
Course Introduction (contd.): 
Operating Systems

Indranil Sengupta (odd section)
and Mainack Mondal (even section)
CS39002

Spring 2019-20



The website is up!

http://www.facweb.iitkgp.ac.in/~isg/OS/

http://www.facweb.iitkgp.ac.in/~isg/OS/


The story so far

• What is an OS

• What are the two goals of an OS

• Two key parts of OS

• Interrupt driven functionality of OS



Today’s class

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some practice problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer



A brief history of OS



The beginning
Computers == which performs computational tasks



The beginning
Computers == which performs computational tasks

Give a job: It will give you output



The beginning
Computers == which performs computational tasks

Give a job: It will give you output

What if you had to compute multiple jobs? 



First computers were similar

• Thus the operating system was simply designed
• Batch processing operating system
• One job executed at a time
• only one job in memory at one time and executed (till 

completion) before the next one starts



First computers were similar

• Thus the operating system was simply designed
• Batch processing operating system
• One job executed at a time
• only one job in memory at one time and executed (till 

completion) before the next one starts

• https://youtu.be/YXE6HjN8heg?t=308

OS

User 
program

Jobs waiting

https://youtu.be/YXE6HjN8heg?t=308


Problem with batch processing

A job has to wait for another to finish

Led to very high wait times for the following jobs

CPU was not doing anything at that time



Problem with batch processing

A job has to wait for another to finish
Led to very high wait times for the following jobs
CPU was not doing anything at that time

Insight: Input/Output from periphrals were very slow
Your job has to wait forever when my job is simply 
reading the necessary data from peripheral devices



SPOOLing

Simultaneous peripheral jobs online (SPOOL)
Only start jobs when all required data is read
OR, Send data output to a SPOOL buffer / virtual device



SPOOLing under the hood 

CPU



SPOOLing under the hood 

CPU

SPOOL 
buffer



SPOOLing under the hood 

I/O processor

CPU

SPOOL 
buffer



SPOOLing under the hood 

Input device I/O processor Output Device

CPU

SPOOL 
buffer



SPOOLing bring in important 
concepts
• Addition of I/O processors
• Read/Write becomes faster

• Concept of virtual device
• Batch of jobs
• CPU-bound and I/O bound jobs



SPOOLing bring in important 
concepts
• Addition of I/O processors
• Read/Write becomes faster

• Concept of virtual device
• Batch of jobs
• CPU-bound and I/O bound jobs

A special form of multiprogramming



Multiprogramming

• Multiple jobs loaded into memory at the same 
time and job scheduler selected a job (say job A)
• If a big I/O request come for job A, then A’s context is 

stored away and job B is started
• Once A’s I/O finished restrore A



Multiprogramming

• Multiple jobs loaded into memory at the same 
time and job scheduler selected a job (say job A)
• If a big I/O request come for job A, then A’s context is 

stored away and job B is started
• Once A’s I/O finished restrore A

• Storing context (current program state)
• Need memory protection
• Need privileged mode



Multiprogramming: Issue

• Relies on the fact that job B can start when job A 
is doing I/O 

• For multiprogramming to work: a good mix of 
CPU and I/O bound jobs

• What if its not the case? 



Today’s class

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some practice problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer



Multitasking (timesharing)

• Logical extension of multiprogramming

• CPU switches jobs so fast that users can interact with 
each job while its running

• Creates interactive computing (e.g. cancel download)

• Characteristics

• Real time: meeting deadline for jobs

• Better share resources between jobs



Multitasking: Need for new tech

• Concept of CPU scheduling
• Need hardware timers
• Concept of CPU burst and I/O burst (lots of CPU 

operations OR lots of I/O operations in one go)
• Have to worry about context switch overhead



Today’s class

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some practice problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer



Multitasking: The tools

• For multitasking, somebody needs to schedule 
the tasks as time goes 

• kernel does it

• Dual mode of operation 

• Use of timer



Dual mode of operation

• Process can execute in two modes 

• user mode and kernel mode

• User mode: run normal applications

• Kernel mode: directly talk to CPU/Peripherals to 
schedule tasks 



Dual mode of operation

• Process can execute in two modes 

• user mode and kernel mode

• User mode: run normal applications

• Kernel mode: directly talk to CPU/Peripherals to 
schedule tasks 

• Mode bit in in hardware

• Tells CPU if its running in user or kernel mode



Kernel mode facilities

• Can run privileged instructions on CPU
• Only in kernel mode
• If you try to run them in user mode generates 

exceptions
• Example: low-level I/O operation, setting protection 

registers like, running EI, DI instructions 
(Enable/Disable interrupt)



How to switch between these two 
modes?
• System call or interrupt changes mode to kernel

• Special “return” instruction changes mode to 
user



How to switch between these two 
modes?
• System call or interrupt changes mode to kernel

• Special “return” instruction changes mode to 
user

But when to change modes when applications are 
running? 



Today’s class

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer



How to use hardware timer?

• Recall that OS divide tasks into micro tasks and 
then schedule them in CPU 
• Uses a hardware timer to prevent infinite loop or 

resource hogging



How to use hardware timer?

• Recall that OS divide tasks into micro tasks and 
then schedule them in CPU 
• Uses a hardware timer to prevent infinite loop or 

resource hogging

• Timer interrupts processor after prespecified time
• OS initializes the count value (privileged mode)
• Count value in timer is decremented by physical clock



How to use hardware timer?

• Recall that OS divide tasks into micro tasks and 
then schedule them in CPU 
• Uses a hardware timer to prevent infinite loop or 

resource hogging

• Timer interrupts processor after prespecified time
• OS initializes the count value (privileged mode)
• Count value in timer is decremented by physical clock
• Generates an interrupt when count value is 0



User mode
(mode = 1)

Putting it all together: the 
multitasking basic in two modes

User process Syscall

Kernel mode
(mode = 0)



Putting it all together: the 
multitasking basic in two modes

User process Syscall

Syscall
handler

Mode = 0
Kernel mode
(mode = 0)

User mode
(mode = 1)



Putting it all together: the 
multitasking basic in two modes

User process Syscall

Syscall
handler

Mode = 0

User mode
(mode = 1)

Kernel mode
(mode = 0)

Return



Putting it all together: the 
multitasking basic in two modes

User process Syscall

Syscall
handler

Mode = 0 Mode = 1

User mode
(mode = 1)

Kernel mode
(mode = 0)

Return



Putting it all together: the 
multitasking basic in two modes

User process Syscall Resume 
operation

Syscall
handler

Mode = 0 Mode = 1

User mode
(mode = 1)

Kernel mode
(mode = 0)

Return



Today’s class

• A brief historical overview of OS
• Batch processing systems
• Multiprogramming
• Multitasking
• Some problems

• Today’s OS (multitasking, like Unix)
• Dual mode of operation
• Uses of timer


