
Process

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

What is a process?

• A process is a program in execution

• Recall multitasking

• Several processes may be in various stages of
execution at same time

What is a process?

• A process is a program in execution

• Recall multitasking

• Several processes may be in various stages of
execution at same time

• CPU switches between several processes

• We say that processes are executing concurrently

• CPU multiplexed

Job scheduling and process scheduling

• Job scheduling

• In batch processing or multiprogramming user
programs are called jobs

• Long term scheduler

• Process scheduling

• Short term scheduler

Job scheduling and process scheduling

• Job scheduling

• In batch processing or multiprogramming user
programs are called jobs

• Long term scheduler

• Process scheduling

• Short term scheduler

Check the board

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

What are parts of a process?

Text Program code

What are parts of a process?

Text

data

Program code

Global variable

What are parts of a process?

Text

data

heap

Program code

Global variable

Dynamically allocated memory

What are parts of a process?

Text

data

heap

Stack

Program code

Global variable

Dynamically allocated memory

Temporary data,
function parameters,
local variables, return addresses

What are parts of a process?

Text

data

heap

Stack

Program code

Global variable

Dynamically allocated memory

Temporary data,
function parameters,
local variables, return addresses

What are parts of a process?

Text

data

heap

Stack

Program code

Global variable

Dynamically allocated memory

Temporary data,
function parameters,
local variables, return addresses

Also
Program
counter (PC),
CPU registers,
open files

Characteristics of a process

• Program is a passive entity

• Process is an active entity

• Program becomes process when the code is loaded
in the memory and ready to execute

• Each execution instance of the same program is a
separate process

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

You can think process execution as an
automata
• States

• new: The process is being created

• running: Instructions are being executed

• waiting: The process is waiting for some event to occur

• ready: The process is waiting to be assigned to a
processor

• terminated: The process has finished execution

• Additionally there is “swap space”

• Resides in the disk

• Swap-out and swap-in between main memory and disk

Process state diagram

New

Process state diagram

New

Ready

Process state diagram

New

Ready Running
Scheduler
Dispacher

Process state diagram

New

Ready Running

Terminated

exit

Scheduler
Dispacher

Process state diagram

New

Ready Running

Terminated

exit

Scheduler
Dispacher

Interrupt

Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

I/O or event waitI/O or event
completion

exit

Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

Swapped
out ready

I/O or event waitI/O or event
completion

exit

swap out

Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

Swapped
out ready

Swapped
out waiting

I/O or event waitI/O or event
completion

exit

swap out

Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

Swapped
out ready

Swapped
out waiting

I/O or event
completion

I/O or event waitI/O or event
completion

exit

swap out

Process state diagram

New

Ready Running

Waiting

Terminated
Interrupt

Scheduler
Dispacher

Swapped
out ready

Swapped
out waiting

I/O or event
completion

I/O or event waitI/O or event
completion

exit

swap out

swap in

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

Process control block (PCB)

• Each process is represented in the kernel as a PCB

• Also called task control block

• Contains many pieces of information associated with a
specific process

Structure of a PCB
• Process state – running, waiting, etc

• Program counter (PC) – location of
instruction to next execute

• Content of CPU registers

• CPU scheduling information- priorities,
scheduling queue pointers

• Memory-management information –Base
and limit registers, page tables

• Accounting information – CPU used, clock
time elapsed since start, time limits, pid

• I/O status information – I/O devices,
allocated to process, list of open files

Structure of a PCB
• Process state – running, waiting, etc

• Program counter (PC) – location of
instruction to next execute

• Content of CPU registers

• CPU scheduling information- priorities,
scheduling queue pointers

• Memory-management information –Base
and limit registers, page tables

• Accounting information – CPU used, clock
time elapsed since start, time limits, pid

• I/O status information – I/O devices,
allocated to process, list of open files

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

CPU runs multiple processes

A

C

D

CPU’s point of view

B

B

CPU runs multiple processes

A

C

D

CPU’s point of view

A
B C D

process point of view

B

B

CPU runs multiple processes
• Multiprogramming of four

programs

• Conceptual model

– 4 independent processes
– Processes run sequentially

• Only one program active at any
instant!
– That instant can be very

short…

A

C

D

CPU’s point of view

A
B C D

process point of view

B

B

CPU runs multiple processes
• Multiprogramming of four

programs

• Conceptual model

– 4 independent processes
– Processes run sequentially

• Only one program active at any
instant!
– That instant can be very

short…

A

C

D

CPU’s point of view

A
B C D

process point of view

B

B

A
B
C
D

Time

Gantt chart for multiprogramming

How to interleave processes?

• CPU switches to another process
• the system saves the state of the old process and load

the saved state for the new process via a context
switch

• Context of a process == PCB
• More complex the OS and PCB, longer to switch

Context switch

Process P1 kernel Process P2

running

idle

Context switch

Process P1 kernel Process P2

running

idle

idle
Save state in PCB 1

Context switch

Process P1 kernel Process P2

running

idle

idle
Save state in PCB 1

Restore state from PCB 2

Context switch

Process P1 kernel Process P2

running

idle

idle

executing

Save state in PCB 1

Restore state from PCB 2

Context switch

Process P1 kernel Process P2

running

idle

running

idle

idle

executing

Save state in PCB 1

Restore state from PCB 2

Save state in PCB 2

Restore state from PCB 1

Today’s class

• What is a process?

• Structure of a process

• Process states

• Process control block

• Context switch

Process scheduling and
operations

• We will look at process scheduling the next day

• Today let’s look at an operation

pipes()

• Acts as a medium to allow two processes to
communicate

• Communication can be uni/bi directional

• Must there exist a relationship (i.e., parent-child)
between the communicating processes?

• Can the pipes be used over a network?

Ordinary pipes

• A message passing medium between related
processes
• Cannot be accessed from outside the process
• Typically, a parent process creates a pipe and uses it to

communicate with its child process
• Pipes behave like FIFO queues
• Read-write in pipe == producer-consumer
• Producer writes to one end (the write-end of pipe)
• Consumer reads from the other end (the read-end of pipe)
• Unidirectional

Producer consumer in pipes

message next_produced;
while(TRUE){

<produce and put data in next produced>
...
send(next_produced);

}

message next_consumed;
while(TRUE){

receive(next_consumed);
…
<data in next consumed>

}

Producer Consumer

Named pipes

• Accessed as files by processes
• No parent child relation is necessary
• Still behave like FIFO queues (even called fifo)
• Several processes can use the named pipe

Named pipes

• Accessed as files by processes
• No parent child relation is necessary
• Still behave like FIFO queues (even called fifo)
• Several processes can use the named pipe

char myfifo = ‘/tmp/myfifo’;
mkfifo (myfifo, 0666); // creates the fifo or named pipe
…
fd = open(myfifo, O_WRONLY); // Process A
write(fd, …); // Process A
close(fd); // Process A
…
fd = open(myfifo, O_RDONLY); // Process B
read(fd, …); // Process B
close(fd); // Process B

