
Syscalls

Indranil Sen Gupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20

The story so far

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some practice problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer

Today’s class

• System calls

• Some practice problems

• Start of processes

System calls

What are system calls?
• The mechanism used by an application program to

request service from the operating system

• So how does it work?

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table

• Whenever a syscall (interrupt driven) came

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table

• Whenever a syscall (interrupt driven) came

• Kernel selected syscall placing index in eax register

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table

• Whenever a syscall (interrupt driven) came

• Kernel selected syscall placing index in eax register
• Arguments go in the other registers

Earlier days: interrupt
• Originally, system calls issued using “int” instruction

• Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

• The handler routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table

• Whenever a syscall (interrupt driven) came

• Kernel selected syscall placing index in eax register
• Arguments go in the other registers
• Return value goes in eax

However it is slow

• Today, Processors are totally pipelined

• Pipeline stalls are very expensive

• Cache misses can cause pipeline stalls

• Now recall that IDT is in memory

• May not be in cache

• Makes it expensive

Idea: new instruction

• What if we cache the IDT entry for a system call in a
special CPU register?

• No more cache misses for the IDT!

• What is the cost?

Idea: new instruction

• What if we cache the IDT entry for a system call in a
special CPU register?

• No more cache misses for the IDT!

• What is the cost?

• system calls should be frequent enough to be worth
the transistor budget

How to leverage the new instruction?

• There is a machine instruction (new architectures)

• Essentially for asking your processor to perform task
• Hardware specific
• Can be called “syscall”, “trap”, “svc”, “swi”
• For x86-64 architecture its called “syscall”

Example: How are system calls used in
kernel
• syscall machine instruction takes operands

• syscall 10 // integer number for x86

// some of these are fixed by intel

Example: How are system calls used in
kernel
• syscall machine instruction takes operands

• syscall 10 // integer number for x86
// some of these are fixed by intel

• When we are writing programs in HLL (higher level
language, think C)

• We think of syscalls in a somewhat higher level
context

Example: How are system calls used in
kernel
• syscall machine instruction takes operands

• syscall 10 // integer number for x86
// some of these are fixed by intel

• When we are writing programs in HLL (higher level
language, think C)

• We think of syscalls in a somewhat higher level
context

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

• Typically executes hundreds of thousands time every
second

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

• Typically executes hundreds of thousands time every
second

• User application programs do not see this level of
detail

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

• Typically executes hundreds of thousands time every
second

• User application programs do not see this level of
detail

• Use Application programming interface (API)

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

• Typically executes hundreds of thousands time every
second

• User application programs do not see this level of
detail

• Use Application programming interface (API)

• fork, pipe, execvp etc.

Characteristics of system calls

• Provide an interface to the services made available by an
operating system

• Typically executes hundreds of thousands time every
second

• User application programs do not see this level of
detail

• Use Application programming interface (API)

• fork, pipe, execvp etc.

• These APIs are also loosely termed as system calls

More about system calls

• System call numbers in linux for x86 - 64 :
https://github.com/torvalds/linux/blob/16f73eb02d7e176
5ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/
syscall_64.tbl

• System call numbers in linux for x86 :
https://github.com/torvalds/linux/blob/16f73eb02d7e176
5ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/
syscall_32.tbl

• System call implementations in x86-64 and x86
https://stackoverflow.com/questions/15168822/intel-
x86-vs-x64-system-call

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/syscall_32.tbl
https://stackoverflow.com/questions/15168822/intel-x86-vs-x64-system-call

Example of a system call API

• There are no fopen, fgets, printf, and fclose system calls
in the Linux kernel but open, read, write, and close

• http://man7.org/linux/man-pages/man2/read.2.html

http://man7.org/linux/man-pages/man2/read.2.html

Example of a system call API

• http://man7.org/linux/man-pages/man2/read.2.html

• What are these function parameters?

• What is the return values?

http://man7.org/linux/man-pages/man2/read.2.html

How is read invoked?

• Check the board

• Demo: checking what syscalls are invoked in a process

• Demo: checking assembly code in C (using gcc)

Summary: The workflow

Functions we
write in HLL

(printf, scanf)
Lower level
standard C
library call

(read, write)

syscall
instruction

Types of system calls
(From silberschatz’s slides)

Types of System Calls
• Process control (e.g., fork(), exit(), wait())

• create process, terminate process (fork, exit)

• end, abort

• load, execute

• get process attributes, set process attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to share data between
processes

Types of System Calls (Cont.)

• File management (e.g., open(), close(), read(), write())

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

• Device management (e.g., ioctl(), read(), write())

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

Types of System Calls (Cont.)

• Inter-Process Communications (e.g., pipe(),
semget(), semop(), shmget(), shmcat(), shmdt(),
shmctl(), signal(), kill())

• create, delete communication connection

• send, receive messages if message passing
model to host name or process name

• Shared-memory model create and gain access
to memory regions

• transfer status information

• attach and detach remote devices

Types of System Calls (Cont.)

• Protection (chmod(), chown(), umask())

• Control access to resources

• Get and set permissions

• Allow and deny user access

Today’s class

• System calls

• Some practice problems

• Start of processes

Announcement

• The first practice problems sheet is up:
http://www.facweb.iitkgp.ac.in/~isg/OS/ASSIGN/
Assignment-1.pdf

http://www.facweb.iitkgp.ac.in/~isg/OS/ASSIGN/Assignment-1.pdf

