe(), read(), write(), close()
• way 3: message passing (named pipe) - mkfifo(), read(),

write(), close()
• way 4: Over network - RPC or Remote Procedure Call,

sockets

Shared memory system

Schematic for shared memory

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Let’s check the function calls
char *myseg;

key_t key; int shmid;

key = 235; // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666);

myseg = shmat(shmid, NULL, 0);
.
.
shmdt(myseg);
.
.
shmctl(shmid, IPC_RMID, NULL);

Let’s check the function calls
char *myseg;

key_t key; int shmid;

key = 235; // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666); // create shared memory segment

myseg = shmat(shmid, NULL, 0);
.
.
shmdt(myseg);
.
.
shmctl(shmid, IPC_RMID, NULL);

Let’s check the function calls
char *myseg;

key_t key; int shmid;

key = 235; // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666); // create shared memory segment

myseg = shmat(shmid, NULL, 0); // attach the segment to the
// address space of this process

.

.
shmdt(myseg);
.
.
shmctl(shmid, IPC_RMID, NULL);

Let’s check the function calls
char *myseg;

key_t key; int shmid;

key = 235; // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666); // create shared memory segment

myseg = shmat(shmid, NULL, 0); // attach the segment to the
// address space of this process

.

.
shmdt(myseg); // detach the segment from the address space
.
.
shmctl(shmid, IPC_RMID, NULL);

Let’s check the function calls
char *myseg;

key_t key; int shmid;

key = 235; // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666); // create shared memory segment

myseg = shmat(shmid, NULL, 0); // attach the segment to the
// address space of this process

.

.
shmdt(myseg); // detach the segment from the address space
.
.
shmctl(shmid, IPC_RMID, NULL); // mark the segment to be destroyed

Producer consumer problem

• A producer process produces information that is
consumed by the consumer process

• Compiler produces assembly code consumed by assembler

• Program produces lines to print, print spool consumes

• The information is read/write from a buffer

Producer consumer problem

• A producer process produces information that is
consumed by the consumer process

• Compiler produces assembly code consumed by assembler

• Program produces lines to print, print spool consumes

• The information is read/write from a buffer

• Two variants

• Bounded buffer

• Unbounded buffer

Producer consumer problem

• A producer process produces information that is
consumed by the consumer process

• Compiler produces assembly code consumed by assembler

• Program produces lines to print, print spool consumes

• The information is read/write from a buffer

• Two variants

• Bounded buffer

• Unbounded buffer

• Bounded buffer : producer waits when buffer is full,
consumer waits when buffer is empty

Producer consumer solution with
bounded buffer

6

• Shared data: implemented as a circular array

#define BUFFER_SIZE 10
typedef struct {

. . . // information to be shared
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

inout
0

6

Key ideas

8

• Circular buffer

• Index in: the next position to write to

• Index out: the next position to read from

• To check buffer full or empty:

• Buffer empty: in==out

• Buffer full: in+1 % BUFFER_SIZE == out

• Why ? There is still one slot left …

Pseudo code

7

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing -- no free buffers */

buffer[in] = newProducedItem;

in = (in + 1) % BUFFER SIZE;

}

while (true) {
while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer
itemToConsume = buffer[out];
out = (out + 1) % BUFFER SIZE;
return itemToComsume;

}

Producer

Consumer

Solution is correct, but can only use
BUFFER_SIZE-1 elements

inout

7

Better utilization of buffer space

9

• Circular buffer

• Suppose that we want to use all buffer space:

• an integer count: the number of filled buffers

• Initially, count is set to 0.

• incremented by producer after it produces a new
buffer

• decremented by consumer after it consumes a buffer.

Better utilization of buffer space: Pseudo
code

10

Producer

while (true) {

/* produce an item

and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

Consumer
while (true) {

while (count == 0)
; // do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in
nextConsumed */

}

Message passing system

Basics of message passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:

– send(message)

– receive(message)

• The message size is either fixed or variable

Communication model

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Ways for message passing

• Pipes

• Named pipes

• Covered in last class

• Also in the assignments

Finally for communication of two
processes over network
• Sockets API

• Remote procedure call

Summary

• What is a process?
• Structure of a process
• Process states
• Process control block
• Context switch

• Why is process scheduling necessary?
• Ready queues, event queues, queueing diagram

• How does two processes talk?
• Shared memory, pipe, named pipe

