Syscalls

Indranil Sen Gupta (odd section)

and Mainack Mondal (even section)
CS39002

Spring 2019-20

The story so far

* A brief historical overview of OS

« Batch processing systems
* Multiprogramming

* Multitasking

« SOome practice problems

« Today’s OS (multitasking, like Unix)

* Dual mode of operation
« Uses of timer

Today’s class

« System calls

* SOome practice problems

« Start of processes

System calls

What are system calls?

* The mechanism used by an application program to
request service from the operating system

e SO how does it work”?

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

* The handler routine was just an interrupt handler

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT
* The handler routine was just an interrupt handler

 Like interrupts, system calls are arranged in a table

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

* The handler routine was just an interrupt handler
 Like interrupts, system calls are arranged in a table

* \Whenever a syscall (interrupt driven) came

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

* The handler routine was just an interrupt handler
 Like interrupts, system calls are arranged in a table

* \Whenever a syscall (interrupt driven) came

» Kernel selected syscall placing index in eax register

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

* The handler routine was just an interrupt handler
 Like interrupts, system calls are arranged in a table

* \Whenever a syscall (interrupt driven) came

» Kernel selected syscall placing index in eax register
« Arguments go in the other registers

Earlier days: interrupt

 QOriginally, system calls issued using “int” instruction

« Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

* The handler routine was just an interrupt handler
 Like interrupts, system calls are arranged in a table

* \Whenever a syscall (interrupt driven) came

» Kernel selected syscall placing index in eax register
« Arguments go in the other registers
* Return value goes in eax

However it Is slow

« Joday, Processors are totally pipelined

* Pipeline stalls are very expensive
« Cache misses can cause pipeline stalls

 Now recall that IDT is in memory

* May not be in cache
« Makes it expensive

ldea: new instruction

 What if we cache the IDT entry for a system call in a
special CPU register?

* No more cache misses for the IDT!

 \WWhat is the cost?

ldea: new instruction

 What if we cache the IDT entry for a system call in a
special CPU register?

* No more cache misses for the IDT!

 \What is the cost?

 system calls should be frequent enough to be worth
the transistor budget

How to leverage the new instruction?

* There is a machine instruction (new architectures)

 Essentially for asking your processor to perform task
e Hardware specific

» Can be called “syscall”, “trap”, “svc”, “swi”
* For x86-64 architecture its called “syscall”

Example: How are system calls used In
kernel

 syscall machine instruction takes operands

« syscall 10 // integer number for x86
// some of these are fixed by intel

Example: How are system calls used In
kernel

 syscall machine instruction takes operands

« syscall 10 // integer number for x86
// some of these are fixed by intel

« When we are writing programs in HLL (higher level
language, think C)

* We think of syscalls in a somewhat higher level
context

Example: How are system calls used In
kernel

 syscall machine instruction takes operands

« syscall 10 // integer number for x86
// some of these are fixed by intel

« When we are writing programs in HLL (higher level
language, think C)

* We think of syscalls in a somewhat higher level
context

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

* Typically executes hundreds of thousands time every
second

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

* Typically executes hundreds of thousands time every
second

« User application programs do not see this level of
detall

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

* Typically executes hundreds of thousands time every
second

« User application programs do not see this level of
detall

» Use Application programming interface (API)

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

* Typically executes hundreds of thousands time every
second

« User application programs do not see this level of
detall

» Use Application programming interface (API)
* fork, pipe, execvp etc.

Characteristics of system calls

* Provide an interface to the services made available by an
operating system

* Typically executes hundreds of thousands time every
second

« User application programs do not see this level of
detall

» Use Application programming interface (API)
* fork, pipe, execvp etc.
* These APls are also loosely termed as system calls

More about system calls

« System call numbers in linux for x86 - 64 :
https://qithub.com/torvalds/linux/blob/16f73eb02d7e176
5ccab3d2018e0bd98eb93d97 3/arch/x86/entry/syscalls/
syscall 64.10ol

« System call numbers in linux for x86 :
https://qgithub.com/torvalds/linux/blob/16f73eb02d7e176
5ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/
syscall 32.t0ol

» System call implementations in x86-64 and x86
https://stackoverflow.com/questions/15168822/intel-
x86-vs-x64-system-call

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/syscalls/syscall_32.tbl
https://stackoverflow.com/questions/15168822/intel-x86-vs-x64-system-call

Example of a system call API

* There are no fopen, fgets, printf, and fclose system calls
In the Linux kernel but open, read, write, and close

 http://man7.org/linux/man-pages/man2/read.2.html

NAME top

read - read from a file descriptor

SYNOPSIS top

$include <unistd.h>

ssize t read(int fd, void *buf, size_t count);

http://man7.org/linux/man-pages/man2/read.2.html

Example of a system call API

 http://man7.org/linux/man-pages/man2/read.2.html

NAME top

read - read from a file descriptor

SYNOPSIS top

$include <unistd.h>

ssize_ t read(int fd, void *buf, size_t count);

« What are these function parameters?
* \What is the return values?

http://man7.org/linux/man-pages/man2/read.2.html

How is read invoked?

* Check the board

* Demo: checking what syscalls are invoked in a process

* Demo: checking assembly code in C (using gcc)

Summary: The workflow

Functions we
write in HLL
(printf, scanf)

Lower level
standard C

library call

(read, write)

syscall
instruction

Types of system calls

(From silberschatz’s slides)

Types of System Calls

* Process control (e.g., fork(), exit(), wait())

create process, terminate process (fork, exit)

end, abort

load, execute

get process attributes, set process attributes

wait for time

wait event, signal event

allocate and free memory

Dump memory if error

Debugger for determining bugs, single step execution

Locks for managing access to share data between
Processes

Types of System Calls (Cont.)

 File management (e.g., open(), close(), read(), write())

create file, delete file
open, close file

read, write, reposition
get and set file attributes

* Device management (e.g., ioctl(), read(), write()

e request device, release device

* read, write, reposition

« get device attributes, set device attributes
* |ogically attach or detach devices

Types of System Calls (Cont.)

 Inter-Process Communications (e.g., pipe(),
semget(), semop(), shmget(), shmcat(), shmdt(),
shmctl(), signal(), kill())

create, delete communication connection

send, receive messages if message passing
model to host name or process name

Shared-memory model create and gain access
to memory regions

transfer status information
attach and detach remote devices

Types of System Calls (Cont.)

» Protection (chmod(), chown(), umask())

« Control access to resources
« (Get and set permissions
» Allow and deny user access

Today’s class

* SOome practice problems

« Start of processes

Announcement

* The first practice problems sheet is up:
http.//www.facweb.iitkgp.ac.in/~isg/OS/ASSIGN/
Assignment-1.pdf

http://www.facweb.iitkgp.ac.in/~isg/OS/ASSIGN/Assignment-1.pdf

