Process (contd.)

Indranil Sen Gupta (odd section)

and Mainack Mondal (even section)
CS39002

Spring 2019-20

So far on processes

« \What is a process”

» Structure of a process
 Process states
 Process control block

 Context switch

Process Representation in Linux

Represented by the C structure task_struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */

N . Wi
DOUbly struct task_struct siruct task_struct gtruct task struct
|inked ||St process information process information o« s e process informaton
L] - &
L T X_S R _S
current

(cumantly exaculing proccess)

Process scheduling

Process scheduling

* The process scheduler selects an available
process for execution on the CPU

 Dispatcher: The kernel process that assigns CPU to a
process

Recap: Process state diagram

Terminated
Interrupt
& exit
Ready
Scheduler

Dispacher
I/O or event /O or event wait
completio l

Recap: Process state diagram

Terminated
Interrupt
¢ /e:(it
Scheduler

Dispacher
I/O or event /O or event wait
completio l

Recap: Process state diagram

Terminated
Interrupt
/e;it
Job queue Ready :
Scheduler

Ready queue Dispacher

|/O or event 1/O or event wait
completlo

Recap: Process state diagram

Terminated
Interrupt
/e;it
Job queue Ready :
Scheduler

Ready queue Dispacher

|/O or event 1/O or event wait
completlo

Device queue

Process scheduling

» Several scheduling queues exist in OS

« A PCB is linked to one of the queues at any given tome
* The PCBs in a queue are connected as a linked list

Structure of process queues

queue header PCB, PCB,
ready | head > > —=
o N \\l’egjrs/ regiSters

Structure of process queues

ready
queue

mag
tape
unit 0

queue header

head

PCB,

tail \

head —+——

tail -+

PCB,

registers

Y

registers

1k

Structure of process queues

queue header PCB, PCB,
ready head > > —=
queue tail registers registers
L L

mag head +——=

tape : -
unit 0 tal =

mag head +——=

tape : -
unit 1 tail =

Structure of process queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

queue header

head

PCB,

tail

N

head

tail

head

tail

PCB,

registers

PCB,

. J(

PCB,,

——

registers

PCBg

\

head

/

tail

|

Structure of process queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head > » B
tail registers registers
head -ﬁ-_/
tail =
head +—=
=T PCB, PCB,, PCBg
/ —_— 3 =
head 4
PCB;
head > T
@l A+

Characteristics of process queues

» Each I/0O device has its own device queue
» Each event also has its own queue

* Process scheduling can be represented as a queueing
diagram
* Queueing diagram represents queues, resources, flows
* We will discuss actual scheduling algorithm later

Representation of process scheduling

Representation of process scheduling

5| ready queue CPU g
l/O queue [—— /O request ——

time slice E

expired

interrupt wait for an
OCCUrs interrupt

child fork a
@7 child <

Operations on processes

Process creation

 During execution a process may create several new processes

» Each process has a unique process identifier (pid)

» Other than the first process (init), all other processes are created
by fork system call

» Parent process create children processes, which, in turn create
other processes, forming a tree of processes

Process creation (contd.)

« Address space

 Child duplicate of parent

 Child has a program loaded into it
« UNIX example

 fork() : creates a new process
» exec(): replace new process’s memory with new code

Process creation (contd.)

« Address space
 Child duplicate of parent
 Child has a program loaded into it

« UNIX example
 fork() : creates a new process
» exec(): replace new process’s memory with new code

parent : resumes
wait 3

Process creation example

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{
pid.t pid;

/* fork a child process */
pid = fork();

it i < 0 { EEIIEIIIY

fprintf (stderr, "Fork Failed")
return 1;

})
else if (pid == 0) { child process

execlp("/bin/1s","1s" ,NULL) ;

}
"
/* parent will wait for the child to complete */

wait (NULL);
printf("Child Complete");

}

return 0;

Process termination

e A child process executes last statement
« exit() call for deleting the process
* return status data from child to parent via wait()
« Deallocate the resources

Process termination

e A child process executes last statement
« exit() call for deleting the process
* return status data from child to parent via wait()
« Deallocate the resources

Child process Parent process
pid_t pid;
Int status;

exit(2) // Exit with status code ,
pid = wait (&status) // pid of
terminated child

Process termination: Corner cases

* In some OS
« All child must terminate when a process terminates

« (Cascading termination: All children, grandchildren
etc. must be terminated

 (OS takes care of this cascade

« (Combinations of exit() and wait()

* |f no parent is waiting then zombie process

« |f parent terminated without invoking wait then
orphan process

Zombie and orphan process

e ZOmbie process

« A process that has terminated, but who parent had not
not yet called wait()

» All processes move to this state when they terminate and
remain there until parent calls wait()

« Entry in process table removed only after calling wait()

Zombie and orphan process

e ZOmbie process

« A process that has terminated, but who parent had not
not yet called wait()

» All processes move to this state when they terminate and
remain there until parent calls wait()

« Entry in process table removed only after calling wait()

* Orphan process
« parent terminated without invoking wait

« Immediately “init” process assigned as parent
* “init” periodically invokes wait()

Inter-process communication (IPC)

* Processes executing concurrently in OS may be
Independent or cooperating

« (Cooperating process
« Affect or be affected by other processes, e.g., sharing data

Inter-process communication (IPC)

* Processes executing concurrently in OS may be
Independent or cooperating
« (Cooperating process
« Affect or be affected by other processes, e.g., sharing data
« (Can share information
o Speed-up in computation
* Design can be modular

Inter-process communication (IPC)

* Processes executing concurrently in OS may be
Independent or cooperating
« (Cooperating process
« Affect or be affected by other processes, e.g., sharing data
« (Can share information
o Speed-up in computation
* Design can be modular

« Cooperating processes need |IPC
e shared memory
« Message passing

Inter-process communication (IPC)

 Ways to do IPC

way 1: shared memory - shmget(), shmcat(), shmaddr(),
shmat(), shmdt(), shmctl()

way 2: message passing (pipe) - pipe(), read(), write(), close()

way 3: message passing (named pipe) - mkfifo(), read(),
write(), close()

way 4: Over network - RPC or Remote Procedure Call,
sockets

Shared memory system

Schematic for shared memory

process A
|: shared memory

process B :I

kernel

Let’s check the function calls

char *mysesg;

key_t key; int shmid,

key = 235, // some unique id

shmid = shmget(key, 250, IPC_CREAT | 0666);

myseg = shmat(shmid, NULL, O);
shmdt(myseg);

shmectl(shmid, IPC_RMID, NULL);

Let’s check the function calls

char *mysesg;

key_t key; int shmid,

key = 235, // some unique id

shmid = shmget(key, 50, IPC_CREAT | 0666); // create shared memory segment

myseg = shmat(shmid, NULL, O);
shmdt(myseg);

shmectl(shmid, IPC_RMID, NULL);

Let’s check the function calls

char *mysesg;
key_t key; int shmid,
key = 235, // some unique id
shmid = shmget(key, 50, IPC_CREAT | 0666); // create shared memory segment
myseg = shmat(shmid, NULL, O); // attach the segment to the
// address space of this process

shmdt(myseg);

shmectl(shmid, IPC_RMID, NULL);

Let’s check the function calls

char *mysesg;

key_t key; int shmid,

key = 235, // some unique id

shmid = shmget(key, 50, IPC_CREAT | 0666); // create shared memory segment
myseg = shmat(shmid, NULL, O); // attach the segment to the

// address space of this process

shmdt(myseg); // detach the segment from the address space

shmectl(shmid, IPC_RMID, NULL);

Let’s check the function calls

char *mysesg;
key_t key; int shmid,
key = 235, // some unique id
shmid = shmget(key, 50, IPC_CREAT | 0666); // create shared memory segment
myseg = shmat(shmid, NULL, O); // attach the segment to the
// address space of this process

shmdt(myseg); // detach the segment from the address space

shmectl(shmid, IPC_RMID, NULL); // mark the segment to be destroyed

Producer consumer problem

« A producer process produces information that is
consumed by the consumer process

« Compiler produces assembly code consumed by assembler
« Program produces lines to print, print spool consumes
« The information is read/write from a buffer

Producer consumer problem

« A producer process produces information that is
consumed by the consumer process

« Compiler produces assembly code consumed by assembler
« Program produces lines to print, print spool consumes
« The information is read/write from a buffer

 [wo variants
 Bounded buffer
e Unbounded buffer

Producer consumer problem

« A producer process produces information that is
consumed by the consumer process

« Compiler produces assembly code consumed by assembler
« Program produces lines to print, print spool consumes
« The information is read/write from a buffer

 [wo variants
 Bounded buffer
e Unbounded buffer

* Bounded buffer : producer waits when buffer is full,
consumer waits when buffer is empty

Producer consumer solution with
bounded buffer

Shared data: implemented as a circular array

unprocessed

#define BUFFER_SIZE 10 data
typedef struct {

... // information to be shared peiion

out AN

} item;

item buffer[BUFFER_SIZE];
int in = 0;

int out = O;

write

Key ideas

» Circular buffer

Index in: the next position to write to

Index out: the next position to read from
« Jo check buffer full or empty:

Buffer empty: in==out

Buffer full: in+1 % BUFFER_SIZE == out

Why ? There is still one slot left ...

Pseudo code

unprocessed
data

in

write
_—Position

while gtrue) { .
/* Produce an item */

while (C (in + 1) % BUFFER_SIZE) == out)

; /% do nothing -- no free buffers */
buffer[in] = newProducedItem;
Producer
in = (in + 1) % BUFFER SIZE;

}

while (true) {
while (in == out)
; // do nothing -- nothing to consume
// remove an item from the buffer Consumer
1temToConsume = buffer[out];
out = (out + 1) % BUFFER SIZE;
return itemToComsume;

Solution is correct, but can only use
BUFFER_SIZE-1 elements

Better utilization of buffer space

» Circular buffer
« Suppose that we want to use all buffer space:

an integer count: the number of filled buffers
Initially, count is set to O.

iIncremented by producer after it produces a new
buffer

decremented by consumer after it consumes a buffer.

Better utilization of buffer space: Pseudo

code

Producer
while (true) {
/* produce an item
and put in nextProduced */
while (count == BUFFER_SIZE)
; // do nothing
buffer [in] = nextProduced,;
in = (in + 1) % BUFFER_SIZE;

count++;

10

Consumer

while (true) {

while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in

nextConsumed */

Message passing system

Basics of message passing

* Mechanism for processes to communicate and to synchronize
their actions

« Message system — processes communicate with each other
without resorting to shared variables

« |PC facility provides two operations:

— send(message)
— receive(message)

* The message size is either fixed or variable

Communication model

process A

process B

message queue

—> M

M

Mo

Mg ...

Mp

kernel

Ways for message passing

* Pipes
 Named pipes

 Covered in last class
« Also in the assignments

Finally for communication of two

processes over network
« Sockets API

* Remote procedure call

Summary

* What is a process”

» Structure of a process
* Process states
* Process control block

« Context switch
* Why is process scheduling necessary?

* Ready queues, event queues, queueing diagram

* How does two processes talk?

« Shared memory, pipe, named pipe

